Химические элементы входящие в состав белков. Калорийность Белка

Белки

Лекция 2

Функции белков

Химический состав белков

Характеристика протеиногенных аминокислот

Структура белков

Классификация белков

Свойства белков и методы исследования

Белки являются структур­ными компонентами органов и тканей, проявляют ферментативную активность (ферменты), участвуют в регуляции метаболизма. Транспортные белки, переносящие протоны и электроны через мембраны обеспечивают биоэнергетику: поглощение света, дыхание, выработку АТФ. Запасные белки (характерны в основном для растений) откладываются в семенах и используются для питания проростков в процессе прорастания. Сжигая АТФ, белки обеспечивают механическую деятельность, участву­ют в движении цитоплазмы и дру­гих клеточных органелл. Важна защитная функция белков: гидролитичес­кие ферменты лизосом и вакуолей расщепляют вредные вещества, попавшие в клетку; гликопротеины участвуют в защите растений от патогенов; белки выполняют криозащитную и антифризную функции. Один белок может вы­полнять две или более функций (неко­торые белки мембран могут выполнять структур­ную и ферментативную функции).

Удивительное разнообразие функций белков и большая распростра­ненность отразились в их названии – протеины (от греческого «рrоtos » - первичный, важнейший ). Как правило, содержание белков в растениях ниже, чем у животных: в вегетативных органах количество белка обычно 5-15% от сухой массы. Так, в листьях тимофеевки содержится 7% белка, а в листьях клевера и вики – 15%. Больше белка в семенах: у злаков в среднем 10-20%, у бобовых и масличных – 25-35%. Наиболее богаты белком семена сои – до 40%, а иногда и выше.

В растительных клетках белки обычно связаны с углеводами, липидами и другими соединениями, а также с мембранами, поэтому их трудно извлекать и получать чистые препараты, особенно из вегетативных органов. В связи с этим в растениях лучше изучены белки семян, где их больше и откуда они легче извлекаются.

Белки – органические соединения, имеющие следующий эле­ментарный состав: углерод 51-55 %; кислород 21-23 %; водород 6,6-7,3 %; азот 15-18 %; сера 0,3-2,4 %. В состав некоторых белков входит также фосфор (0,2-2 %), железо и другие элементы. Характерным показателем элементарного состава белков у всех орга­низмов является наличие азота , в среднем его принимают равным 16 % . Относительное постоянство этого показателя дает возможность использовать его для количественного определения белка: относитель­ное значение содержания белкового азота, в процентах, умножают на фактор пересчета – 6,25 (100: 16 = 6,25). По химической природе белки – гетерополимеры , постро­енные из остатков аминокислот . Аминокислотами (АК) называются органические соединения, в молекулах которых один или несколько атомов водорода замещены аминогруппами ( - NН 2 ).

В состав белков входят органогенные элементы и сера. Некоторые белки содержат фосфор, селен, металлы и др. Процентное содержание химических элементов в белках может варьироваться в зависимости от ткани или органа в пределах, представленных в табл. 1.2.

Поскольку белки являются полимерами, то представляют собой цепочку, состоящую из аминокислот. Аминокислотная последовательность в белковой молекуле всегда задана генетически. При этом нить аминокислот еще не является белком как таковым, т.е. она не способна выполнять функции белка. В живой клетке белки представляют собой не бесформенные нити аминокислот, а исключительно структурированные образования, имеющие определенную пространственную конфигурацию.

Таблица 1.2

В пространственной организации белковой молекулы различают четыре уровня. Первичная структура - последовательность аминокислот в виде цепочки. Вторичная структура - цепочка аминокислот закручена в виде а-спирали. Третичная структура - пространственное расположение полипептидной цепи может быть в виде клубка (глобулярные белки) или в виде волокна (фибриллярные белки) (рис. 1.4). Глобулярные белки хорошо растворимы в воде, к ним относятся яичный белок, казеин молока, белки плазмы крови. Фибриллярные белки либо нерастворимы в воде, либо плохо растворимы, к ним относятся белки мышц, костей, некоторые белки крови (фибрин). Четвертичная структура - объединение нескольких полипептидных цепей, которые могут иметь разные первичную, вторичную и третичную структуры.

В зависимости от строения третичной и четвертичной структуры белки делят на простые и сложные. Простые белки - протеины состоят только из аминокислот, сложные белки - протеиды содержат в своем составе белковую и небелковую части. Небелковая часть - кофактор может быть представлена нуклеиновыми кислотами, липидами, сахарами, витаминами, фосфорной кислотой и другими соединениями.

Свойства и структура белка определяются набором входящих в него аминокислот, их общим числом, последовательностью соединения друг с другом и пространственной конфигурацией самой молекулы. Аминокислота - это мелкое органическое соединение, содержащее две функциональные группы, одна из которых имеет кислотные свойства - карбоксильная группа, другая - аминогруппа проявляет себя как основание. Общая структурная формула выглядит следующим образом:

СООН - карбоксильная группа;

NH 2 - аминогруппа;

R - радикал.

Группировка, отмеченная серым цветом, присутствует у всех аминокислот в неизменном виде, а радикал у каждой аминокислоты свой - по строению радикала собственно и отличаются аминокислоты одна от другой

В настоящее время известно около 200 аминокислот, но в состав белка входят лишь 20 из них (табл. 1.3), в связи с чем их еще называют

«волшебными аминокислотами». Главное назначение аминокислот - это участие в построении белковых молекул организма. Но кроме этого аминокислоты самостоятельно выполняют разнообразные функции, представленные в табл. 1.3.

Часть этих аминокислот, а именно 12, могут синтезироваться в организме человека в достаточном или ограниченном количестве. Аминокислоты, которые синтезируются в организме в достаточном количестве, называются заменимыми аминокислотами. К ним относятся аланин, аспарагин, аспарагиновая кислота, глицин, глутамин, глутаминовая кислота, пролин, серин, тирозин, цистеин. Аминокислоты, которые синтезируются в организме в ограниченном количестве, получили название частично заменимые аминокислоты. Такими аминокислотами являются аргинин и гистидин, у взрослого человека они синтезируются в необходимом количестве, а у детей - в недостаточном.

Таблица 1.3

Краткая характеристика аминокислот

Название

Функция

Источник

Потребность, г

Заменимые аминокислоты

Аланин

Превращается в печени в глюкозу, участвуя в процессе глюконеогенеза

Крупа овсяная, крупа рисовая, молоко и молочные продукты, говядина, лосось

Аргинин

Участвует в белковом обмене (орнитиновый цикл). Ускоряет заживление ран. Препятствует образованию опухолей. Очищает печень, укрепляет иммунную систему

Грецкие орехи, кедровые орехи, семена тыквы, семена подсолнечника, семена кунжута, соевые бобы, молоко, мясо, рыба

Аспарагин

Участвует в реакциях пере- аминирования. Играет важную роль в синтезе аммиака. Предшественник аспарагиновой кислоты

Бобовые, спаржа, томаты, орехи, семена, молоко, мясо, яйца, рыба, морепродукты

Аспарагиновая кислота

Участвует в процессе глюконеогенеза и последующем запасании гликогена, в процессах синтеза ДНК и РНК. Ускоряет выработку иммуноглобулинов

Картофель, кокос, орехи, говядина, сыр,яйца

Продолжение

Название

Функция

Источник

Потребность, г

Гистидин

Участвует в формировании иммунного ответа, в процессах кроветворения

Злаки, рис, мясо

Глицин

Участвует в выработке гормонов. Является сырьем для производства других аминокислот. Тормозит передачу нервных импульсов. Активизирует работу иммунной системы

Петрушка, мясные продукты, молочные продукты, рыба

Глутамин

Является предшественником глутаминовой кислоты. Участвует в работе клеток тонкого кишечника и иммунной системы. Улучшает память

Картофель, зерновые, соя,орехи грецкие, свинина, говядина, молоко

Глутаминовая кислота

Играет главную роль в азотистом обмене. Принимает участие в переносе ионов калия в клетках центральной нервной системы и обезвреживает аммиак. Участвует в нормализации сахара в крови

Шпинат, мясо, молоко, рыба, сыр

Пролин

Принимает участие в синтезе коллагена. Способствует заживлению ран, улучшает структуру кожи

Мясо, молочные продукты, рыба, яйца

Серин

Участвует в образовании активных центров ряда ферментов, синтезе аминокислот. Требуется для обмена жирных кислот и жиров

Молочные продукты

Тирозин

Участвует в биосинтезе меланинов, дофамина, адреналина, гормонов щитовидной железы. Стимулирует деятельность головного мозга

Семена кунжута, семена тыквы, миндальные орехи, фрукты, молочные продукты

Продолжение

Название

Функция

Источник

Потребность, г

Цистеин

Участвует в формировании третичной структуры белковых молекул. Обладает антиоксидантными, антиканцерогенными и детоксикант- ными свойствами. Участвует в жировом обмене

Лук, чеснок, красный перец, молочные продукты, мясо, рыба (лосось), сыр

Незаменимые аминокислоты

Валин

Стимулирует умственную деятельность, активность и координацию. Источник энергии для мышц.

Молочные продукты, мясо, икра, зерна, хлебные злаки, бобовые, грибы, орехи

Изолейцин

Нормализует функции центральной нервной системы

Молочные продукты, мясо, рыба, яйца, орехи, соя, рожь, чечевица

Лейцин

Способствует восстановлению костей, кожи, мышц. Понижает уровень сахара в крови и стимулирует выделение гормона роста. Важное промежуточное звено в синтезе холестерина

Бобовые, рис, пшеница, орехи, мясо

Лизин

Участвует в кальциевом обмене, в формировании коллагена. Требуется для роста, восстановления тканей, синтеза гормонов, антител

Картофель, яблоки, молочные продукты, мясо, рыба, сыр

Метионин

Участвует в обмене жиров, витаминов, фосфолипидов. Необходим для формирования волос, кожи, ногтей. Оказывает липотропное действие

Кукуруза, творог, яйца, рыба (судак, сом, севрюга, треска), печень

Треонин

Препятствует отложению жира в печени. Способствует образованию коллагена, эластина и белков зубной эмали. Усиливает иммунную защиту

Орехи, семена, бобовые, молочные продукты, яйца, мясо, рыба (лосось), растительные продукты

Оставшиеся восемь аминокислот не могут синтезироваться в организме человека и животных и должны поступать с пищей, поэтому они получили название незаменимые аминокислоты. К ним относятся валин, изолейцин, лейцин, лизин, треонин, триптофан, фенилаланин и метионин. И отдельно следует выделить две аминокислоты - тирозин и цистеин, которые относятся к частично заменимым, но не потому, что организм не в состоянии их синтезировать, а потому, что для образования этих аминокислот необходимы незаменимые аминокислоты. Тирозин синтезируется из фенилаланина, а для образования цистеина необходима сера, которую он заимствует у метионина. Изложенную информацию можно иллюстрировать схемой, представленной на рис. 1.5.


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

ГЛАВА 1. ВВЕДЕНИЕ

Довольно банальными стали сейчас сообщения о революции в биологии. Бесспорным считается и то, что эти революционные изменения были связаны с формированием на стыке биологии и химии комплекса наук, среди которых центральное положение занимали и занимают молекулярная биология и биоорганическая химия.

“Молекулярная биология наука, ставящая своей целью познание природы явлений жизнедеятельности путем изучения биологических объектов и систем на уровне, приближающемся к молекулярному… характерные проявления жизни… обусловлены структурой, свойствами и взаимодействием молекул биологически важных веществ, в первую очередь белков и нуклеиновых кислот

“Биоорганическая химия - наука, изучающая вещества, лежащие в основе процессов жизнедеятельности…основные объекты биоорганической химии биополимеры (белки и пептиды, нуклеиновые кислоты и нуклеотиды, липиды, полисахариды и т.д.).

Из этого сопоставления становится очевидным, сколь важно для развития современной биологии изучение белков.

биология белок биохимия

ГЛАВА 2. ИСТОРИЯ ИССЛЕДОВАНИЯ БЕЛКА

2.1 Начальные этапы в химии белка

Белок попал в число объектов химических исследований 250 лет тому назад. В 1728 году итальянский ученый Якопо Бартоломео Беккари получил из пшеничной муки первый препарат белкового вещества - клейковины. Он подверг клейковину сухой перегонке и убедился, что продукты такой перегонки были щелочными. Это было первое доказательство единства природы веществ растительного и животного царств. Он опубликовал результаты своей работы в 1745 году, и это была первая статья о белке.

В XVIII - начале XIX веков неоднократно описывали белковые вещества растительного и животного происхождения. Особенностью таких описаний было сближение этих веществ и сопоставление их с веществами неорганическими.

Важно отметить, что в это время, еще до появления элементного анализа, сложилось представление о том, что белки из различных источников - это группа близких по общим свойствам индивидуальных веществ.

В 1810 году Ж. Гей-Люссак и Л. Тенар впервые определили элементный состав белковых веществ. В 1833 году Ж. Гей-Люссак доказал, что в белках обязательно присутствует азот, а вскоре было показано, что содержание азота в различных белках приблизительно одинаково. В это же время английский химик Д. Дальтон попытался изобразить первые формулы белковых веществ. Он представлял их довольно просто устроенными веществами, но чтобы подчеркнуть их индивидуальное различие при одинаковом составе, он прибег к изображению молекул, которые бы сейчас назвали изомерными. Однако понятия изомерии во времена Дальтона еще не было.

Формулы белков Д. Дальтона

Были выведены первые эмпирические формулы белков и выдвинуты первые гипотезы относительно закономерностей их состава. Так, Н.Либеркюн считал, что альбумин описывается формулой C 72 H 112 N 18 SO 22 , а А.Данилевский полагал, что молекула этого белка по крайней мере на порядок больше: C 726 H 1171 N 194 S 3 O 214 .

Немецкий химик Ю. Либих в 1841 году предположил, что белки животного происхождения имеют аналоги среди растительных белков: усвоение белка легумина в организме животного, по Либиху, вело к накоплению аналогичного белка - казеина. Одной из самых распространенных теорий доструктурной органической химии была теория радикалов - неизменных компонентов родственных веществ. В 1836 году голландец Г. Мульдер высказал предположение о том, что все белки содержат один и тот же радикал, который он назвал протеином (от греческого слова “первенствую”, “занимаю первое место”). Протеин, по Мульдеру, имел состав Pr = C 40 H 62 N 10 O 12 . В 1838 году Г. Мульдер опубликовал формулы белков, построенные на основании теории протеина. Это были т.н. дуалистические формулы, где радикал протеина служил положительной группировкой, а атомы серы или фосфора - отрицательной. Вместе они образовывали электронейтральную молекулу: белок сыворотки крови Pr 10 S 2 P, фибрин Pr 10 SP. Однако аналитическая проверка данных Г. Мульдера, проведенная русским химиком Лясковским, а также Ю. Либихом, показала, что “белковых радикалов” не существует.

В 1833 году немецкий ученый Ф. Розе открыл биуретовую реакцию на белки - одну из основных цветных реакций на белковые вещества и их производные в настоящее время (подробнее о цветных реакциях на стр.53). Был сделан также вывод о том, что это самая чувствительная реакция на белок, поэтому она в то время привлекла наибольшее внимание химиков.

