Коэффициент вязкости жидкости единицы измерения. Что такое вязкость? Единицы измерения вязкости

Измерение вязкости нефтепродуктов

Абсолютная и кинематическая вязкость
При воздействии на жидкость внешних сил она сопротивляется потоку благодаря внутреннему трению. Вязкость - мера этого внутреннего трения.
Кинематическая вязкость - мера потока имеющей сопротивление жидкости под влиянием силы тяжести. Когда две жидкости равного объема помещены в идентичные капиллярные вискозиметры и двигаются самотеком, вязкой жидкости требуется больше времени для протекания через капилляр. Если одной жидкости требуется для вытекания 200 секунд,а другой - 400 секунд, вторая жидкость в два раза более вязкая, чем первая по шкале кинематической вязкости.
Абсолютная вязкость, иногда называемая динамической или простой вязкость, является произведением кинематической вязкости и плотности жидкости:
Абсолютная вязкость = Кинематическая вязкость * Плотность
Размерность кинематической вязкости - L 2 /T, где L - длина, и T - время. Обычно используется сантистокс (cSt). ЕДИНИЦА СИ кинематической вязкости - mm 2 /s, что равно 1 cSt. Абсолютная вязкость выражается в сантипуазах (сПуаз). ЕДИНИЦА СИ абсолютной вязкости - миллипаскаль-секунда (mPa-s), где 1 сПуаз = 1 mPa-s.
Другие общепринятые, но устаревшие единицы кинематической вязкости - Универсальные Секунды Сейболта (SUS) и Фурановые Секунды Сейболта (SFS). Эти единицы могут быть преобразованы в сантистоксы согласно инструкциям, приведенным в ASTM D 2161.

Ньютоновские и неньютоновские жидкости
Зависимость, в которой вязкость является константой независимо от напряжения или скорости сдвига, называется законом вязкости Ньютона. Закону вязкости Ньютона подчиняются большинство обычных растворителей, минеральные основные масла, синтетические основные масла, полностью синтетические однокомпонентные масла. Они называются ньютоновскими жидкостями.
Неньютоновские - жидкости могут быть определены как те, для которых вязкость не константа, а изменяется в зависимости от скорости сдвига или напряжения сдвига, при котором измеряется. Большинство современных моторных масел - обладают свойством мультивязкости, и изготовлены с применением высокомолекулярных полимеров, называемыми модификаторами вязкости. Вязкость таких масел уменьшается с увеличением в скорости сдвига. Они называются «жидкостями, разжижающимися при сдвиге» (shear-thinning)становящимися тоньше сдвигом" жидкостями(газами). Примерами других неньютоновских жидкостей являются краска для потолков, притирочная паста и «резиновый» цемент.

Методы измерения вязкости

Вискозиметры можно классифицировать по трем главным типам:

1. Капиллярные вискозиметры измеряют расход фиксированного объема жидкости через малое отверстие при контролируемой температуре. Скорость сдвига можно измерить примерно от нуля до 106 с -1 , заменяя капиллярный диаметр и приложенное давление. Типы капиллярных вискозиметров и их режимы работы:
Стеклянный капиллярный вискозиметр (ASTM D 445) - Жидкость проходит через отверстие устанавливаемого - диаметра под влиянием силы тяжести. Скорость сдвига - меньше чем 10 с -1 . Кинематическая вязкость всех автомобильных масел измеряется капиллярными вискозиметрами.
Капиллярный вискозиметр высокого давления (ASTM D 4624 и D 5481) -Фиксированный объем жидкости выдавливается через стеклянный капилляр диаметра под действием приложенного давления газа. Скорость сдвига может быть изменена до 106 с -1 . Эта методика обычно используется, чтобы моделировать вязкость моторных масел в рабочих коренных подшипниках. Эта вязкость называется, вязкостью при высокой температуре и высоком сдвиге (HTHS) и измеряется при 150°C и 106 с -1 . HTHS вязкость измеряется также имитатором конического подшипника, ASTM D 4683 (см. ниже).