В середине XIX века были разработаны многочисленные методы экстракции белков, очистки и выделения их в растворах нейтральных солей. В 1847 году К. Рейхерт открыл способность белков образовывать кристаллы. В 1836 году Т. Шванн открыл пепсин - фермент, расщепляющий белки. В 1856 году Л. Корвизар открыл еще один подобный фермент - трипсин. Изучая действие этих ферментов на белки, биохимики пытались разгадать тайну пищеварения. Однако наибольшее внимание внимание привлекли вещества, получающиеся в результате действия на белки протелитических фермнтов (протеаз, к ним относятся вышеприведенные ферменты): одни из них были фрагментами исходных молекул белка (их назвали пептонами ), другие же не подвергались дальнейшему расщеплению протеазами и относились к известному еще с начала века классу соединений - аминокислот (первое аминокислотное производное - амид аспарагин был открыт в 1806 году, а первая аминокислота - цистин в 1810). Аминокислоты в составе белков впервые обнаружил в 1820 году французский химик А. Браконно. Он применил кислотный гидролиз белка и в гидролизате обнаружил сладковатое вещество, названное им глицином. В 1839 году было доказано существование в составе белков лейцина, а в 1849 году Ф. Бопп выделил из белка еще одну аминокислоту - тирозин (полный список дат открытий аминокислот в белках см. Приложение II).

К концу 80-х гг. XIX века из белковых гидролизатов было выделено уже 19 аминокислот и стало медленно укрепляться мнение, что сведения о продуктах гидролиза белков несут важную информацию о строении белковой молекулы. Тем не менее, аминокислоты считались обязательным, но неглавным компонентом белка.

В связи с открытиями аминокислот в составе белков французский ученый П. Шютценберже в 70-х гг. XIX века предложил т. н. уреидную теорию строения белка. Согласно ей молекула белка состояла из центрального ядра, роль которого выполняла молекула тирозина, и присоединенных к нему (с замещением 4 атомов водорода) слож ных группировок, названных Шютценберже лейцинами . Однако гипотеза было очень слабо подкреплена экспериментально, и дальнейшие исследования показали несостоятельность.

2.2 Теория “углеазотных комплексов” А.Я. Данилевского

Оригинальную теорию о строении белка высказал в 80-х гг. XIX века русский биохимик А. Я. Данилевский. Первым из химиков он обратил внимание на возможный полимерный характер строения белковых молекул. В начале 70-х гг. он писал А.М. Бутлерову, что “частицы альбумина есть смешанный полимерид”, что для определения белка он не находит “термина более подходящего, чем слово полимер в широком смысле”. Изучая биуретовую реакцию он предположил, что эта реакция связана со структурой перемежающихся атомов углерода и азота - N - C - N - C - N - , которые входят в т.н. углеазо т ный комплекс R" - NH - CO - NH - CO - R”. На основе данной формулы Данилевский полагал, что в молекуле белка содержится 40 таких углеазотных комплексов. Отдельные углеазотноаминокислотные комплекс, по Данилевскому, выглядели так:

По Данилевскому углеазотные комплексы могли соединяться эфирной или амидной связью с образованием высокомолекулярной структуры.

2.3 Теория “киринов” А. Косселя

Немецкий физиолог и биохимик А. Коссель, изучая протамины и гистоны, относительно просто устроенные белки, он установил, что при их гидролизе образуется большое количество аргинина. Кроме того он открыл в составе гидролизата неизвестную тогда аминокислоту - гистидин. На основании этого Коссель предположил, что эти белковые вещества можно рассматривать как некие простейшие модели более сложных белков, построенных, по его мнению, согласно следующему принципу: аргинин и гистидин составляют центральное ядро (“протаминовое ядро”), которое окружено комплексами из других аминокислот.

Теория Косселя представляла собой наиболее совершенный пример развития гипотезы о фрагментарном строении белков (впервые предложенной, как было сказано выше, Г.Мульдером). Этой гипотезой воспользовался немецкий химик М. Зигфрид в начале XX века. Он полагал, что белки построены из комплексов аминокислот (аргинин+лизин+глутаминовая к-та), названных им киринами (от греческого “кириос” основной). Однако эта гипотеза была высказана в 1903 году, когда Э. Фишер активно разрабатывал свою пептидную теорию , давшую ключ к тайне строения белков.

2.4 Пептидная теория Э. Фишера

Немецкий химик Эмиль Фишер, уже прославившийся на весь мир исследованиями пуриновых соединений (алкалоидов группы кофеина) и расшифровкой структуры сахаров, создал пептидную теорию, во многом подтвердившуюся практически и получившую всеобщее признание еще при его жизни, за что он был удостоен второй в истории химии Нобелевской премии (первую получил Я.Г. Вант-Гофф).

Немаловажно, что Фишер построил план исследования, резко отличающийся от того, что предпринималось раньше, однако учитывающий все известные на тот момент факты. Прежде всего он принял, как наиболее вероятную гипотезу о том, что белки построены из аминокислот, соединенных амидной связью:

Такой тип связи Фишер назвал (по аналогии с пептонами) пептидной . Он предположил, что белки представляют собой полимеры аминокислот, соединенных пептидной связью . Идея о полимерном характере строения белков как известно высказывалась еще Данилевским и Хертом, но они считали, что “мономеры” представляют собой очень сложные образования - пептоны или “углеазотные комплексы”.

Доказывая пептидный тип соединения аминокислотных остатков. Э. Фишер исходил из следующих наблюдений. Во-первых, и при гидролизе белков, и при их ферментативном разложении образовывались различные аминокислоты. Другие соединения было чрезвычайно трудно описать а еще труднее получить. Кроме того Фишеру было известно, что у белков не наблюдается преобладания ни кислотных, ни основных свойств, значит, рассуждал он, амино- и карбоксильные группы в составе аминокислот в белковых молекулах замыкаются и как бы маскируют друг друга (амфотерность белков, как сказали бы сейчас).

Решение проблемы строения белка Фишер разделил, сведя ее к следующим положениям:

Качественное и количественное определение продуктов полного гидролиза белков.

Установление строения этих конечных продуктов.

Синтез полимеров аминокислот с соединениями амидного (пептидного) типа.

Сравнение полученных таким образом соединений с природными белками.

Из этого плана видно, что Фишер применил впервые новый методологический подход - синтез модельных соединений, как способ доказательства по аналогии.

2.5 Разработка методов синтеза аминокислот

Для того чтобы перейти к синтезу производных аминокислот, соединенных пептидной связью, Фишер провел большую работу по изучению строения и синтезу аминокислот.

До Фишера общим методом синтеза аминокислот был циангидринный синтез А. Штреккера:

По реакции Штреккера удалось синтезировать аланин, серин и некоторые другие аминокислоты, а по ее модификации (реакции Зелинского-Стадникова) как -аминокислоты, так и их N-замещенные.

Однако сам Фишер стремился разработать методы синтеза всех известных тогда аминокислот. Он считал метод Штреккера недостаточно универсальным. Поэтому Э. Фишеру пришлось искать общий метод синтеза аминокислот в том числе аминокислот со сложными боковыми радикалами.

Он предложил аминировать бромзамещенные в -положении карбоновые кислоты. Для получения бромпроизводных он использовал, как например, в синтезе лейцина, арилированную или алкилированную малоновую кислоту:

Но создать абсолютно универсальный метод Э. Фишеру не удалось. Были разработаны и более надежные реакции. Например, ученик Фишера Г. Лейкс предложил следующую модификацию для получения серина:

Фишер также доказал, что белки состоят из остатков оптически активных аминокислот (см. стр.11). Это заставило его разработать новую номенклатуру оптически активных соединений, методы разделения и синтеза оптических изомеров аминокислот. Фишер также пришел к выводу, что в белках содержатся остатки L-форм оптически активных аминокислот, и он доказал это, впервые использовав принцип диастереоизомерии. Этот принцип заключался в следующем: к N-ацилпроизводному рацемической аминокислоты добавляли оптически активный алкалоид (бруцин, стрихнин, цинхонин, хинидин, хинин). В результате этого образовывались две стереоизомерные формы солей, обладающие различной растворимостью. После разделения этих диастереоизомеров алкалоид регенерировали и ацильную группу удаляли путем гидролиза.

Фишер сумел разработать метод полного определения аминокислот в продуктах гидролиза белков: он переводил хлоргидраты эфиров аминокислот обработкой концентрированной щелочью на холоду в свободные эфиры, которые заметно не омылялись. Затем смесь этих эфиров подвергал фракционной перегонке и из полученных фракций выделял отдельные аминокислоты путем дробной кристаллизации.

Новый метод анализа не только окончательно подтвердил, что белки состоят из аминокислотных остатков, но позволил уточнить и пополнить список встречающихся в белках аминокислот. Но все же количественные анализы не могли дать ответа на основной вопрос: каковы принципы строения молекулы белка. И Э.Фишер сформулировал одну из основных задач в изучении строения и свойств белка: разработка экспериментальные м е тоды синтеза соединений, основными компонентами которых были бы аминокисл о ты, соединенные пептидной связью.

Таким образом Фишер поставил нетривиальную задачу - синтезировать новый класс соединений с целью установления принципов их строения.

Задачу эту Фишер решил, и химики получили убедительные доказательства, что белки представляют собой полимеры аминокислот, соединенных пептидной связью:

CO - CHR" - NH - CO - CHR"" - NH - CO CHR""" - NH -

Это положение подтверждалось биохимическими доказательствами. Попутно выяснилось, что протеазы гидролизуют не все связи между аминокислотами с одинаковой скоростью. На их способность расщеплять пептидную связь влияли оптическая конфигурация аминокислот, заместители по азоту аминогруппы, длина цепи пептида, а также набор входящих в него остатков.

Главным доказательством пептидной теории стал синтез модельных пептидов и сопоставление их с пептонами гидролизата белков. Результаты показали, что из белковых гидролизатов выделяются пептиды, идентичные синтезированным.

В процессе выполнения этих исследований Э.Фишер и его ученик Э.Абдергальд- ен впервые разработали метод определения аминокислотной последовательности в белка. Сущность его заключалась в установлении природы аминокислотного остатка полипептида, имеющего свободную аминогруппу (N-концевую аминокислоту). Для этого они предложили блокировать в пептиде аминоконец -нафталин-сулфониловой группой, которая не отщепляется при гидролизе. Выделяя затем из гидролизата аминокислоту, меченую такой группой, можно было определить, какая из аминокислот была N-концевой.

После исследований Э.Фишера стало ясно, что белки представляют собой полипептиды. Это было важное достижение, в том числе и для задач синтеза белков: стало ясно, что именно нужно синтезировать. Только после этих работ проблема синтеза белка приобрела определенную направленность и необходимую строгость.

Говоря о работе Фишера в целом, следует отметить, что сам подход к исследованию был типичен скорее для наступающего XX века - он оперировал широким набором теоретических положений и методических приемов; его синтезы все менее и менее походили на искусство, основанное на интуиции, чем на точном знании, и приближались к созданию серий точных, почти технологических приемов.

2. 6 Кризис пептидной теории

В связи с применением новых физических и физико-химических методов исследований в начале 20-х гг. XX в. появились сомнения в том, что молекула белка представляет длинную полипептидную цепь. К гипотезе о возможности компактной укладки пептидных цепочек относились со скептицизмом. Все это потребовало пересмотра пептидной теории Э.Фишера.

В 20-30-е гг. распространение получила дикетопиперазиновая теория. Согласно ей, центральная роль в построении структуры белка играют дикетопиперазивные кольца, образующиеся при циклизации двух аминокислотных остатков. Также предполагалось, что эти структуры составляют центральное ядро молекулы, к которому присоединены короткие пептиды или аминокислоты (“наполнители” циклического скелета основной структуры). Наиболее убедительные схемы участия дикетопиперазинов в построении структуры белка были представлены Н.Д.Зелинским и учениками Э.Фишера.

Однако попытки синтеза модельных соединений, содержащих дикетопиперазины мало, что дали для химии белка впоследствии восторжествовала пептидная теория, однако эти работы оказали стимулирующее влияние на химию пиперазинов в целом.

После пептидной и дикетопиперазивной теорий продолжались попытки доказать существование только пептидных структур в молекуле белка. При этом стремились представить себе не только тип молекулы, но и общие ее очертания.

Оригинальную гипотезу высказал советский химик Д.Л.Талмуд. Он предположил, что пептидные цепи в составе белковых молекул свернуты в большие кольца, что в свою очередь стало шагом к созданию им представления о белковой глобуле.

Одновременно появились данные, свидетельствующие о различном наборе аминокислот в различных белка. Но закономерности, которым подчиняется последовательность аминокислот в структуре белка, были не ясны.

Первыми ответ на этот вопрос пытались дать М.Бергман и К.Ниман в разработанной ими гипотезе “перемежающихся частот”. Согласно ей последовательность аминокислотных остатков в белковой молекуле подчинялась числовым закономерностям, основы которых были выведены из принципов строения белковой молекулы фиброина шелка. Но этот выбор был неудачным, т.к. этот белок фибриллярный, строение же глобулярных белков подчиняется совсем другим закономерностям.

По М.Бергману и К.Ниману, каждая аминокислота встречается в полипептидной цепи через определенной интервал или, как говорил М.Бергман, обладает определенной “периодичностью”.эта периодичность определяется природой аминокислотных остатков.

Молекулу фиброина шелка они представляли себе следующим образом:

GlyAlaGlyTyr GlyAlaGlyArg GlyAlaGlyx GlyAlaGlyx

(GlyAlaGlyTyr GlyAlaGlyx GlyAlaGlyx GlyAlaGlyx) 12

GlyAlaGlyTyr GlyAlaGlyx GlyAlaGlyx GlyAlaGlyArg

(GlyAlaGlyTyr GlyAlaGlyx GlyAlaGlyx GlyAlaGlyx) 13

Гипотеза Бергмана-Нимана оказала значительное влияние на развитие химии аминокислот большое количество работ было посвящено ее проверке.

В заключение этой главы следует отметить, что к середине XX в. было накоплено достаточно доказательств справедливости пептидной теории, основные ее положения были дополнены и уточнены. Поэтому центр исследований белков в XX в. лежал уже области исследования и поиска методов синтеза белка искусственным путем. Эта задача была успешно решена, были разработаны надежные методы определения первичной структуры белка - последовательности аминокислот в пептидной цепи, разработаны методы химического (абиогенного) синтеза нерегулярных полипептидов (подробнее эти методы рассматриваются в гл.8, стр.36), в том числе методы автоматического синтеза полипептидов. Это позволило уже в 1962 г. крупнейшему английскому химику Ф.Сенгеру расшифровать структуру и синтезировать искусственным путем гормон инсулин, что ознаменовало новую эру в синтезе полипептидов функциональных белков.

ГЛАВА 3. ХИМИЧЕСКИЙ СОСТАВ БЕЛКОВ

3.1 Пептидная связь

Белки представляют собой нерегулярные полимеры, построенные из остатков -аминокислот, общую формулу которых в водном растворе при значениях pH близких к нейтральным можно записать как NH 3 + CHRCOO - . Остатки аминокислот в белках соединены между собой амидной связью между -амино- и -карбоксильными группами. Пептидная связь между двумя -аминокислотными остатками обычно называется пептидной связью , а полимеры, построенные из остатков -аминокислот, соединенных пептидными связями, называют полипептидами. Белок как биологически значимая структура может представлять собой как один полипептид, так и несколько полипептидов, образующих в результате нековалентных взаимодействий единый комплекс.

3.2 Элементный состав белков

Изучая химический состав белков, необходимо выяснить, во-первых, из каких химических элементов они состоят, во-вторых, - строение их мономеров. Для ответа на первый вопрос определяют количественный и качественный состав химических элементов белка. Химический анализ показал наличие во всех белках углерода (50-55%), кислорода (21-23%), азота (15-17%), водорода (6-7%), серы (0,3-2,5%). В составе отдельных белков обнаружены также фосфор, йод, железо, медь и некоторые другие макро- и микроэлементы, в различных, часто очень малых количествах.

Содержание основных химических элементов в белках может различаться, за исключением азота, концентрация которого характеризуется наибольшим постоянством и в среднем составляет 16%. Кроме того, содержание азота в других органических веществах мало. В соответствии с этим было предложено определять количество белка по входящему в его состав азоту. Зная, что 1г азота содержится в 6,25 г белка, найденное количество азота умножают коэффициент 6,25 и получают количество белка.

Для определения химической природы мономеров белка необходимо решить две задачи: разделить белок на мономеры и выяснить их химический состав. Расщепление белка на его составные части достигается с помощью гидролиза - длительного кипячения белка с сильными минеральными кислотами (кислотный гидролиз) или основаниями (щелочной гидролиз) . Наиболее часто применяется кипячение при 110 С с HCl в течение 24 ч. На следующем этапе разделяют вещества, входящие в состав гидролизата. Для этой цели применяют различные методы, чаще всего - хроматографию (подробнее - глава “Методы исследования…”). Главным частью разделенных гидролизатов оказываются аминокислоты.

3.3. Аминокислоты

В настоящее время в различных объектах живой природы обнаружено до 200 различных аминокислот. В организме человека их, например, около 60. Однако в состав белков входят только 20 аминокислот, называемых иногда природными.

Аминокислоты - это органические кислоты, у которых атом водорода -углеродного атома замещен на аминогруппу - NH 2 . Следовательно, по химической природе это -аминокислоты с общей формулой:

Из этой формулы видно, что в состав всех аминокислот входят следующие общие группировки: - CH 2 , - NH 2 , - COOH. Боковые же цепи (радикалы - R ) аминокислот различаются. Как видно из Приложения I химическая природа радикалов разнообразна: от атома водорода до циклических соединений. Именно радикалы определяют структурные и функциональные особенности аминокислот.

Все аминокислоты, кроме простейшей аминоуксусной к-ты глицина (NH 3 + CH 2 COO) имеют хиральный атом C и могут существовать в виде двух энантиомеров (оптических изомеров):

В состав всех изученных в настоящее время белков входят только аминокислоты L-ряда, у которых, если рассматривать хиральный атом со стороны атома H, группы NH 3 + , COO и радикал R расположены по часовой стрелке. Необходимость при построении биологически значимой полимерной молекулы строить ее из строго определенного энантиомера очевидна - из рацемической смеси двух энантиомеров получилась бы невообразимо сложная смесь диастереоизомеров. Вопрос, почему жизнь на Земле основана на белках, построеных именно из L-, а не D--аминокислот, до сих пор остается интригующей загадкой. Следует отметить, что D-аминокислоты достаточно широко распространены в живой природе и, более того, входят в состав биологически значимых олигопептидов.

Из двадцати основных -аминокислот строятся белки, однако остальные, достаточно разнообразные аминокислоты образуются из этих 20 аминокислотных остатков уже в составе белковой молекулы. Среди таких превращений следует в первую очередь отметить образование дисульфидных мостиков при окислении двух остатков цистеина в составе уже сформированных пептидных цепей. В результате образуется из двух остатков цистеина остаток диаминодикарбоновой кислоты цистина (см. Приложение I). При этом возникает сшивка либо внутри одной полипептидной цепи, либо между двумя различными цепями. В качестве небольшого белка, имеющего две полипептидные цепи, соединенный дисульфидными мостиками, а также сшивки внутри одной из полипептидных цепей:

Важным примером модификации аминокислотных остатков является превращение остатков пролина в остатки гидроксипролина :

Это превращение происходит, причем в значительном масштабе, при образовании важного белкового компонента соединительной ткани - коллагена .

Еще одним весьма важным видом модификации белков является фосфорилирование гидроксогрупп остатков серина, треонина и тирозина, например:

Аминокислоты в водном растворе находятся в ионизированном состоянии за счет диссоциации амино- и карбоксильных групп, входящих в состав радикалов. Другими словами, они являются амфотерными соединениями и могут существовать либо как кислоты (доноры протонов), либо как основания (акцепторы доноров).

Все аминокислоты в зависимости от структуры разделены на несколько групп:

Ациклические . Моноаминомонокарбоновые аминокислоты имеют в своем составе одну аминную и одну карбоксильную группы, в водном растворе они нейтральны. Некоторые из них имеют общие структурные особенности, что позволяет рассматривать их вместе:

Глицин и аланин. Глицин (гликокол или аминоуксусная к-та) является оптически неактивным - это единственная аминокислота, не имеющая энатиомеров. Глицин участвует в образовании нуклеиновых и желчных к-т, гема, необходим для обезвреживания в печени токсичных продуктов. Аланин используется организмом в различных процессах обмена углеводов и энергии. Его изомер -аланин является составной частью витамина пантотеновой к-ты, коэнзима А (КоА), экстрактивных веществ мышц.

Серин и треонин. Они относятся к группе гидрооксикислот, т.к. имеют гидроксильную группу. Серин входит в состав различных ферментов, основного белка молока - казеина, а также в состав многих липопротеинов. Треонин участвует в биосинтезе белка, являясь незаменимой аминокислотой.

Цистеин и метионин. Аминокислоты, имеющие в составе атом серы. Значение цистеина определяется наличием в ее составе сульфгидрильной (- SH) группы, которая придает ему способность легко окисляться и защищать организм о веществ с высокой окислительной способностью (при лучевом поражении, отравлении фосфором). Метионин характеризуется наличием легко подвижной метильной группы, использующейся для синтеза важных соединений в организме (холина, креатина, тимина, адреналина и др.)

Валин, лейцин и изолейцин. Представляют собой разветвленные аминокислоты, которые активно участвуют в обмене веществ и не синтезируются в организме.

Моноаминодикарбоновые аминокислоты имеют одну аминную и две карбоксильные группы и в водном растворе дают кислую реакцию. К ним относятся аспарагиновая и глутаминовая к-ты, аспарагин и глутамин. Они входят в состав тормозных медиаторов нервной системы.

Диаминомонокарбоновые аминокислоты в водном растворе имеют щелочную реакцию за сет наличия двух аминных групп. Относящийся к ним лизин необходим для синтеза гистонов а также в ряд ферментов. Аргинин участвует в синтезе мочевины, креатина.

Циклические . Эти аминокислоты имеют в своем составе ароматическое или гетероциклическое ядро и, как правило, не синтезируется в организме человека и должны поступать с пищей. Они активно участвуют в разнообразных обменных процессах. Так фенил-аланин служит основным источником синтеза тирозина - предшественника ряда биологически важных веществ: гормонов (тироксина, адреналина), некоторых пигментов. Триптофан помимо участия в синтезе белка, служит компонентом витамина PP, серотонина, триптамина, ряда пигментов. Гистидин необходим для синтеза белков, является предшественником гистамина, влияющего на кровяное давление и секрецию желудочного сока.

ГЛАВА 4. СТРУКТУРА

При изучении состава белков было установлено, что все они построены по единому принципу и имеют четыре уровня организации: первичную, вторичную, третичную, а отдельные из них и четвертичную структуры.

4.1 Первичная структура

Представляет собой линейную цепь аминокислот, расположенных в определенной последовательности и соединенных между собой пептидными связями. Пептидная связь образуется за счет -карбоксильной группы одной аминокислоты и -аминной группы другой:

Пептидная связь вследствие p, -сопряжения -связи карбонильной группы и р-орбитали атома N, на котором находится не поделенная пара электронов, не может рассматриваться как одинарная и вращение вокруг нее практически отсутствует. По этой же причине хиральный атом C и карбонильный атом C k любого i-го аминокислотного остатка пептидной цепи и атомы N и С (i+1)-го остатка находятся в одной плоскости. В этой же плоскости находятся карбонильный атом О и амидный атом Н (однако накопленный при изучении структуры белков материал показывает, что это утверждение не совсем строго: атомы, связанные с пептидным атомом азота, находятся не в одной плоскости с ним, а образуют трехгранную пирамиду с углами между связями, очень близкими к 120. Поэтому между плоскостями, образованными атомами C i , C i k , O i и N i +1 , H i +1 , C i +1 , существует некоторый угол, отличающийся от 0. Но, как правило, он не превышает 1 и не играет особой роли). Поэтому геометрически полипептидную цепочку можно рассматривать как образованную такими плоскими фрагментами, содержащими каждый по шесть атомов. Взаимное расположение этих фрагментов, как и всякое взаимное расположение двух плоскостей, должно определятся двумя углами. В качестве таковых принято брать торсионные углы, характеризующие вращения вокруг -связей N C и C C k .

Геометрия любой молекулы определяется тремя группами геометрических характеристик ее химических связей - длинами связей, валентными углами и торсионными углами между связями, примыкающими к соседним атомам. Первые две группы в решающей мере определяются природой участвующих атомов и образующихся связей. Поэтому пространственная структура полимеров в основном определяется торсионными углами между звеньями полимерного остова молекул, т.е. конформацией полимерной цепи. То р сионный угол , т.е. угол поворота связи А-В вокруг связи В-С относительно связи С- D , определяется как угол между плоскостями, содержащими атомы А, В, С и атомы B , C , D .

В такой системе возможен случай, когда связи А-В и С-D расположены параллельно и находятся по одну сторону от связи В-С. Если рассматривать эту систему вдоль св я зи В-С, то связь А-В как бы заслоняет связь C - D , поэтому такая конформация наз ы вается заслоненной. Согласно рекомендациям международных союзов химии IUPAC (International Union of Pure and Applied Chemistry) и IUB (International Union of Biochemistry), угол между плоскостями ABC и BCD считается положительным, если для приведения конформации в заслоненное состояние путем поворота на угол не выше 180 ближнюю к наблюдателю связь нужно поворачивать по часовой стрелке. Если эту связь для получения заслоненной конформации нужно поворачивать против часовой стрелки, то угол считается отрицательным. Можно заметить, что это определение не зависит от того, какая из связей находится ближе к наблюдателю.

При этом, как видно из рисунка, ориентация фрагмента, содержащего атомы C i -1 и C i [(i-1)-й фрагмент], и фрагмента, содержащего атомы C i и C i +1 (i-й фрагмент), определяется торсионными углами, соответствующими вращению вокруг связи N i C i и связи C i C i k . Эти углы принято обозначать как и, в приведенном случае соответственно i и i . Их значениями для всех мономерных звеньев полипептидной цепи в основном определяется геометрия этой цепи. Никаких однозначных величин ни для значения каждого из этих углов, ни для их комбинаций не существует, хотя на те и на другие накладываются ограничения, определяемые как свойствами самих пептидных фрагментов, так и природой боковых радикалов, т.е. природой аминокислотных остатков.

К настоящему времени установлены последовательности аминокислот для нескольких тысяч различных белков. Запись структуры белков в виде развернутых структурных формул громоздка и не наглядна. Поэтому используется сокращенная форма записи - трехбуквенная или однобуквенная (молекула вазопрессина):

При записи аминокислотной последовательности в полипептидных или олигопептидных цепях с помощью сокращенной символики предполагается, если это особо не оговорено, что -аминогруппа находится слева, а -карбоксильная группа - справа. Соответствующие участки полипептидной цепи называют N-концом (аминным концом) и С-концом (карбоксильным концом), а аминокислотные остатки - соответственно N-концевым и С-концевым остатками.

4.2 Вторичная структура

Фрагменты пространственной структуры биополимер, имеющие периодическое строение полимерного остова, рассматривают как элементы вторичной структуры.

Если на протяжении некоторого участка цепи однотипные углы, о которых говорилось на стр.15, приблизительно одинаковы, то структура полипептидной цепи приобретает периодический характер. Существует два класса таких структур - спиральные и растянутые (плоские или складчатые).

Спиральной считается структура, у которой все однотипные атомы лежат на одной винтовой линии. При этом спираль считается правой, если при наблюдении вдоль оси спирали она удаляется от наблюдателя по часовой стрелке, и левой - если удаляется против часовой стрелки. Полипептидная цепь имеет спиральную конформацию, если все атомы C находятся на одной винтовой линии, все карбонильные атомы C k - на другой, все атомы N - на третьей, причем шаг спирали для всех трех групп атомов должен быть одинаков. Одинаковым должно быть и число атомов, приходящихся на один виток спирали, независимо от того, идет ли речь об атомах C k , C или N. Расстояние же до общей винтовой линии для каждого из этих трех типов атомов свое.

Главными элементами вторичной структуры белков являются -спирали и -складки.

Спиральные структуры белка. Для полипептидных цепей известно несколько различных типов спиралей. Среди них наиболее распространена правая -спираль. Идеальная -спираль имеет шаг 0,54 нм и число однотипных атомов на один виток спирали 3,6, что означает полную периодичность на пяти витках спирали через каждые 18 аминокислотных остатков. Значения торсионных углов для идеальной -спирали = - 57 = - 47 , а расстояния от атомов, образующих полипептидную цепь, до оси спирали составляет для N 0,15 нм, для C 0,23 нм, для C k 0,17 нм. Любая конформация существует при условии, что имеются факторы, стабилизирующие ее. В случае -спирали такими факторами являются водородные связи, образуемые каждым карбонильным атомом (i+4)-го фрагмента. Важным фактором стабилизации -спирали также является параллельная ориентация дипольных моментов пептидных связей.

Складчатые структуры белка. Одним из распространенных примеров складчатой периодической структуры белка являются т.н. -складки , состоящие из двух фрагментов, каждый из которых представлен полипептидом.

Складки также стабилизируются водородными связями между атомом водорода аминной группы одного фрагмента и атомом кислорода карбоксильной группы другого фрагмента. При этом фрагменты могут иметь как параллельную, так и антипараллельную ориентацию относительно друг друга.

Структура, образующаяся в результате таких взаимодействий, представляет собой гофрированную структуру. Это сказывается на значениях торсионных углов и. Если в плоской, полностью растянутой структуре они должны были бы составить 180, то в реальных -слоях они имеют значения = - 119 и = + 113. Для того чтобы два участка полипептидной цепи располагались в ориентации, благоприятствующей образованию -складок, между ними должен существовать участок, имеющий структуру, резко отличающийся от периодической.

4.2.1 Факторы, влияющие на образование вторичной структуры

Структура определенного участка полипептидной цепи существенно зависит от структуры молекулы в целом. Факторы, влияющие на формирование участков с определенной вторичной структурой, весьма многообразны и далеко не во всех случаях полностью выявлены. Известно, что ряд аминокислотных остатков предпочтительно встречается в -спиральных фрагментах, ряд других - в -складках, некоторые аминокислоты - преимущественно в участках, лишенных периодической структуры. Вторичная структура в значительной степени определяется первичной структурой. В некоторых случаях физический смысл такой зависимости может быть понят из стереохимического анализа пространственной структуры. Например, как видно из рисунка в -спирали сближены не только боковые радикалы соседних вдоль цепи аминокислотных остатков, но и некоторые пары остатков, находящихся на соседних витках спирали, в первую очередь каждый (i+1)-й остаток с (i+4)-м и с (i+5)-м. Поэтому в положениях (i+1) и (i+2), (i+1) и (i+4), (i+1) и (i+5) -спиралей редко одновременно встречается два объемных радикала, таких, например, как боковые радикалы тирозина, триптофана, изолейцина. Еще менее совместимо со структурой спирали одновременное наличие трех объемных остатков в положениях (i+1), (i+2) и (i+5) или (i+1), (i+4) и (i+5). Поэтому такие комбинации аминокислот в -спиральных фрагментах являются редким исключением.