2. Ротационные вискозиметры используют для измерения сопротивления жидкости течению вращающий момент на вращающемся вале. К ротационным вискозиметрам относятся имитатор холодной прокрутки двигателя (CCS), миниротационный вискозиметр (MRV), вискозиметр Брукфильда и имитатор конического подшипника (TBS). Скорость сдвига может быть изменена за счет изменения габаритов ротора, зазора между ротором и стенкой статора и частоты вращения.
Имитатор холодной прокрутки (ASTM D 5293) - CCS измеряет кажущуюся вязкость в диапазоне от 500 до 200000 сПуаз. Скорость сдвига располагается между 104 и 105 c -1 . Нормальный диапазон рабочей температуры - от 0 до -40°C. CCS показал превосходную корреляцию с пуском двигателя при низких температурах. Классификация вязкости SAE J300 определяет низкотемпературную вязкостную эффективность моторных масел пределами по CCS и MRV.
Минироторный вискозиметр (ASTM D 4684) - тест MRV, который связан с механизмом прокачиваемости масла, является измерением при низкой скорости сдвига. Главная особенность метода - медленная скорость охлаждения образца. Образец подготавливается так, чтобы иметь определенную тепловую предысторию, которая включает нагревание, медленно охлаждение, и циклы пропитки. MRV измеряет кажущееся остаточное напряжение, которое, если большее чем пороговое значение, указывает на потенциальную проблему отказа прокачивания, связанную с проникновением воздуха. Выше некоторой вязкости (в настоящее время определенной как 60000 сПуаз по SAE J 300), масло может быть вызвать отказ прокачиваемости по механизму, называемому "эффект ограниченного потока". Масло SAE 10W, например, должно иметь максимальную вязкость 60000 сПуаз при -30°C без остаточного напряжения. С помощью этого метода измеряют также кажущуюся вязкость при скоростях сдвига от 1 до 50 c -1 .
Вискозиметр Брукфильда - определяет вязкость в широких пределах (от 1 до 105 Пуаз) при низкой скорости сдвига (до 102 c -1).
ASTM D 2983 используется прежде всего для определения низкотемпературной вязкости автомобильных трансмиссионных масел, масел для автоматических трансмиссий гидравлических и тракторных масел. Температура - испытаний находится в диапазоне от -5 до -40°C.
ASTM D 5133, метод сканирования Брукфильда, измеряет вязкость образца по Брукфильду, при охлаждении с постоянной скоростью 1°C/час. Подобно MRV, метод ASTM D 5133 предназначен для определения прокачиваемости масла при низких температурах. С помощью этого испытания определяется точка структурообразования, определенная как температура, при которой образец достигает вязкости 30,000 сПуаз. Определяется также индекс(показатель) структурообразования как самая большая скорость увеличения вязкости от -5°C к самой низкой испытательной температуре. Этот метод находит применение для моторных масел, и требуется согласно ILSAC GF-2.
Имитатор конического подшипника (ASTM D 4683) - эта методика также позволяет измерять вязкость моторных масел при высокой температуре и высокой скорости сдвига (см. Капиллярный Вискозиметр высокого давления). Очень высокие скорости сдвига получаются за счет чрезвычайно малого зазора между ротором и стенкой статора.

3. Разнообразные приборы используют множество других принципов; например, время падения стального шарика или иглы в жидкости, сопротивление вибрации зонда, и давления, прилагаемого к зонду текущей жидкостью.
Индекс вязкости
Индекс вязкости (ИВ) - эмпирическое число, указывающее степень изменения в вязкости масла в пределах данного диапазона температур. Высокий ИВ означает относительно небольшое изменение вязкости с температурой, а низкий ИВ означает большое изменение вязкости с температурой. Большинство минеральных основных масел имеет ИВ между 0 и 110, но ИВ полимерсодержащего масла (multigrage) часто превышает 110.
Для определения индекса вязкости требуется определить кинематическую вязкость при 40°C и 100°C. После этого ИВ определяют из таблиц по ASTM D 2270 или ASTM D 39B. Так как ИВ определяется из вязкости при 40°C и 100°C, он не связан с низкотемпературной или HTHS вязкостью. Эти значения получают с помощью CCS, MRV, низкотемпературного вискозиметра Брукфильда и вискозиметров высокой скорости сдвига.
SAE не использует ИВ, для классификации моторных масел начиная с 1967, потому что этот термин технически устарел. Однако, методика Американского нефтяного института API 1509 описывает систему классификации основных масел, используя ИВ как один из нескольких параметров, чтобы обеспечить принципы взаимозаменяемости масел и универсализацию шкалы вязкости.

Основные типы модификаторов вязкости
Химическая структура и размер молекул - наиболее важные элементы молекулярной архитектуры модификаторов вязкости. Имеется множество типов модификаторов вязкости, выбор зависит от специфических обстоятельств.
Все выпускаемые сегодня модификаторы вязкости, состоят из алифатических углеродных цепочек. Главные структурные различия находятся в боковых группах, которые отличаются и химически, и по размеру. Эти изменения в химической структуре обеспечивают различные свойства модификаторов вязкости типа масел, такие как способность к загустеванию, зависимость вязкости от температуры, окислительная стабильность и характеристики экономии топлива.
Полиизобутилен (PIB или полибутен) - преобладающие модификаторы вязкости в конце 1950-ых, с тех пор PIB модификаторы были заменены модификаторами других типов, потому что они обычно не обеспечивают удовлетворительную работу при низких температурах и работу дизельных двигателей. Однако, низкмолекулярные PIB все еще широко используется в автомобильных трансмиссионных маслах.
Полиметилакрилат (PMA) - PMA модификаторы вязкости содержат алкильные боковые цепочки, которые препятствуют образованию кристаллов воска в масле, таким образом обеспечивая превосходные свойства при низкой температуре.
Олефиновые сополимеры (OCP) - OCP модификаторы вязкости широко используются для моторных масел благодаря их низкой стоимости и удовлетворительной моторной эффективности. Выпускаются различные OCP, отличные главным образом по молекулярному весу и отношению этилена к пропилену.
Сложные эфиры сополимера стирола и малеинового ангидрида (стироловые эфиры) - стироловые эфиры - мультифункциональные модификаторы вязкости высокой эффективности. Комбинация различных алкильных групп придает маслам, содержащим такие добавки, превосходные свойства при низкой температуре. Стирольные модификаторы вязкости использовались в маслах для энергосберегающих двигателей и по-прежнему используются в трансмиссионных маслах для автоматических коробок передач.
Насыщенные стиролдиеновые сополимеры - модификаторы на основе гидрогенизированныз сополимеров стирола с изопреном или бутадиеном способствуют экономии топлива, хорошими характеристиками вязкости при низких температурах и выскокотемпературными свойствами.
Насыщенные радиальные полистиролы (STAR) - модификаторы на основе гидрогенизированных радиальных полистирольных модификаторов вязкости показывают хорошее сопротивление сдвигу при относительно низкой стоимости обработки, по сравнению с другими типами модификаторов вязкости. Их свойства при низкой температуре подобны свойствам модификаторов OCP.

Жидкость определяют как физическое тело, способное менять свою форму при сколь угодно малом воздействии на него. Обычно различают два основных вида жидкостей: капельные и газообразные. Капельные жидкости - это жидкости в обычном понимании: вода, керосин, нефть, масло и так далее. Газообразные жидкости - это газы, которые в обычных условиях являются, например, такими газообразными веществами, как воздух, азот, пропан, кислород.

Данные вещества различаются по молекулярной структуре и виду взаимодействия молекул между собой. Однако, с точки зрения механики, они являются сплошными средами. И в силу этого, для них определены некоторые общие механические характеристики: плотность и удельный вес; а также основные сжимаемость, сопротивление растяжению, силы и вязкость.

Под вязкостью понимают свойство оказывать сопротивление скольжению или сдвигу его слоев друг относительно друга. Суть этого понятия заключается в появлении между различными слоями внутри жидкости при их относительном движении. Различают понятия «динамическая вязкость жидкости» и ее «кинетическая вязкость». Далее рассмотрим подробнее, в чем состоит отличие этих понятий.