4.3 Третичная структура

Под этим термином понимают полную укладку в простанстве всей полипептидной цепи, включая укладку боковых радикалов. Полное представление о третичной структуре дают координаты всех атомов белка. Благодаря огромным успехом рентгеноструктурного анализа такие данные, за исключением координат атомов водорода получены для значительного числа белков. Это огромные массивы информации, хранящиеся в специальных банках данных на машиночитаемых носителях, и их обработка немыслима без применения быстродействующих компьютеров. Полученные на компьютерах координаты атомов дают полную информацию о геометрии полипептидной цепи, в том числе значения торсионных углов, что позволяет выявить спиральную структуру, -складки или нерегулярные фрагменты. Примером такого исследовательского подхода может служить следующая пространственная модель структуры фермента фосфоглицераткиназы:

Общая схема строения фосфоглицераткиназы. Для наглядности -спиральные участки представлены в виде цилиндров, а -складки - в виде лент со стрелкой, указывающей направление цепи от N-конца к С-концу. Линии - нерегулярные участки, соединяющие структурированные фрагменты.

Изображение полной структуры даже небольшой белковой молекулы на плоскости, будь то страница книги или экран дисплея мало информативно из-за чрезвычайно сложного строения объекта. Чтобы исследователь мог наглядно представлять простанственное строение молекул сложных веществ, используют методы трехмерной компьютерной графики, позволяющей выводить на дисплей отдельные части молекул и манипулировать с ними, в частности поворачивать их в нужных ракурсах.

Третичная структура формируется в результате нековалентных взаимодействий (электростатические, ионные, силы Ван-дер-Ваальса и др.) боковых радикалов, обрамляющих -спирали и -складки, и непериодических фрагментов полипептидной цепи. Среди связей, удерживающих третичную структуру следует отметить:

а) дисульфидный мостик (- S - S -)

б) сложноэфирный мостик (между карбоксильной группой и гидроксильной группой)

в) солевой мостик (между карбоксильной группой и аминогруппой)

г) водородные связи.

В соответствии с формой белковой молекулы, обусловленной третичной структурой, выделяют следующие группы белков:

Глобулярные белки. Пространственная структура этих белков в грубом приближении может быть представлена в виде шара или не слишком вытянутого эллипсоида - глоб у лы . Как правило, значительная часть полипептидной цепи таких белков формирует -спирали и -складки. Соотношение между ними может быть самым различным. Например, у миоглобина (подробнее о нем на стр.28) имеется 5 -спиральных сегментов и нет ни одной -складки. У иммуноглобулинов (подробнее на стр.42), наоборот, основными элементами вторичной структуры являются -складки, а -спирали вообще отсутствуют. В вышеприведенной структуре фосфоглицераткиназы и те и другие типы структур представлены примерно одинаково. В некоторых случаях, как это видно на примере фосфоглицераткиназы, отчетливо просматриваются две или более четко разделеннные в пространстве (но тем не менее, конечно, связанные пептидными мостиками) части - домены. Зачастую различные функциональные зоны белка разнесены по разным доменам.

Фибриллярные белки. Эти белки имеют вытянутую нитевидную форму, они выполняют в организме структурную функцию. В первичной структуре они имеют повторяющиеся участки и формируют достаточно однотипную для всей полипептидной цепи вторичнкю структуру. Так, белок -креатин (основной белковый компонент ногтей, волос, кожи) построен из протяженных -спиралей. Фиброин шелка состоит из периодически повторяющихся фрагментов Gly - Ala - Gly - Ser , образующими -складки. Существуют менее распростаненные элементы вторичной структуры, пример - полипептидные цепи коллагена, образующие левые спирали с параметрами, резко отличающимися от параметров -спиралей. В коллагеновых волокнах три спиральные полипептидные цепи скручены в единую правую суперспираль:

4.4 Четвертичная структура

В большинстве случаев для функционирования белков необходимо, чтобы несколько полимерных цепей были объединены в единый комплекс. Такой комплекс также рассматривается как белок, состоящий из нескольких субъединиц . Субъединичная структура часто фигурирует в научной литературе как четвертичная структура.

Белки, состоящие из нескольких субъединиц, широко распространены в природе. Классический пример - четвертичная структура гемоглобина (подробнее - стр.26). субъединицы принято обозначать греческими буквами. У гемоглобина имеется по две и субъединицы. Наличие нескольких субъединиц важно в функциональном отношении - это увеличивает степень насыщения кислородом. Четвертичную структуру гемоглобина обозначают как 2 2 .

Субъединичное строение свойственно многим ферментам, в первую очередь тем, которые выполняют сложные функции. Например, РНК-полимераза из E . coli имеет субъединичную структуру 2 ", т.е. построен из четырех разнотипных субъединиц, причем -субъединица продублирована. Этот белок выполняет сложные и разнообразные функции - инициирует ДНК, связывает субстраты - рибонуклеозидтрифосфаты, а также переносит нуклеотидные остатки на растущую полирибонуклеотидную цепь и некоторые другие функции.

Работа многих белков подвержена т.н. аллостерической регуляции - специальные соединения (эффекторы) “выключают” или “включают” работу активного центра фермента. Такие ферменты имеют специальные участки опознавания эффектора. И даже существуют специальные регуляторные субъединицы , в состав которых в том числе входят указанные участки. Классический пример - ферменты протеинкиназы, катализирующие перенос остатка фосфорной к-ты от молекулы АТФ на белки-субстраты.

ГЛАВА 5. СВОЙСТВА

Белки имеют высокую молекулярную массу, некоторые растворимы в воде, способны к набуханию, характеризуются оптической активностью, подвижностью в электрическом поле и некоторыми другими свойствами.

Белки активно вступают в химические реакции. Это свойство связано с тем, что аминокислоты, входящие в состав белков, содержат разные функциональные группы, способные реагировать с другими веществами. Важно, что такие взаимодействия происходят и внутри белковой молекулы, в результате чего образуется пептидная, водородная дисульфидная и другие виды связей. К радикалам аминокислот, а следовательно и белков, могут присоединяться различные соединения и ионы, что обеспечивает их транспорт по крови.

Белки являются высокомолекулярными соединениями. Это полимеры, состоящие из сотен и тысяч аминокислотных остатков - мономеров. Соответственно и молекулярная масса белков находится в пределах 10 000 - 1 000 000. Так, в составе рибонуклеазы (фермента, расщепляющего РНК) содержится 124 аминокислотных остатка и ее молекулярная масса составляет примерно 14 000. Миоглобин (белок мышц), состоящий из 153 аминокислотных остатков, имеет молекулярную массу 17 000, а гемоглобин - 64 500 (574 аминокислотных остатка). Молекулярные массы других белков более высокие: -глобулин (образует антитела) состоит из 1250 аминокислот и имеет молекулярную массу около 150 000, а молекулярная масса фермента глутаматдегидрогеназы превышает 1 000 000.

Определение молекулярной массы проводится различными методами: осмометрическим, гельфильтрационным, оптическим и др. однако наиболее точным является метод седиментации, предложенный Т. Сведбергом. Он основан на том, что при ультрацентрифугировании ускорением до 900 000 g скорость осаждения белков зависит от их молекулярной массы.

Важнейшим свойством белков является их способность проявлять как кислые так и основные, то есть выступать в роли амфотерных электролитов. Это обеспечивается за счет различных диссоциирующих группировок, входящих в состав радикалов аминокислот. Например, кислотные свойства белку придают карбоксильные группы аспарагиновой глутаминовой аминокислот, а щелочные - радикалы аргинина, лизина и гистидина. Чем больше дикарбоновых аминокислот содержится в белке, тем сильнее проявляются его кислотные свойства и наоборот.

Эти же группировки имеют и электрические заряды, формирующие общий заряд белковой молекулы. В белках, где преобладают аспарагиновая и глутаминовая аминокислоты, заряд белка будет отрицательным, избыток основных аминокислот придает положительный заряд белковой молекуле. Вследствие этого в электрическом поле белки будут передвигаться к катоду или аноду в зависимости от величины их общего заряда. Так, в щелочной среде (рН 7 - 14) белок отдает протон и заряжается отрицательно, тогда как в кислой среде (рН 1 - 7) подавляется диссоциация кислотных групп и белок становится катионом.

Таким образом, фактором, определяющим поведение белка как катиона или аниона, является реакция среды, которая определяется концентрацией водородных ионов и выражается величиной рН. Однако при определенных значениях рН число положительных и отрицательных зарядов уравнивается и молекула становится электронейтральной, т.е. она не будет перемещаться в электрическом поле. Такое значение рН среды определяется как изоэлектрическая точка белков. При этом белок находится в наименее устойчивом состоянии и при незначительных изменениях рН в кислую или щелочную сторону легко выпадает в осадок. Для большинства природных белков изоэлектрическая точка находится в слабокислой среде (рН 4,8 - 5,4), что свидетельствует о преобладании в их составе дикарбоновых аминокислот.

Свойство амфотерности лежит в основе буферных свойств белков и их участии в регуляции рН крови. Величина рН крови человека отличается постоянством и находится в пределах 7,36 - 7,4 , несмотря на различные вещества кислого или основного характера, регулярно поступающие с пищей или образующиеся в обменных процессах - следовательно существуют специальные механизмы регуляции кислотно-щелочного равновесия внутренней среды организма. К таким системам относится рассматриваемая в гл. “ Классификация” гемоглобиновая буферная система (стр.28). Изменение рН крови более чем на 0,07 свидетельствует о развитии патологического процесса. Сдвиг рН в кислую сторону называется ацидозом, а в щелочную - алкалозом.

Важное значение для организма имеет способность белков адсорбироватьь на своей поверхности некоторые вещества и ионы (гормоны, витамины, железо, медь), которые либо плохо растворимы в воде, либо являются токсичными (билирубин, свободные жирные кислоты). Белки транспортируют их по крови к местам дальнейших превращений или обезвреживания.

Водные растворы белков имеют свои особенности. Во-первых, белки обладают большим сродством к воде, т.е. они гидрофильны. Это значит, что молекулы белка, как заряженные частицы, притягивают к себе диполи воды, которые располагаются вокруг белковой молекулы и образуют водную или гидратную оболочку. Эта оболочка предохраняет молекулы белка от склеивания и выпадения в осадок. Величина гидратной оболочки зависит от структуры белка. Например, альбумины более легко связываются с молекулами воды и имеют относительно большую водную оболочку, тогда как глобулины, фибриноген присоединяют воду хуже, и гидратная оболочка и них меньше. Таким образом, устойчивость водного раствора белка определяется двумя факторами: наличием заряда белковой молекулы и находящейся вокруг нее водной оболочки. При удалении этих факторов белок выпадает в осадок. Данный процесс может быть обратимым и необратимым.

...

Подобные документы

    Белки (протеины) – высоко молекулярные, азотосодержащие природные органические вещества, молекулы которых построены из аминокислот. Строение белков. Классификация белков. Физико-химические свойства белков. Биологические функции белков. Фермент.

    реферат , добавлен 15.05.2007

    Основные особенности метаболических процессов. Обмен веществ и энергии. Общая характеристика, классификация, функции, химический состав и свойства белков, их биологическая роль в построении живой материи. Структурные и сложные белки. Способы их осаждения.

    презентация , добавлен 24.04.2013

    Физические и химические свойства, цветные реакции белков. Состав и строение, функции белков в клетке. Уровни структуры белков. Гидролиз белков, их транспортная и защитная роль. Белок как строительный материал клетки, его энергетическая ценность.

    реферат , добавлен 18.06.2010

    Физические, биологические и химические свойства белков. Синтез и анализ белков. Определение первичной, вторичной, третичной и четвертичной структуры белков. Денатурация, выделение и очистка белков. Использование белков в промышленности и медицине.

    реферат , добавлен 10.06.2015

    Белки - высокомолекулярные органические соединения, их аминокислотный состав. Определение свойств белков их составом и структурой белковой молекулы. Характеристика основных функций белков. Органоиды клетки и их функции. Клеточное дыхание и его строение.

    контрольная работа , добавлен 24.06.2012

    Понятие и структура белков, аминокислоты как их мономеры. Классификация и разновидности аминокислот, характер пептидной связи. Уровни организации белковой молекулы. Химические и физические свойства белков, методы их анализа и выполняемые функции.

    презентация , добавлен 14.04.2014

    Биологическая роль воды. Функции минеральных солей. Простые и сложные липиды. Уровни организации белков. Строительная, энергетическая, запасающая и регуляторная функции липидов. Структурная, каталитическая, двигательная, транспортная функции белков.

    презентация , добавлен 21.05.2015

    Аминокислотный состав белков в организмах, роль генетического кода. Комбинации из 20 стандартных аминокислот. Выделение белков в отдельный класс биологических молекул. Гидрофильные и гидрофобные белки. Принцип построения белков, уровень их организации.

    творческая работа , добавлен 08.11.2009

    Основные элементы и химический состав мышечной ткани. Виды белков саркоплазмы и миофибрилл, их содержание к общему количеству белков, молекулярная масса, распределение в структурных элементах мышцы. Их функции и роль организме. Строение молекулы миозина.

    презентация , добавлен 14.12.2014

    Белки как источники питания, их основные функции. Аминокислоты, участвующие в создании белков. Строение полипептидной цепи. Превращения белков в организме. Полноценные и неполноценные белки. Структура белка, химические свойства, качественные реакции.

Белки (синоним протеины ) - высокомолекулярные азотистые органические соединения, являющиеся полимерами аминокислот. Белки - основная и необходимая составная часть всех организмов.

Сухое вещество большинства органов и тканей человека и животных, а также большая часть микроорганизмов состоят главным образом из белков. Белковые вещества лежат в основе важнейших процессов жизнедеятельности. Так, например, процессы обмена веществ (пищеварение, дыхание, выделение и др.) обеспечиваются деятельностью ферментов (см.), являющихся по своей природе белками. К белкам относятся и сократительные структуры, лежащие в основе движения, напр, сократительный белок мышц (актомиозин), опорные ткани организма (коллаген костей, хрящей, сухожилий), покровы организма (кожа, волосы, ногти и т. п.), состоящие главным образом из коллагенов, эластинов, кератинов, а также токсины, антигены и антитела, многие гормоны и другие биологически важные вещества.

Роль белков в живом организме подчеркивается уже самим их названием «протеины» (греческий protos первый, первичный), предложенным Мульдером (G. J. Mulder, 1838), который обнаружил, что в тканях животных и растений содержатся вещества, напоминающие по своим свойствам яичный белок. Постепенно было установлено, что белки представляют собой обширный класс разнообразных веществ, построенных по одинаковому плану. Отмечая первостепенное значение белков для процессов жизнедеятельности, Энгельс определил, что жизнь есть способ существовании белковых тел, заключающийся в постоянном самообновлении химических составных частей этих тел.

Химический состав и структура белков

Белки содержат в среднем около 16% азота. При полном гидролизе белки распадаются с присоединением воды до аминокислот (см.). Молекулы белков представляют собой полимеры, которые состоят из остатков около 20 различных аминокислот, относящихся к природному L-ряду, то есть имеющих одинаковую конфигурацию альфа-углеродного атома, хотя их оптическое вращение может быть неодинаковым и не всегда направленным в одну сторону. Аминокислотный состав разных белков неодинаков и служит важнейшей характеристикой каждого белка, а также критерием его ценности в питании (см. раздел Белки в питании). Некоторые белки могут быть лишены тех или иных аминокислот. Например, белки кукурузы- зеин не содержит лизина и триптофана. Другие белки, напротив, очень богаты отдельными аминокислотами. Так, протамин лосося - сальмин содержит свыше 80% аргинина, фиброин шелка - около 40% глицина (аминокислотный состав некоторых белков представлен в табл. 1).