Основные понятия и размерность

Сила внутреннего трения F, возникающая между движущимися друг относительно друга соседними слоями обобщенной жидкости, прямо пропорциональна скорости движения слоев и площади их соприкосновения S. Эта сила действует в направлении, перпендикулярном движению, и аналитически выражается уравнением Ньютона

F=μS (∆V)/ (∆n),

где (∆V)/ (∆n)=GV — градиент скорости в направлении нормали к движущимся слоям.

Коэффициент пропорциональности μ - есть динамическая вязкость или просто вязкость обобщенной жидкости. Из уравнения Ньютона он равен

В физической системе измерения единицу вязкости определяют как вязкость среды, в которой при единичном градиенте скорости GV = 1 см/сек на каждый квадратный сантиметр слоя действует сила трения в 1 дин. Соответственно и размерность единицы в данной системе выражается в дин∙сек∙см^(-2) = г∙см^(-1)∙сек^(-1).

Эта единица измерения динамической вязкости называется пуазом (П).

1 П = 0,1 Па∙с = 0,0102 кгс∙с∙м^(-2) .

Применяются и более мелкие единицы, именно: 1 П = 100 сП (сантипуаз) = 1000 мП (миллипуаз) = 1000000 мкП (микропуаз). В технической системе за единицу вязкости принимают величину кгс∙с∙м^(-2) .

В международной системе единицу вязкости определяют как вязкость среды, в которой при единичном градиенте скорости GV = 1 м/с на 1 м на каждый квадратный метр слоя жидкости действует сила трения в 1 Н (ньютон). Размерность величины μ в выражается в кг∙м^(-1)∙с^(-1).

Кроме такой характеристики, как динамическая вязкость, для жидкостей вводится понятие кинематической вязкости как отношение коэффициента μ к плотности жидкости. Величина коэффициента кинематической вязкости измеряется в стоксах (1ст = 1 см^(2)/с).

Коэффициент вязкости численно равен количеству движения, переносимому в движущемся газе за единицу времени в направлении, перпендикулярном движению, через единицу площади, когда скорость движения отличается на единицу скорости в слоях газа, отстоящих на единицу длины. Коэффициент вязкости зависит от рода и состояния вещества (температуры и давления).

Динамическая вязкость и кинематическая вязкость жидкостей и газов в большой степени зависят от температуры. При этом отмечено, что оба этих коэффициента убывают с возрастанием температуры для капельных жидкостей и, наоборот, возрастают при повышении температуры - для газов. Отличие этой зависимости можно объяснить физической природой взаимодействия молекул в капельных жидкостях и газах.

Физический смысл

С точки зрения молекулярно-кинетической теории, явление вязкости для газов заключается в том, что в движущейся среде вследствие хаотического движения молекул происходит выравнивание скоростей различных слоев. Так, если первый слой движется в некотором направлении быстрее, чем соседний с ним второй слой, то из первого слоя во второй переходят более быстрые молекулы, и наоборот.

Поэтому первый слой стремится ускорить движение второго слоя, а второй — замедлить движение первого. Таким образом, общее количество движения первого слоя будет уменьшаться, а второго — увеличиваться. Получаемое при этом изменение количества движения характеризуется коэффициентом вязкости для газов.

В капельных жидкостях, в отличие от газов, внутреннее трение в большей мере определяется действием межмолекулярных сил. И, поскольку расстояния между молекулами капельной жидкости невелики по сравнению с газообразными средами, то силы взаимодействия молекул при этом - значительны. Молекулы жидкости, как и молекулы твердых тел, колеблются вблизи положений равновесия. Однако в жидкостях эти положения не являются стационарными. По прошествии некоторого промежутка времени молекула жидкости резко переходит в новое положение. При этом время, в течение которого положение молекулы в жидкости не изменяется, называют временем ее «оседлой жизни».