Таблица 1. АМИНОКИСЛОТНЫЙ СОСТАВ НЕКОТОРЫХ БЕЛКОВ (в весовых процентах аминокислот белка)

Аминокислоты

Сальмин

Инсулин быка

Гемоглобин

лошади

Альбумин сыворотки быка

Кератин

шерсти

Фиброин шелка

Зеин

Аланин

1,12

7,40

6,25

4,14

29,7

10,52

Глицин

2,95

5,60

1,82

6,53

43,6

Валин

3,14

7,75

9,10

5,92

4,64

3,98

Лейцин

13,2

15,40

12,27

11,3

0,91

21,1

Изолейцин

1,64

2,77

2,61

11,3

Пролин

5,80

2,02

3,90

4,75

0,74

10,53

Фенилаланин

8,14

7,70

6,59

3,65

3,36

Тирозин

12,5

3,03

5,06

4,65

12,8

5,25

Триптофан

1,70

0,68

Серин

5,23

5,80

4,23

10,01

16,2

7 ,05

Треонин

2,08

4 ,36

5,83

6,42

3,45

Цистин/2

12,5

0,45

5,73

11 ,9

0,83

Метионин

0,81

2,41

Аргинин

85,2

3,07

3,65

5,90

10,04

1,71

Гистидин

5,21

8,71

0,36

1 ,32

Лизин

2,51

8,51

12,82

2,76

0,68

Аспарагиновая кислота

6,80

10,60

10,91

2,76

4,61

Глутаминовая кислота

18,60

8,50

16,5

14,1

2,16

29,6

При неполном (обычно ферментативном) гидролизе белков, помимо свободных аминокислот, образуется ряд веществ с относительно небольшими молекулярными весами, называемых пептидами (см.) и полипептидами. В белках и пептидах аминокислотные остатки соединены между собой так называемой пептидной (кислотно-амидной) связью, образуемой карбоксильной группой одной аминокислоты и аминогруппой другой аминокислоты:

В зависимости от числа аминокислот такие соединения называют ди-, три-, тетрапептидами и т. д., например:

Длинные пептидные цепи (полипептиды), состоящие из десятков и сотен аминокислотных остатков, образуют основу структуры белковой молекулы. Многие белки состоят из одной полипептидной цепи, в других белках имеется две или более полипептидных цепей, соединенных между собой и образующих более сложную структуру. Длинные полипептидные цепи одинакового аминокислотного состава могут давать огромное число изомеров за счет различной последовательности отдельных аминокислотных остатков (подобно тому как из 20 букв алфавита можно составить множество различных слов и их сочетаний). Поскольку различные аминокислоты могут входить в состав полипептидов в разных соотношениях, число возможных изомеров становится практически бесконечным, и для каждого индивидуального белка последовательность аминокислот в полипептидных цепях является характерной и уникальной. Эта последовательность аминокислот определяет первичную структуру белка, которая в свою очередь определяется соответствующей последовательностью дезоксирибонуклеотидов в структурных генах ДНК данного организма. К настоящему времени изучена первичная структура многих белков, главным образом белковых гормонов, ферментов и некоторых других биологически активных белков. Последовательность аминокислот определяют путем ферментативного гидролиза беков и получения так называемых пептидных карт при помощи двухмерной хроматографии (см.) и электрофореза (см.). Каждый пептид исследуется на концевые аминокислоты до и после обработки аминополипептидазой - специфическим ферментом, последовательно отщепляющим аминоконцевые (N-концевые) аминокислоты, и карбоксиполипептидазой, отщепляющей карбоксиконцевые (С-концевые) аминокислоты. Для определения N-концевых аминокислот применяют реактивы, соединяющиеся со свободной аминогруппой концевой аминокислоты. Обычно используют динитрофторбензол (1-фтор-2,4-динитробензол), дающий динитрофенильное производное с N-концевой аминокислотой, которое затем может быть идентифицировано после гидролиза и хроматографического разделения гидролизата. Наряду с динитрофторбензолом, предложенным Сангером (F. Sanger), применяется также обработка фенилизотиоцианатом по Эдману (P. Edman). При этом с концевой аминокислотой образуется фенилтиогидантоин, который легко отщепляется от полипептидной цепи и может быть идентифицирован. Для определения С-концевых аминокислот применяют нагревание пептида в уксусном ангидриде с тиоцианатом аммония. В результате конденсации получается кольцо тиогидантоина, включающее радикал концевой аминокислоты, который затем легко отщепить от пептида и установить характер С-концевой аминокислоты. Последовательность аминокислот в белке устанавливают на основании последовательности пептидов, полученных с применением разных ферментов и с учетом специфичности каждого фермента, расщепляющего белок по пептидной связи, образованной определенной аминокислотой. Таким образом, определение первичной структуры белка представляет собой весьма кропотливую и длительную работу. Нашли успешное применение различные методы прямого определения последовательности аминокислот при помощи рентгеноструктурного анализа (см.) или путем масс-спектрометрии (см.) производных пептидов, получаемых при гидролизе белка разными ферментами.

Пространственно полипептидные цепи часто образуют спиральные конфигурации, удерживаемые при помощи водородных связей и образующие вторичную структуру белка. Чаще всего встречается так называемая а-спираль, в которой на один виток приходится 3,7 аминокислотных остатков.

Отдельные аминокислотные остатки в одной и той же или в разных полипептидных цепях могут быть соединены между собой при помощи дисульфидных или эфирных связей. Так, в молекуле мономера инсулина (рис. 1) дисульфидными связями соединены между собой 6 и 11-й остатки цистеина А-цепи и 7 и 20-й остатки цистеина А-цепи соответственно с 7 и 19-м остатками цистеина В-цепи. Такие связи придают полипептидной цепи, имеющей обычно спирализованные и неспирализованные участки, определенную конформацию, называемую третичной структурой белка.

Рис. 1. Схема аминокислотной последовательности в молекуле мономера инсулина быка. Вверху- цепь А, внизу- цепь В. Жирными линиями обозначены дисульфидные связи; в кружках - сокращенные названия аминокислот.

Под четвертичной структурой белка подразумевают образование комплексов из мономерных белковых молекул. Так, например, молекула гемоглобина состоит из четырех мономеров (двух альфа-цепей и двух бета-цепей). Четвертичная структура фермента лактатдегидрогеназы представляет собой тетрамер, состоящий из 4 мономерных молекул. Эти мономеры бывают двух типов: Н, характерный для сердечной мышцы, и М, характерный для скелетных мышц. Соответственно встречается 5 разных изоферментов лактатдегидрогеназы, представляющих собой тетрамеры из разных сочетаний этих двух мономеров - НННН, НННМ, ННММ, НМММ и ММММ. Структура белка определяет его биологические свойства, и даже небольшое нарушение конформации может весьма существенно отразиться на ферментативной активности или других биологических свойствах белка. Тем не менее наиболее важное значение имеет первичная структура белка, определяемая генетически и в свою очередь часто определяющая высшие структуры данного белка. Замена даже одного аминокислотного остатка в полипептидной цепи, состоящей из сотен аминокислот, может весьма существенно изменить свойства данного белка и даже полностью лишить его биологической активности. Так, например, гемоглобин, встречающийся в эритроцитах при серповидноклеточной анемии, отличается от нормального гемоглобина А лишь заменой остатка глутаминовой кислоты в 6-м положении р-цепи на остаток валина, то есть заменой лишь одной из 287 аминокислот. Однако этой замены достаточно для того, чтобы измененный гемоглобин обладал резко нарушенной растворимостью и в значительной мере утратил свою основную функцию переноса кислорода к тканям. С другой стороны, в строго определенной структуре инсулина (рис. 1) характер аминокислотных остатков в 8, 9 и 10-м положениях цепи А (между двумя остатками цистеина), по-видимому, не имеет существенного значения, поскольку эти три остатка обладают видовой специфичностью; в инсулине быка они представлены последовательностью ала-сер-вал, у овцы - ала-гли-вал, у лошади - тре-гли-иле, а в инсулине человека, свиньи и кита - тре-сер-иле.

Физико-химические свойства

Молекулярный вес большинства белков составляет от 10-15 тысяч до 100 тысяч, однако имеются белки с молекулярным весом 5-10 тысяч и несколько миллионов. Условно полипептиды с молекулярным весом ниже 5 тысяч относят к пептидам. Большинство белковых жидкостей и тканей организма (например, белки крови, яиц и др.) растворимы в воде или в растворах солей. Белки обычно дают опалесцирующие растворы, которые ведут себя как коллоидные. Имея в своем составе много гидрофильных групп, белки легко связывают молекулы воды и находятся в тканях в гидратированном состоянии, образуя растворы или гели. Многие белки богаты гидрофобными остатками и нерастворимы в обычных растворителях белков. Такие белки (например, коллаген и эластин соединительной ткани, фиброин шелка, кератины волос и ногтей) имеют фибриллярный характер, и их молекулы вытянуты в длинные волокна. Растворимые белки обычно представлены молекулами клубкообразной, глобулярной, формы. Однако разделение белков па глобулярные и фибриллярные не абсолютно, поскольку некоторые белки (например, актин мышц) способны обратимо превращаться из глобулярной конфигурации в фибриллярную в зависимости от условий среды.

Подобно аминокислотам белки являются типичными амфотерными электролитами (см. Амфолиты), то есть меняют свой электрический заряд в зависимости от pH среды. В электрическом поле белки движутся к аноду или к катоду в зависимости от знака электрического заряда молекулы, который определяется как свойствами данного белка, так и pH среды. Это движение в электрическом поле, называемое электрофорезом, применяют для аналитического и препаративного разделения белка, как правило различающихся по своей электрофоретической подвижности. При определенном pH, называемом изоэлектрической точкой (см.), неодинаковом для разных белков, число положительных и отрицательных зарядов молекулы равно друг другу, и молекула в целом электронейтральна и не движется в электрическом поле. Это свойство белка используется для их выделения и очистки методом изоэлектрической фокусировки, заключающемся в электрофорезе белка в градиенте pH, создаваемом системой буферных растворов. При этом можно подобрать такое значение pH, при котором нужный белок выпадает в осадок (поскольку растворимость белка в изоэлектрической точке наименьшая), а большинство «загрязняющих» белков останется в растворе.

Помимо pH, растворимость белков существенно зависит от присутствии и концентрации солей в растворе. Высокие концентрации солей одновалентных катионов (чаще всего применяют сернокислый аммоний) осаждают большинство белков. Механизм такого осаждения (высаливания) заключается в связывании ионами солей воды, образующей гидратную оболочку белковых молекул. Вследствие дегидратации растворимость белков понижается и они выпадают в осадок. Таков же механизм осаждения белков спиртами и ацетоном. Осаждение белков высаливанием или органическими жидкостями, смешивающимися с водой, применяют для разделения и выделения белков с сохранением их природных (нативных) свойств. При определенных условиях осаждения белки можно получить в кристаллическом виде и хорошо очистить от других белков и небелковых примесей. Ряд процедур такого рода применяют для получения кристаллических препаратов многих ферментов или других белков. Нагревание растворов белков до высокой температуры, а также осаждение белка солями тяжелых металлов или концентрированными кислотами, особенно трихлоруксусной, сульфосалициловой, хлорной, приводит к коагуляции (свертыванию) белка и образованию нерастворимого осадка. При таких воздействиях лабильные молекулы белка денатурируют, теряют свои биологические свойства, в частности ферментативную активность, становятся нерастворимыми в исходном растворителе. При денатурации нарушается нативная конфигурация белковой молекулы, и полипептидные цепи образуют беспорядочные клубки.

При ультрацентрифугировании белки осаждаются в поле ускорения центробежной силы со скоростью, зависящей главным образом от размеров белковых частиц. Соответственно для определения молекулярных весов белков применяют определение констант седиментации в ультрацентрифуге, а также скорости диффузии белков, фильтрование их через молекулярные сита, определение электрофоретической подвижности при электрофорезе в специальных условиях и некоторые другие методы.

Методы обнаружения и определения белков

Качественные реакции на белках основаны на их физико-химических свойствах или на реакциях определенных химических групп в молекуле белка. Однако, поскольку в состав молекулы белка входит большое количество разнообразных химических группировок, реакционная способность белков очень велика и ни одна из качественных реакций на белки не является строго специфичной. Заключение о присутствии белка может быть сделано лишь на основании совокупности ряда реакций. При анализе биологических жидкостей, например мочи, где могут появляться лишь определенные белки и известно, какие вещества могут мешать реакции, бывает достаточно даже одной реакции для установления присутствия или отсутствия белков. Реакции на белки подразделяют на реакции осаждения и цветные реакции. К первым относится осаждение концентрированными кислотами, причем в клинической практике чаще всего применяют осаждение азотной кислотой. Характерной реакцией является также осаждение белков сульфо-салициловой или трихлоруксусной кислотами (последняя часто применяется не только для обнаружения белков, но и для освобождения жидкостей от белков). Присутствие белков может быть обнаружено также но свертыванию при кипячении в слабокислой среде, осаждением спиртом, ацетоном и рядом других реактивов. Из цветных реакций весьма характерна биуретовая реакция (см.) - фиолетовое окрашивание с ионами меди в щелочной среде. Эта реакция зависит от присутствия в белках пептидных связей, образующих с медью окрашенное комплексное соединение. Название биуретовой реакции происходит от продукта нагревания мочевины биурета (H 2 N-CO-NH-CO-NH 2), являющегося простейшим соединением, дающим эту реакцию. Ксантопротеиновая реакция (см.) заключается в желтом окрашивании осадка белков при воздействии концентрированной азотной кислотой. Окрашивание появляется вследствие образования продуктов нитрования ароматических аминокислот, входящих в состав белковой молекулы. Реакция Миллона дает ярко-красное окрашивание с солями ртути и азотистой кислотой в кислой среде. На практике обычно используют азотную кислоту, которая всегда содержит небольшую примесь азотистой. Реакция специфична для фенольного радикала тирозина и поэтому получается только с белков, содержащими тирозин. Реакция Адамкевича обусловлена радикалом триптофана. Она дает фиолетовое окрашивание в концентрированной серной кислоте с уксусной к-той (см. Адамкевича реакция). Реакция получается при замене уксусной кислоты на различные альдегиды. При использовании уксусной кислоты реакция обусловлена глиоксиловой кислотой, содержащейся в уксусной как примесь. Количественно белки определяют обычно по белковому азоту, то есть по содержанию общего азота в осадке белков, отмытом от низкомолекулярных веществ, растворимых в осадителе. Азот в биохимических исследованиях и при клинических анализах обычно определяют методом Кьельдаля (см. Кьельдаля метод). Общее содержание белка в жидкостях часто определяют колориметрическими методами, в основе которых лежат разные модификации биуретовой реакции. Часто пользуются методом Лаури, в котором применяется реактив Фолина на тирозин в сочетании с биуретовой реакцией (см. Лаури метод).

Классификация белков

Из-за относительно больших размеров белковых молекул, сложности их строения и отсутствия достаточно точных данных о структуре большинства белков еще нет рациональной химической классификации белков. Существующая классификация в значительной мере условна и построена главным образом на основании физико-химических свойств белков, источников их получения, биологической активности и других, нередко случайных, признаков. Так, по физико-химическим свойствам белки делят на фибриллярные и глобулярные, на гидрофильные (растворимые) и гидрофобные (нерастворимые) и т. п. По источнику получения белки подразделяют на животные, растительные и бактериальные; на белки мышечные, нервной ткани, кровяной сыворотки и т. п.; по биологической активности - на белки-ферменты. белки-гормоны, структурные. Белки, сократительные белки, антитела и т. д. Следует, однако, иметь в виду, что из-за несовершенства самой классификации, а также вследствие исключительного многообразия белков многие из отдельных белков не могут быть отнесены ни к одной из описываемых здесь групп.

Все белки принято делить на простые, или протеины (собственно белки), и сложные, или протеиды (комплексы белков с небелковыми соединениями). Простые белки являются полимерами только аминокислот; сложные, помимо остатков аминокислот, содержат также небелковые, так называемые простетические группы.

Среди простых белков (протеинов) различают альбумины (см.), глобулины (см.) и ряд других белков.

Альбумины - легко растворимые глобулярные белки (например, альбумины сыворотки крови или яичного белка); растворяются в воде и солевых растворах с выпадением в осадок лишь при насыщении раствора сульфатом аммония.

Глобулины отличаются от альбуминов нерастворимостью в воде и выпадением в осадок при полунасыщении раствора сульфатом аммония. Глобулины обладают более высоким, чем альбумины, молекулярным весом и иногда содержат в своем составе углеводные группировки.

К протеинам относятся и растительные белки - проламины (см.), встречающиеся обычно совместно с глютелинами (см.) в семенах злаков (рожь, пшеница, ячмень и др.), образуя основную массу клейковины. Эти белки растворимы в 70-80% спирте и нерастворимы в воде; они богаты остатками пролина и глутаминовой кислоты. К проламинам относятся также глиадин пшеницы, зеин кукурузы, гордеин ячменя.

Склеропротеины (протеинонды, альбуминоиды) - структурные белки, нерастворимые в воде, в разведенных щелочах, кислотах и солевых растворах. К ним относятся фибриллярные белки главным образом животного происхождения, весьма устойчивые к перевариванию пищеварительными ферментами. Эти белки подразделяют на белки соединительной ткани: коллаген (см.) и эластин (см.); белки покровов - волос, ногтей и копыт, эпидермиса- кератины (см.), для которых характерно высокое содержание серы в виде остатка аминокислоты - цистина; белки коконов и других секретов шелкоотделительных желез насекомых (например, паутины) - фиброин (см.), состоящие более чем наполовину из остатков глицина и аланина.

Особую группу протеинов составляют протамины (см.) - сравнительно низкомолекулярные белки основного характера (в отличие от альбуминов, глобулинов и других тканевых белков, имеющих изоэлектрическую точку обычно в слабокислой среде). Протамины встречаются в сперме некоторых рыб и других животных и состоят более чем наполовину из диаминомонокарбоновых кислот. Так, протамины сельди - клупеин и лосося - сальмин содержат около 80% аргинина. Другие протамины содержат, помимо аргинина, также лизин или лизин и гистидин.

Рис. 2. Общая схема биосинтеза белка. Аминокислоты (1), взаимодействуя с АТФ, активируются, образуя аминоациладенилаты (2); последние под действием фермента аминоацил-тРНК-синтетазы соединяются с транспортными РНК, или тРНК (3), и в виде комплекса аминоацил-тРНК (4) поступают в рибосомы, соединенные с мРНК, или полисомы (5). Полисомы образуются путем присоединения к мРНК сначала малой субчастицы (6), а затем и большой субчастицы (7) рибосом. В рибосоме (8), соединенной с мРНК, к мРНК присоединяются две аминоацил-тРНК, в результате чего между ними образуется пептидная связь. Таким образом происходит рост полипептидной цепи (9), которая освобождается по завершении ее синтеза (10) и далее трансформируется в белок (11).

Биосинтез белков протекает во всех клетках живых организмов и обеспечивает обновленце белков организма, процессы обмена веществ и их регуляцию, а также рост и дифференцировку органов и тканей. Белки синтезируются в тканях из свободных аминокислот при участии нуклеиновых кислот (см.). Процесс биосинтеза белков протекает с потреблением энергии, аккумулированной в виде АТФ (см. Аденозинфосфорные кислоты). При биосинтезе белков обеспечивается образование определенных белков строго специфической структуры, которая закодирована в структурных генах (цистронах) дезоксирибонуклеиновой кислоты, находящейся главным образом в хроматине ядер клеток (см. Генетический код). Информация, определяющая первичную структуру белков, передается на особый тип рибонуклеиновых кислот (РНК), называемых информационными, или матричными, РНК (мРНК), в виде комплементарной последовательности нуклеотидов. Этот процесс получил название транскрипции. мРНК соединяется с рибосомами (см.), представляющими собой рибонуклеопротеидные гранулы, более чем наполовину состоящие из особой рибосомной РНК (рРНК), синтезируемой также на специальных цистронах (генах) ДНК. Рибосомы состоят из двух субчастиц, на которые они способны обратимо диссоциировать при понижении концентрации ионов магния. Большая и малая субчастицы рибосом содержат но одной молекуле РНК с молекулярной массой соответственно около 1,7×10 6 и 0,7×10 6 и по нескольку десятков молекул белков. Соединившись с рибосомами, мРНК образует полирибосомы, или полисомы, на которых и происходит синтез полипептидных цепочек, образующих первичную структуру белков. Прежде чем соединиться с рибосомами аминокислоты активируются, затем соединяются с низкополимерными РНК-переносчиками, или транспортными РНК (тРНК) в виде комплексов, с которыми они и поступают в рибосомы. Общая схема биосинтеза белков представлена на рис. 2.

Активация аминокислот происходит при взаимодействии их с АТФ с образованием аминоациладенилата и освобождением пирофосфата: аминокислота + АТФ = аминоациладенилат + пирофосфат. Аминоациладенилат представляет собой смешанный ангидрид, образованный остатком фосфорной к-ты аденозинмонофосфата и карбоксильной группой аминокислоты, и является активированной формой аминокислоты. С аминоациладенилата остаток аминокислоты переносится на тРНК, специфичную для каждой аминокислоты, и в виде аминоацил-тРНК поступает в рибосомы. Образование аминоациладенилата и перенос аминокислотного остатка на тРНК катализируются одним и тем же ферментом (аминоациладенилатсинтетазой, или аминоацил-тРНК-синтетазой), строго специфичным для каждой аминокислоты и каждой тРНК. Все тРНК имеют сравнительно небольшой молекулярный вес (около 25 000) и содержат около 80 нуклеотидов. Они имеют крестообразную конфигурацию, напоминающую клеверный лист, причем нуклеотидная цепь образует двунитчатую структуру, удерживаемую комплементарными основаниями, и переходит в однонитчатую только в области петель. Начало нуклеотидной цепи, обычно представленное 5"-гуаниловым нуклеотидом, находится вблизи концевой, часто обменивающейся группировки из двух остатков цитидиловой кислоты и аденозина со свободной 3"-OH-группой, к которой и присоединяется остаток аминокислоты. На петле, находящейся у противоположного конца молекулы тРНК, имеется триплет оснований, комплементарный к триплету, кодирующему данную аминокислоту (кодону), и называемый антикодоном. Нуклеотидная последовательность многих тРНК уже установлена, известна и их полная структура.

Определенная последовательность аминокислот в первичной структуре синтезируемой полипептидной цепи обеспечивается информацией, записанной в последовательности нуклеотидов мРНК, отражающей соответствующую последовательность в цистронах ДНК. Каждая аминокислота кодируется определенными триплетами нуклеотидов мРНК. Эти триплеты (кодоны) представлены в табл. 2. Их расшифровка позволила установить нуклеотидный код РНК, или аминокислотный код, то есть способ, при помощи которого происходит трансляция, или перевод информации, записанной в последовательности нуклеотидов РНК в первичную структуру белков, или последовательность аминокислотных остатков в полипептидной цепи.

Таблица 2. РНК-АМИНОКИСЛОТНЫЙ КОД

Первый нуклеотид кодона (с 5"-конца)

Второй нуклеотид кодона

Третий нуклеотид кодона (с 3’-конца)

Фен

Сер

Тир

Цис

Фен

Сер

Тир

Цис

Лей

Сер

УАА

УГА

Лей

Сер

УАГ

Три

Лей

Про

Гис

Арг

Лей

Про

Гис

Арг

Лей

Про

Глн

Арг

Лей

Про

Глн

Арг

Иле

Тре

Асн

Сер

Иле

Тре

Асн

Сер

Иле

Тре

Лиз

Арг

Мет

Тре

Лиз

Арг

Вал

Ала

Асп

Гли

Вал

Ала

Асц

Гли

Вал

Ала

Глу

Гли

Вал

Ала

Глу

Гли

Примечание: У - уридиловая кислота, Ц - цитидиловая кислота, А - адениловая кислота, Г - гуаниловая кислота. Три буквы обозначают соответствующий аминокислотный остаток: напр.. Фен - фенилаланин. Иле - изолейцин, Глу - глутаминовая кислота, Глн - глутамин и т. п. Триплеты УАА, УАГ, УГА не кодируют аминокислот, но определяют терминацию полипептидной цепи.

Как видно из таблицы, из 64 возможных триплетов (61 кодируют определенные аминокислоты, то есть являются «смысловыми». Три триплета - УДА, УАГ и УГА - не кодируют аминокислот, однако их роль заключается в завершении (терминации) синтеза растущей полипептидной цепочки. Код является вырожденным, то есть почти все аминокислоты кодируются более чем одним триплетом нуклеотидов. Так, 3 аминокислоты - лейцин, аргинин и серии - кодируются шестью кодонами, 2 - метионин и триптофан - имеют только по одному кодону, а остальные 15 - от 2 до 4. Процесс трансляции осуществляется при помощи тРНК, нагруженных аминокислотами. Аминоацил-тРНК присоединяется своим комплементарным триплетом (антикодоном) к кодону мРНК в рибосоме. К соседнему кодону мРНК присоединяется другая аминоацил-тРНК. Первая тРНК при этом присоединяет свой аминокислотный остаток карбоксильным концом к аминогруппе второй аминокислоты, с образованием дипептида, а сама освобождается и отделяется от рибосомы. Далее, по мере продвижения рибосомы но цепи мРНК от 5"-конца к З"-концу, присоединяется третья аминоацил-РНК; происходит соединение дипептида карбоксильным концом с аминогруппой третьей аминокислоты с образованием трипептида и освобождением второй тРНК и так до тех пор, пока рибосома не пройдет весь участок, кодирующий данный белок на мРНК, соответствующий цистрону ДНК. Затем происходит терминация синтеза белков, и образовавшийся полипептид освобождается от рибосомы. За первой рибосомой в полисоме следует вторая, третья и т. д., которые последовательно считывают информацию на одной и той же нити мРНК в полисоме. Таким образом, рост полипептидной цепи происходит с N-конца к карбоксильному (С-) концу. Если подавить синтез белков, например, при помощи антибиотика пуромицина, то можно получить недостроенные полипептидные цепи с незавершенным на разных этапах С-концом. Аминоацил-тРНК присоединяется сначала к малой рибосомной субчастице, а затем переносится на большую субчастицу, на которой и происходит рост полипептидной цепочки. Согласно гипотезе А. С. Спирина во время работы рибосомы при биосинтезе белков происходит повторяющееся смыкание и размыкание субчастиц рибосом. Для воспроизведения синтеза белков вне организма, помимо рибосом, мРНК и аминоацил-тРНК, необходимо присутствие гуанозинтрифосфата (ГТФ), который расщепляется до ГДФ и снова регенерирует в процессе роста поли пептидной цепи. Необходимо также присутствие нескольких белковых факторов, выполняющих, по-видимому, ферментативную роль. Эти так называемые трансферные факторы взаимодействуют друг с другом и для своей активности требуют присутствия сульфгидрильных групп и ионов магния. Помимо собственно трансляции (то есть роста полипептидной цепи в определенной последовательности, соответствующей структурному гену ДНК и передаваемой последовательностью нуклеотидов в мРНК), особую роль играет начало (или инициация) трансляции и завершение (или терминация) ее. Инициация белкового синтеза в рибосоме, по крайней мере в бактериях, начинается с особых кодонов - инициаторов в мРНК - АУГ и ГУГ. Сначала с таким кодоном связывается малая субчастица рибосомы затем к ней присоединяется формилметионил-тРНК, с которой и начинается синтез полипептидной цепи. В силу особых свойств этой аминоацил-тРНК она способна переноситься на большую субчастнцуг подобно пептидил-тРНК, и таким образом начинать рост полипептидной цепи. Для инициации необходимы ГТФ и белковые факторы инициации (известно три). Терминация роста полипептидной цепи происходит на «бессмысленных» кодонах УАА, УАГ или УГА. По-видимому, эти кодоны связываются с особым белковым фактором терминации, который в присутствии еще одного фактора способствует освобождению полипептида.

Компоненты системы биосинтеза белков синтезируются главным образом в клеточном ядре. На матрице ДНК в процессе транскрипции происходит синтез всех типов РНК. участвующих: в этом процессе: рРНК, мРНК и тРНК. Так, рРНК и мРНК синтезируются в виде очень больших молекул и еще в клеточном ядре проходят процесс «созревания», в ходе которого часть (весьма значительная для мРНК) молекул отщепляется и подвергается распаду, не выходя в цитоплазму, а функционирующие молекулы, являющиеся частью первоначально синтезированных, поступают в цитоплазму к местам белкового синтеза. Прежде чем попасть в состав полисом, мРНК, по-видимому, с момента синтеза связывается с особыми белковыми частицами, «информоферами», и в виде рибонуклеопротеидного комплекса переносится к рибосомам. Рибосомы, очевидно, также «дозревают» в цитоплазме, часть белков присоединяется к предшественникам рибосом, выходящим из ядра, уже в цитоплазме. Следует отметить, что у низших, безъядерных организмов (прокариотов), к которым относятся бактерии, сине-зеленые водоросли и вирусы, имеются некоторые отличия от высших организмов в компонентах системы биосинтеза белков, и в особенности в его регуляции. Рибосомы у прокариотов несколько меньше по размерам и отличаются по составу, процесс транскрипции и трансляции непосредственно связан в одно целое. Вместе с тем у высших ядерных организмов (эукариотов) образование РНК происходит и в органеллах цитоплазмы, митохондриях и хлоропластах (у растений), обладающих собственной системой синтеза белка и собственной генетической информацией в виде ДНК. По своему устройству система белкового синтеза в митохондриях и хлоропластах аналогична таковой у прокариотов и существенно отличается от системы, имеющейся в ядре и цитоплазме высших животных и растений.

Регуляция биосинтеза белков представляет весьма сложную систему и позволяет клетке быстро и четко реагировать на изменения в окружающей клетку среде путем прекращения или индукции синтеза различных белков, часто обладающих ферментативной активностью. У бактерий подавление синтеза белков осуществляется главным образом при помощи особых белков - репрессоров (см. Оперон), синтезируемых специальными генами-регуляторами. Взаимодействие репрессора с метаболитом, поступающим из среды или синтезируемым в клетке, может подавить или, наоборот, активировать его, регулируя таким образом синтез одного белка или нескольких взаимосвязанных белков, в особенности ферментов, синтезирующихся также взаимосвязанно на одном опероне. У высших организмов в процессе дифференцировки ткани теряют способность к синтезу ряда белков и специализируются на синтезе меньшего числа белков, необходимых для функции данной ткани, например мышц. Такое блокирование синтеза ряда белков происходит, по-видимому, на уровне генома (см.) при помощи ядерных белков - гистонов (см.), связывающих нефункциональные участки ДНК. Однако при регенерации, злокачественном росте и других процессах, связанных с дедифференцировкой, такие заблокированные участки могут дерепрессироваться и поставлять мРНК для синтеза необычных для данной ткани белков. Тем не менее и у высших организмов имеет место регуляция синтеза белков в ответ на те или иные стимулы. Так, действие ряда гормонов заключается в индукции синтеза белков в ткани, являющейся «мишенью» данного гормона. Такая индукция, по-видимому, происходит путем связывания гормона с особым белком данной ткани и активацией гена посредством образованного комплекса.

Процесс биосинтеза белков и его регуляция требуют чрезвычайной четкости, точности и слаженности работы всех компонентов системы. Даже небольшие нарушения этой точности приводят к нарушению первичной структуры белков и тяжелым патологическим последствиям. Генетические нарушения, например, замена или потеря одного нуклеотида в структурном гене, приводят к синтезу измененного белка, нередко лишенного биологической активности. Такие изменения лежат в основе врожденных нарушений обмена веществ, к которым, по существу, относятся все наследственные болезни (см.). С другой стороны, целый ряд белков и ферментов может различаться не только у разных биологических видов, но и у разных индивидуумов, сохраняя при этом свою биологическую активность. Нередко такие белки обладают разными иммунологическими и электрофоретическими свойствами. В популяциях человека описаны многие примеры так называемого полиморфизма белков, когда у разных индивидуумов, а иногда и у одного и того же индивидуума можно обнаружить два или несколько неодинаковых белков, обладающих одной и той же функцией, как, например, гемоглобин (см.), гаптоглобин (см.) и некоторые другие.

Белки в питании

Среди многочисленных пищевых веществ белкам принадлежит наиболее важная роль. Они являются источниками незаменимых аминокислот и так называемого неспецифического азота, необходимых для синтеза белков человеческого организма. Выраженная недостаточность белков в питании приводит к тяжелым нарушениям функции организма (см. Алиментарная дистрофия). От уровня снабжения белками в большой степени зависит состояние здоровья, физического развития и- работоспособности человека, а у детей раннего возраста в определенной мере и умственное развитие. Если учесть все производимые для питания растительные и животные белки, то в среднем на каждого жителя Земли придется около 58 г в день. В действительности более половины населения, особенно развивающихся стран, не получает этого количества белка. Глобальный дефицит пищевого белка должен быть отнесен к числу наиболее острых экономических и социальных проблем современности (см. Кризис белковый). В связи с этим установление оптимальных уровней содержания белка в пищевых рационах приобретает первостепенную важность.

В наибольших количествах белки требуются в периоды интенсивного роста. Однако и в организме, достигшем зрелости, процессы жизнедеятельности связаны с непрерывной тратой белковых веществ и, следовательно, необходимостью воспол нения этих потерь с пищей. В соответствии с рекомендациями Экспертной группы ФАО/ВОЗ расчет потребности в белковом азоте следует проводить по формуле: R=1,1(U b +F b +S+G), где R - потребность в белковом азоте; U b - выделение азота с мочой; F b - выделение азота с калом; S - потеря азота за счет десквамации эпидермиса, роста волос, ногтей, выделения азота с потом при неинтенсивном потении; G - удержание азота в процессе роста (расчет ведется на 1 кг массы в день).

Коэффициент 1,1 отражает добавочные траты белков (в среднем 10%), возникающие в результате стрессовых реакций и неблагоприятных воздействий на организм. Границы индивидуальных вариаций потребностей в белках принимаются равными ±20%. Официальные рекомендации экспертной группы ФАО/ВОЗ отражены в табл. 3.

Таблица 3. СРЕДНЕСУТОЧНАЯ ПОТРЕБНОСТЬ В БЕЛКАХ (при условии его полного усвоения)*

Возраст (в годах)

Потребность (в г на 1 кг массы тела в день)

средняя

-20%

+20%

Дети

1-3

0,88

0,70

1,06

4-6

0,81

0,65

0,97

7-9

0,77

0,62

0,92

10-12

0,72

0,58

0,86

Подростки

13-15

0,70

0,56

0,84

16-19

0,64

0,51

0,77

Взрослые

0,59

0,47

0,71

  • Величина потребности в азоте умножена на коэффициент 6,25.

Очевидно, что приведенные величины но соответствуют оптимальному снабжению человека белками и должны быть отнесены к минимальному уровню их содержания в рационе, при несоблюдении которого неизбежно сравнительно быстрое развитие серьезных последствий белковой недостаточности. Фактическое потребление белков в большинстве экономически развитых стран в 1,5 и даже 2 раза выше приведенных цифр. Согласно концепции сбалансированного питания, оптимальная потребность человека в белках зависит от многих факторов, включая физиологические особенности организма, качественную характеристику пищевых белков и содержание в рационе других пищевых веществ.

В СССР величины потребностей населения в белках зафиксированы в официально утверждаемых Министерством здравоохранения физиологических нормах питания, которые периодически пересматриваются и уточняются. Физиологические нормы питании являются средними ориентировочными величинами, отражающими оптимальные потребности отдельных групп населения в основных пищевых веществах и энергии (табл. 4).

Детское население

возраст

потребление белков

всего

животных

0 - 3 мес .

4- 6 мес .

6- 12 мес .

1 - 1,5 года

1,5- 2 года

3- 4 года

5- 6 лет

7-10 лет

11 - 13 лет

14- 17 лет (юноши)

14- 17 лет (девушки)

Взрослое население

группы по характеру труда

(в годах

мужчины

женщины

потребление

белков

потребление белков

всего

живот

ных

всего

живот

ных

Труд , не связанный с физическими напряжениями

18- 40

Механизированный труд и сфера обслуживания с невысокой физической нагрузкой

40 - 60

Механизированный труд и сфера обслуживания со значительной нагрузкой

18 - 40

Механизированный труд с большой физ . нагрузкой

Пенсионный возраст

60- 70

Свыше

Студенты

Беременные 5 -9 мес .

Кормящие

В них предусматриваются дифференциация потребностей в белках, в зависимости от пола, возраста, характера труда и т. д. Рекомендуемые величины рассчитаны на основании изучения особенностей белкового обмена и азотистого баланса у соответствующих групп населения, причем они значительно выше минимальных потребностей в белках, необходимых для поддержания азотистого равновесия. Избыток белков необходим дли обеспечения дополнительных трат организма, связанных с физическими и нервными нагрузками, неблагоприятными воздействиями внешней среды, а также для поддержания оптимального иммунологического статуса. Специально выделены в нормах величины потребления наиболее ценных белков животного происхождения.

Физиологические нормы питания являются основой планирования производства тех или иных пищевых продуктов. При оценке полезности отдельных белковых продуктов учитывается их аминокислотный состав, степень перевариваемости ферментами пищеварительного тракта и интегральные показатели усвояемости, установленные в результате биологических экспериментов. На практике с определенной степенью условности белковые продукты делят на две группы. К первой относят продукты животного происхождения: молоко, мясо, яйца, рыбу, белки которых легко и полностью усваиваются организмом человека; ко второй - большинство продуктов растительного происхождения, в частности пшеницу, рис, кукурузу и другие злаковые, белки которых усваиваются организмом не полностью. Условность подобного деления подчеркивается высокой биологической ценностью ряда белков растительного происхождения (картофеля, гречихи, сои, подсолнечника) и низкой биологической ценностью белков некоторых животных продуктов (желатины, кожи, сухожилий и др.). Причины низкой усвояемости фибриллярных белков (кератина, эластина и коллагенов) заключаются в особенностях их третичной структуры и трудности переваривания ферментами пищеварительного тракта. С другой стороны, усвоение ряда белков растительного происхождения может зависеть от структуры растительных клеток и возникающих трудностей в контактировании белков с пищеварительными ферментами.

Полнота использования отдельных белков человеком или их биологическая ценность и первую очередь определяются степенью соответствия их аминокислотного состава дифферинцированным потребностям организма и в какой-то степени аминокислотному составу тела. Огромное разнообразие встречающихся в природе белков в основном построено из 20 аминокислот, 8 из них (триптофан, лейцин, изолейцин, валин, треонин, лизин, метионин и фенилаланин) незаменимы для человека, так как не могут быть синтезированы в тканях организма (см. Аминокислоты). Дли маленьких детей девятой незаменимой аминокислотой является гистидин. Остальные аминокислоты относятся к числу заменимых и могут расцениваться в питании главным образом как поставщики неспецифического азота. Установлено, что лучшее усвоение белков пищи достигается при сбалансировании ее аминокислотного состава с «идеальными» аминокислотными шкалами. В качестве подобной шкалы в 1957 году была предложена так называемая предварительная аминокислотная шкала ФАО. Позднее было доказано, что содержание в ней ряда аминокислот, особенно триптофана и метионина, определено не вполне точно. В соответствии с результатами биологических исследований в качестве оптимальных в последние годы рекомендованы шкалы аминокислотного состава белков куриных яиц и женского молока. Белки этих двух продуктов самой природой предназначены для питания развивающихся организмов и практически полностью утилизируются как в опытах на экспериментальных животных, так и при использовании в питании детей раннего возраста.

Для определения соответствия аминокислотного состава белков потребностям человека предложен ряд индексов, каждый из которых имеет лишь ограниченную ценность. В их числе следует упомянуть индекс Н/О, отражающий отношение суммы незаменимых аминокислот (Н в мг) к общему содержанию азота белков (О в г), который помогает определению соотношении азота незаменимых, или эссенциальных, аминокислот и неспецифического азота. Чем ниже величина Н/О тем выше содержание неспецифического азота. Для белков молока и яиц этот индекс сравнительно высок - 3,1-3,25, для мяса - 2,79-2,94; для пшеницы - 2. Большое значение придается показателю аминокислотного скора, позволяющему получить более полное суждение о биологической ценности белка на основании его хим. состава.

Метод скора основан на подсчете в исследуемом продукте процента обеспечения каждой из незаменимых аминокислот по сравнению с идеальными аминокислотными шкалами.

С этой целью для каждой из эссенциальных аминокислот исследуемого белка рассчитывается величина I иссл, равная А иссл /Н иссл, отражающая отношение каждой незаменимой аминокислоты (А в мг) к сумме незаменимых аминокислот (Н в г); полученная цифра сопоставляется с величиной I ст, равной А ст /Н ст для той же аминокислоты, рассчитанной по стандартной шкале. В результате деления величин Iиссл на Iст и умножения на 100 получают показатель аминокислотного скора для каждой из незаменимых аминокислот. Лимитирующей биологическую ценность исследуемого белка является аминокислота, показатель аминокислотного скора для которой является наименьшим. В качестве стандартных шкал наряду с предварительной шкалой ФАО используют аминокислотные шкалы куриных яиц и женского молока (табл. 5).

Таблица 5. СТАНДАРТНЫЕ АМИНОКИСЛОТНЫЕ ШКАЛЫ

Аминокислоты

Отношение незаменимой аминокислоты в мг к 1 г суммы незаменимых аминокислот (А /Н )

женское

молоко

куриные

яйца

женское

молоко

куриные

яйца

Изолейцин

Лейцин

Лизин

Сумма ароматических аминокислот :

фенилаланин

тирозин

Сумма серосодержащих аминокислот :

цистин

метионин

Треонин

Триптофан

Валин

Сумма незаменимых аминокислот

В соответствии с показателями аминокислотного скора (табл. 6) наименьшей биологической ценностью обладают белки ряда злаковых, особенно пшеницы (50%; лимитирующие аминокислоты - лизин и треонин); кукурузы (45%; лимитирующие аминокислоты - лизин и триптофан); проса (60%; лимитирующие аминокислоты - лизин и треонин); гороха (60%; лимитирующие аминокислоты - метионин и цистин). Показатель аминокислотного скора лимитирующей аминокислоты устанавливает предел использования азота данного вида белка для пластических целей. Избыток других содержащихся в белке аминокислот может использоваться только как источник неспецифического азота или для энергетических нужд организма. Метод изучения аминокислотного состава является одним из основных способов оценки качества белков. Обычно он позволяет получить показатели усвояемости, близкие по отношению к результатам более длительных и дорогостоящих методов биологического определения ценности белков. В то же время установление в ряде случаев достоверных расхождений между указанными показателями заставляет прибегать при исследовании новых белковых продуктов к интегральным методам биол. оценки как на лабораторных животных, так и непосредственно на людях. Эти методы основаны на изучении в балансовых опытах полноты использования отдельных белков растущими животными (показатель белковой эффективности рациона), соотношения удерживаемого организмом азота к азоту, адсорбированному из кишечника (показатель биол. ценности), отношения адсорбированного азота к общему азоту пищи (показатель истинной переваримости) и т. п. При постановке исследований по изучению биол, ценности белка обязательным является достаточно калорийное обеспечение рациона, его сбалансирование по всем незаменимым факторам питания(см. Сбалансированное питание) и сравнительно низкий уровень белков - в пределах 8- 10% от общей калорийности (см. Обмен веществ и энергии). Сопоставление показателей аминокислотного скора и утилизации белка, определенной в опытах на экспериментальных животных для некоторых продуктов, представлено в табл. 6.

Таблица 6. СОПОСТАВЛЕНИЕ ПОКАЗАТЕЛЕЙ АМИНОКИСЛОТНОГО СКОРА И УТИЛИЗАЦИИ БЕЛКА

Продукты

Аминокислотный скор

Лимитирующие

аминокислоты

Показа -тели утилизации белка

по шкале ФАО

по женскому молоку

по куриным яйцам

Молоко коровье

Яйца

Казеин

Яичный альбумин

Триптофан

Мясо говяжье

Сердце говяжье

Печень говяжья

Почки говяжьи

Свинина (вырезка )

Рыба

Триптофан

Овес

Лизин

Рожь

Треонин

Рис

Лизин

Кукурузная мука

Триптофан

Просо

во

Лизин

Сорго

Пшеничная мука

Пшеничные зародыши

Пшеничный глютент

Лизин

Арахисовая мука

Соевая мука

Семена кунжута

Лизин

Семена подсолнечника

Семена хлопчатника

Картофель

Горох

Батат (сладкий картофель )

Шпинат

Кассава

Важным преимуществом биологических методов оценки белков является их интегральность, дающая возможность учитывать весь комплекс свойств продуктов, влияющих на усвояемость входящих в них белков. Изучая биологическую ценность отдельных белков, не следует забывать, что практически во всех рационах питания используются не отдельные белки, а их комплексы, причем, как правило, различные белки взаимно дополняют друг друга, обеспечивая некоторые средние показатели усвоения белкового азота. При достаточно разнообразных смешанных диетах показатель переваримости белков рационов питания сравнительно постоянен и приближается к 85%, что нередко используется при проведении практических расчетов.

Рис. 2. Реакция Даниэлли на белки, содержащие тирозин, триптофан, гистидин в ушке сердца.

В основе гистохимических методов выявления белков лежат, как правило, биохимические методы, приспособленные для определения белков в тонких тканевых срезах. Следует иметь в виду, что биохимическая реакция может быть использована как гистохимическая в том случае, если продукт реакции имеет устойчивую цветную окраску, выпадает в осадок и не обладает выраженной склонностью к диффузии. Гистохимические методы выявления белков в тканях базируются на выявлении определенных аминокислот, входящих в состав белков (например, реакция Миллона на тирозин, реакция Сакагуши на аргинин, реакция Адамса на триптофан, реакция тетразониевого сочетания на гистидин, тирозин, триптофан и т. д.), на выявлении определенных химических групп (NH 2 =,COOH - ,SH=,SS = и т. п.), на применении некоторых физико-химических методов (цветн. рис. 1-3), определении изоэлектрической точки и т. д. Наконец, выяснить наличие в тканевом срезе некоторых аминокислот можно косвенным путем, определив наличие в тканях ферментов, связанных с этими аминокислотами (например, оксидазы D-аминокислот). Некоторые простые белки (коллаген, эластин, ретикулин, фибрин) выявляются в срезах с помощью многочисленных гистологических методов, среди которых предпочтительными являются так называемые полихромные методы (метод Маллори и его модификации, орсеинпикрофуксиновый метод Ромейса и др. Выявляются белки и при использовании методов люминесцентной микроскопии. Локализацию белков в тканях (миозинов, альбуминов, глобулинов, фибрина и т. д.) можно получить при помощи метода меченых антител по Кунсу и др. Эти методы и их модификации позволяют достаточно точно идентифицировать и определить локализацию отдельных белков, отличающихся друг от друга содержанием тех или иных аминокислот. Разрабатываются методы количественного определения белков, например, метод определения белков непрямой реакцией меченых антител, а также определения SH-групп по методу Барнетта и Зелигмана (см. Аминокислоты , гистохимические методы выявления аминокислот). Все упомянутые выше методы выявления белков в тканях обладают достаточной специфичностью и дают вполне достоверные результаты. Фиксация тканевого материала при использовании названных методов различна. Наиболее подходящими фиксаторами в большинстве случаев следует считать этиловый или метиловый спирт, обезвоженный ацетон, смесь этилового спирта с формалином, раствор трихлоруксусной кислоты на спирте, в некоторых случаях (для протеидов передней доли гипофиза) применяется формалин. Выбор фиксатора зависит от метода, время фиксации - от общего количества и характера ткани. Можно использовать криостатные или парафиновые срезы.

Радиоактивные белки

Радиоактивные белки - белковые вещества, в молекуле которых содержится один или несколько атомов радиоактивных изотопов каких-либо элементов. При радиоактивном мечении белков необходимо обеспечить прочность и возможно большую сохранность белковой молекулы. В качестве радиоактивной метки белков для биохимических экспериментальных исследований используются главным образом изотопы 3 Н и 14 С; при получении радиофармацевтических препаратов на основе белков применяют изотопы йода - 125 I и 131 I, а также изотопы 111 In, 113m In , 99м Tc и др. Введение изотопов йода в белки основано на электрофильном замещении водорода на йод в фенольном ядре тирозина молекулы белка или пептида. Меченый белок очищают от несвязанного йодида и других примесей (путем гельфильтрации, диализа, адсорбции, ионообмена, изоэлектрического осаждения и др.). Если белки не содержит тирозина, для проведения йодирования в него вводят содержащие радиоактивный йод заместители, или используют тирозинсодержащие аналоги, или же прибегают к метке другими радиоактивными изотопами (см.).

Радиоактивные белки имеют важное значение в изучении катаболизма и метаболизма белковых веществ в экспериментальных биохимических исследованиях. Кроме того, их используют в радиоизотопной диагностике in vivo и in vitro при изучении функционального состояния многих органов и систем организма в случае различных заболеваний. В исследованиях in vivo наибольшее применение находит альбумин сыворотки крови человека, меченный радиоактивными изотопами йода (125 I и 131 I), а также получаемые на его основе путем тепловой денатурации и агрегации с той же меткой микро-и макроагрегаты альбумина. С помощью меченого альбумина могут быть определены показатели гемодинамики и регионального кровообращения, объем циркулирующей крови и плазмы, произведено сканирование сердца и крупных сосудов (см. Сканирование), а также опухолей головного мозга. Микроагрегаты альбумина используют для сканирования печени и желудка, определения кровотока печени, а макроагрегаты - для сканирования легких.

Радиоактивные белки нашли широкое применение при определении микроколичеств гормонов, ферментов и других белковых веществ в тканях и средах организма животных и человека в исследованиях in vitro.

Библиография: Белки, под ред. Г. Нейрата и К. Бэйли, пер. с англ., т. 1-3, М., 1956 -1959, библиогр.; Биосинтез белка и нуклеиновых кислот, под ред. А. С. Спирина, М., 1965; Гауровнц Ф. Химия и функции белков, пер. с англ.. М., 1965; Ичас М. Биологический код, пер. с англ., М., 1971; Киселев Л. Л. и др. Молекулярные основы биосинтеза белков. М., 1971; Поглааов Б. Ф. Структура и функции сократительных белков, М., 1965; Спирин А. С. и Гаврилова Л. П. Рибосома, М., 1971; Химия и биохимия нуклеиновых кислот, под ред. И. Б. Збарского и С. С. Дебова, Л., 1968; Advances in protein chemistry, ed. by M. L. Anson a. J. T. Edsall, v. 1-28, N. Y., 1944-1974; Hess G. P. a. R up ley J. A. Structure and function of proteins, Ann. Rev. Biochcm., v. 40, p. 1013, 1971; In vitro procedures with radioisotopes in mcdlcinc, Proceedings of the symposium, Vienna, 1970; M a r g-l(n A. a. Nerrif ieldR.B. Chemical synthesis of peptides and proteins, Ann. Rev. Biochem.,v. 39,p. 841, 1970; Proteins, composition, structure, and function, ed. by H. Neurath, v. 1 - 5, N. Y.-L., 1963- 1970.

Б. в питании - Лавров Б. A. Учебник физиологии питания, с. 92, М., 1935; Молчанова О. П. Значение белка в питании для растущего и взрослого организма, в кн.: Вопр. пит., под ред. О. П. Молчановой, в. 2, с. 5, М., 1950; П о к р овский А. А. К вопросу о потребностях различных групп населения в энергии и основных пищевых веществах, Вестн. АМН СССР, № 10, с. 3, 1966, библиогр.; он же, Фиэиолого-биохимические основы разработки продуктов детского питания, М., 1972; Energy

Гистохимические методы выявления Б. в тканях - Кисели Д. Практическая микротехника и гистохимия, пер. с веягер., с. 119, 152, Будапешт» 1962; Л и л-л я р. Патогистологическая техника и Фактическая гистохимия, пер. с англ., с. 509, М., 1969; П и р с Э. Гистохимия, пер. е англ.. М., 1962; Принципы и методы гп-гго-цитохимического анализа в патологии, аод ред. А. П. Авцына и др., с. 238, JI., ".971; Р е а г s е A. G. Е. Histochemistry, т. 1-2, Edinburgh - L., 1969-1972.

И. Б. Збарский; А. А. Покровский (пит.), В. В. Седов (рад.), Р. А. Симакова (гист.).

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

Аминокислотный состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты . Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми . Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называют сложными . Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат : 1) карбоксильную группу (-СООН), 2) аминогруппу (-NH 2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты , имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты , имеющие более одной аминогруппы; кислые аминокислоты , имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями , так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Пептидная связь

Пептиды — органические вещества, состоящие из остатков аминокислот, соединенных пептидной связью.

Образование пептидов происходит в результате реакции конденсации аминокислот. При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой между ними возникает ковалентная азот-углеродная связь, которую и называют пептидной . В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованию полипептидов . На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом — свободная карбоксильная группа (его называют С-концом).

Пространственная организация белковых молекул

Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков .

Первичная структура белка — последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами — пептидная.

Если молекула белка состоит всего из 10 аминокислотных остатков, то число теоретически возможных вариантов белковых молекул, отличающихся порядком чередования аминокислот, — 10 20 . Имея 20 аминокислот, можно составить из них еще большее количество разнообразных комбинаций. В организме человека обнаружено порядка десяти тысяч различных белков, которые отличаются как друг от друга, так и от белков других организмов.

Именно первичная структура белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию — транспорт кислорода; в таких случаях у человека развивается заболевание — серповидноклеточная анемия.

Вторичная структура — упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия).

Третичная структура — укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков. Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия. В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы. У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны.

Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи. Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин . Он образован двумя α-субъединицами (141 аминокислотный остаток) и двумя β-субъединицами (146 аминокислотных остатков). С каждой субъединицей связана молекула гема, содержащая железо.

Если по каким-либо причинам пространственная конформация белков отклоняется от нормальной, белок не может выполнять свои функции. Например, причиной «коровьего бешенства» (губкообразной энцефалопатии) является аномальная конформация прионов — поверхностных белков нервных клеток.

Свойства белков

Аминокислотный состав, структура белковой молекулы определяют его свойства . Белки сочетают в себе основные и кислотные свойства, определяемые радикалами аминокислот: чем больше кислых аминокислот в белке, тем ярче выражены его кислотные свойства. Способность отдавать и присоединять Н + определяют буферные свойства белков ; один из самых мощных буферов — гемоглобин в эритроцитах, поддерживающий рН крови на постоянном уровне. Есть белки растворимые (фибриноген), есть нерастворимые, выполняющие механические функции (фиброин, кератин, коллаген). Есть белки активные в химическом отношении (ферменты), есть химически неактивные, устойчивые к воздействию различных условий внешней среды и крайне неустойчивые.

Внешние факторы (нагревание, ультрафиолетовое излучение, тяжелые металлы и их соли, изменения рН, радиация, обезвоживание)

могут вызывать нарушение структурной организации молекулы белка. Процесс утраты трехмерной конформации, присущей данной молекуле белка, называют денатурацией . Причиной денатурации является разрыв связей, стабилизирующих определенную структуру белка. Первоначально рвутся наиболее слабые связи, а при ужесточении условий и более сильные. Поэтому сначала утрачивается четвертичная, затем третичная и вторичная структуры. Изменение пространственной конфигурации приводит к изменению свойств белка и, как следствие, делает невозможным выполнение белком свойственных ему биологических функций. Если денатурация не сопровождается разрушением первичной структуры, то она может быть обратимой , в этом случае происходит самовосстановление свойственной белку конформации. Такой денатурации подвергаются, например, рецепторные белки мембраны. Процесс восстановления структуры белка после денатурации называется ренатурацией . Если восстановление пространственной конфигурации белка невозможно, то денатурация называется необратимой .

Функции белков

Функция Примеры и пояснения
Строительная Белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран (липопротеины, гликопротеины), волос (кератин), сухожилий (коллаген) и т.д.
Транспортная Белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ; в состав клеточных мембран входят особые белки, которые обеспечивают активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно.
Регуляторная Гормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например, гормон инсулин регулирует уровень глюкозы в крови, способствует синтезу гликогена, увеличивает образование жиров из углеводов.
Защитная В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки — антитела, способные связывать и обезвреживать их. Фибрин, образующийся из фибриногена, способствует остановке кровотечений.
Двигательная Сократительные белки актин и миозин обеспечивают сокращение мышц у многоклеточных животных.
Сигнальная В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды, таким образом осуществляя прием сигналов из внешней среды и передачу команд в клетку.
Запасающая В организме животных белки, как правило, не запасаются, исключение: альбумин яиц, казеин молока. Но благодаря белкам в организме могут откладываться про запас некоторые вещества, например, при распаде гемоглобина железо не выводится из организма, а сохраняется, образуя комплекс с белком ферритином.
Энергетическая При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Сначала белки распадаются до аминокислот, а затем до конечных продуктов — воды, углекислого газа и аммиака. Однако в качестве источника энергии белки используются только тогда, когда другие источники (углеводы и жиры) израсходованы.
Каталитическая Одна из важнейших функций белков. Обеспечивается белками — ферментами, которые ускоряют биохимические реакции, происходящие в клетках. Например, рибулезобифосфаткарбоксилаза катализирует фиксацию СО 2 при фотосинтезе.

Ферменты

Ферменты , или энзимы , — особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью. Скорость ферментативных реакций в десятки тысяч раз (а иногда и в миллионы) выше скорости реакций, идущих с участием неорганических катализаторов. Вещество, на которое оказывает свое действие фермент, называют субстратом .

Ферменты — глобулярные белки, по особенностям строения ферменты можно разделить на две группы: простые и сложные. Простые ферменты являются простыми белками, т.е. состоят только из аминокислот. Сложные ферменты являются сложными белками, т.е. в их состав помимо белковой части входит группа небелковой природы — кофактор . У некоторых ферментов в качестве кофакторов выступают витамины. В молекуле фермента выделяют особую часть, называемую активным центром. Активный центр — небольшой участок фермента (от трех до двенадцати аминокислотных остатков), где и происходит связывание субстрата или субстратов с образованием фермент-субстратного комплекса. По завершении реакции фермент-субстратный комплекс распадается на фермент и продукт (продукты) реакции. Некоторые ферменты имеют (кроме активного) аллостерические центры — участки, к которым присоединяются регуляторы скорости работы фермента (аллостерические ферменты ).

Для реакций ферментативного катализа характерны: 1) высокая эффективность, 2) строгая избирательность и направленность действия, 3) субстратная специфичность, 4) тонкая и точная регуляция. Субстратную и реакционную специфичность реакций ферментативного катализа объясняют гипотезы Э. Фишера (1890 г.) и Д. Кошланда (1959 г.).

Э. Фишер (гипотеза «ключ-замок») предположил, что пространственные конфигурации активного центра фермента и субстрата должны точно соответствовать друг другу. Субстрат сравнивается с «ключом», фермент — с «замком».

Д. Кошланд (гипотеза «рука-перчатка») предположил, что пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу еще называют гипотезой индуцированного соответствия .

Скорость ферментативных реакций зависит от: 1) температуры, 2) концентрации фермента, 3) концентрации субстрата, 4) рН. Следует подчеркнуть, что поскольку ферменты являются белками, то их активность наиболее высока при физиологически нормальных условиях.

Большинство ферментов может работать только при температуре от 0 до 40 °С. В этих пределах скорость реакции повышается примерно в 2 раза при повышении температуры на каждые 10 °С. При температуре выше 40 °С белок подвергается денатурации и активность фермента падает. При температуре, близкой к точке замерзания, ферменты инактивируются.

При увеличении количества субстрата скорость ферментативной реакции растет до тех пор, пока количество молекул субстрата не станет равным количеству молекул фермента. При дальнейшем увеличении количества субстрата скорость увеличиваться не будет, так как происходит насыщение активных центров фермента. Увеличение концентрации фермента приводит к усилению каталитической активности, так как в единицу времени преобразованиям подвергается большее количество молекул субстрата.

Для каждого фермента существует оптимальное значение рН, при котором он проявляет максимальную активность (пепсин — 2,0, амилаза слюны — 6,8, липаза поджелудочной железы — 9,0). При более высоких или низких значениях рН активность фермента снижается. При резких сдвигах рН фермент денатурирует.

Скорость работы аллостерических ферментов регулируется веществами, присоединяющимися к аллостерическим центрам. Если эти вещества ускоряют реакцию, они называются активаторами , если тормозят — ингибиторами .

Классификация ферментов

По типу катализируемых химических превращений ферменты разделены на 6 классов:

  1. оксиредуктазы (перенос атомов водорода, кислорода или электронов от одного вещества к другому — дегидрогеназа),
  2. трансферазы (перенос метильной, ацильной, фосфатной или аминогруппы от одного вещества к другому — трансаминаза),
  3. гидролазы (реакции гидролиза, при которых из субстрата образуются два продукта — амилаза, липаза),
  4. лиазы (негидролитическое присоединение к субстрату или отщепление от него группы атомов, при этом могут разрываться связи С-С, С-N, С-О, С-S — декарбоксилаза),
  5. изомеразы (внутримолекулярная перестройка — изомераза),
  6. лигазы (соединение двух молекул в результате образования связей С-С, С-N, С-О, С-S — синтетаза).

Классы в свою очередь подразделены на подклассы и подподклассы. В действующей международной классификации каждый фермент имеет определенный шифр, состоящий из четырех чисел, разделенных точками. Первое число — класс, второе — подкласс, третье — подподкласс, четвертое — порядковый номер фермента в данном подподклассе, например, шифр аргиназы — 3.5.3.1.

    Перейти к лекции №2 «Строение и функции углеводов и липидов»

    Перейти к лекции №4 «Строение и функции нуклеиновых кислот АТФ»