Силы межмолекулярного взаимодействия существенно зависят от вида жидкости. Если вязкость вещества мала, то его называют "текучим", так как коэффициент текучести и динамическая вязкость жидкости - обратно пропорциональные величины. И наоборот, вещества с большим коэффициентом вязкости могут обладать механической твердостью, как, например, смола. Вязкость вещества при этом существенно зависит как от состава примесей и их количества, так и от температуры. При увеличении температуры величина времени «оседлой жизни» уменьшается, вследствие чего растет подвижность жидкости и уменьшается вязкость вещества.

Явление вязкости, как и другие явления молекулярного переноса (диффузия и теплопроводность), является приводящим к достижению равновесного состояния, отвечающего максимуму энтропии и минимуму свободной энергии.

Для определения кинематической вязкости вискозиметр подбирают таким образом, чтобы время течения нефтепродукта было не менее 200 с. Затем его тщательно промывают и высушивают. Пробу испытуемого продукта профильтровывают через бумажный фильтр. Вязкие продукты перед фильтрованием подогревают до 50–100оС. При наличии в продукте воды его осушают сульфатом натрия или крупнокристаллической поваренной солью с последующим фильтрованием. В термостатирующем устройстве устанавливают требуемую температуру. Точность поддержания выбранной температуры имеет большое значение, поэтому термометр термостата должен быть установлен так, чтобы его резервуар оказался примерно на уровне середины капилляра вискозиметра с одновременным погружением всей шкалы. В противном случае вводится поправка на выступающий столбик ртути по формуле:

^T = Bh(T1 – T2)

  • B – коэффициент температурного расширения рабочей жидкости термометра:
    • для ртутного термометра – 0,00016
    • для спиртового – 0,001
  • h – высота выступающего столбика рабочей жидкости термометра, выраженная в делениях шкалы термометра
  • T1 – заданная температура в термостате, оС
  • T2 – температура окружающего воздуха вблизи середины выступающего столбика, оС.

Определение времени истечения повторяют несколько раз. В соответствии с ГОСТ 33-82 число измерений устанавливают в зависимости от времени истечения: пять измерений – при времени истечения от 200 до 300 с; четыре – от 300 до 600 с и три – при времени истечения свыше 600 с. При проведении отсчетов необходимо следить за постоянством температуры и отсутствием пузырьков воздуха.
Для подсчета вязкости определяют среднее арифметическое значение времени истечения. При этом учитывают только те отсчеты, которые отличаются не более чем на ± 0,3 % при точных и на ± 0,5 % при технических измерениях от среднего арифметического.

Введение

Тема вискозиметрии и её методов мало распространена и фактически не упоминается в повседневной жизни, но, по истине, прибор вискозиметр занимает достойное место в списке гениальных изобретений человечества.

Вязкость - важная физико-химическая характеристика веществ. Значение вязкости приходится учитывать при перекачивании жидкостей и газов по трубам (нефтепроводы, газопроводы). Вязкость расплавленных шлаков весьма существенна в доменном и мартеновском процессах. Вязкость расплавленного стекла определяет процесс его выработки. По вязкости во многих случаях судят о готовности или качестве продуктов или полупродуктов производства, поскольку вязкость тесно связана со структурой вещества и отражает те физико-химические изменения материала, которые происходят во время технологических процессов. Вязкость масел имеет большое значение для расчёта смазки машин и механизмов и т.д.

Вязкость - свойство жидкостей оказывать сопротивление перемещению одного слоя относительно другого. Количественно вязкость характеризуется значением динамической вязкости или коэффициентом внутреннего трения. Характерной особенностью этого вида трения является то, что оно наблюдается не на границе твердого тела и жидкости, а во всем объеме жидкости.

Вязкость

Вязкость (внутреннее трение) -- одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В результате происходит рассеяние в виде тепла работы, затрачиваемой на это перемещение.

Рис. 1

Вязкость - один из показателей качества горючесмазочных материалов, красок, синтетических смол и т. п. Например, в производстве полимеров и различных продуктов на их основе вязкость служит важнейшим технологическим параметром, так как по ее величине можно оценить молекулярную массу и концентрацию вещества, а также его структуру в расплаве или растворе.

Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей -- это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.

Различают динамическую вязкость (единица измерения в Международной системе единиц (СИ) -- Па·с, в системе СГС -- Пуаз; 1 Па·с = 10 Пуаз) и кинематическую вязкость (единица измерения в СИ -- мІ/с, в СГС -- Стокс, внесистемная единица -- градус Энглера). Кинематическая вязкость может быть получена как отношение динамической вязкости к плотности вещества и своим происхождением обязана классическим методам измерения вязкости, таким как измерение времени вытекания заданного объёма через калиброванное отверстие под действием силы тяжести.

Вискозиметр - это прибор, предназначенный для определения вязкости. Самыми распространёнными вискозиметрами являются ротационные, капиллярные, ультразвуковые, вискозиметры с падающим шариком и вибрационные.

Динамическая вязкость

Внутреннее трение жидкостей, как и газов, возникает при движении жидкости вследствие переноса импульса в направлении, перпендикулярном к направлению движения. Справедлив общий закон внутреннего трения -- закон Ньютона:

Коэффициент вязкости (коэффициент динамической вязкости, динамическая вязкость) может быть получен на основе соображений о движениях молекул. Очевидно, что будет тем меньше, чем меньше время t «оседлости» молекул. Эти соображения приводят к выражению для коэффициента вязкости, называемому уравнением Френкеля - Андраде:

Иная формула, представляющая коэффициент вязкости, была предложена Бачинским. Как показано, коэффициент вязкости определяется межмолекулярными силами, зависящими от среднего расстояния между молекулами; последнее определяется молярным объёмом вещества. Многочисленные эксперименты показали, что между молярным объёмом и коэффициентом вязкости существует соотношение:

где с и b -- константы. Это эмпирическое соотношение называется формулой Бачинского.

Динамическая вязкость жидкостей уменьшается с увеличением температуры, и растёт с увеличением давления.

Кинематическая вязкость

В технике, в частности, при расчёте гидроприводов и в триботехнике, часто приходится иметь дело с величиной и эта величина получила название кинематической вязкости. Здесь -- плотность жидкости; -- коэффициент динамической вязкости.

Кинематическая вязкость в старых источниках часто указана в сантистоксах (сСт). В СИ эта величина переводится следующим образом: 1 сСт = 1 мм 2 /1 c = 10?6 м 2 /c.

Условная вязкость

Условная вязкость -- величина, косвенно характеризующая гидравлическое сопротивление течению, измеряемая временем истечения заданного объёма раствора через вертикальную трубку (определённого диаметра). Измеряют в градусах Энглера (по имени немецкого химика К.О. Энглера), обозначают -- °ВУ. Определяется отношением времени истечения 200см 3 испытываемой жидкости при данной температуре из специального вискозиметра ко времени истечения 200см 3 дистиллированной воды из того же прибора при 20°С. Условную вязкость до 16°ВУ переводят в кинематическую (м 2 /с) по таблице ГОСТ, а условную вязкость, превышающую 16°ВУ, по формуле: где -- кинематическая вязкость (в м 2 /с), а -- условная вязкость (в °ВУ) при температуре t.

Значения динамического и кинематического коэффициентов вязкости некоторых жидкостей приведены далее в таблице.

Вязкость - это свойство жидкости оказывать сопротивление сдвигающим усилиям. Вязкость - свойство, присущее как капельным жидкостям, так и газам, которое проявляется только при движении, не может быть обнаружено при покое, и проявляется в виде внутреннего трения при перемещении смежных частиц жидкости. Вязкость характеризует степень текучести жидкости и подвижности ее частиц. Вязкостью жидкостей объясняется сопротивление и потери напор, которое возникает при движении их по трубам, каналам и прочим руслам, а также при движении в них инородных тел.

Изучение свойств внутреннего трения жидкости активно занимался Исаак Ньютон , заложив основы учению о вязкости. Ньютон высказал предположение (впоследствии подтвержденное опытом), что силы сопротивления, возникающие при таком скольжении слоев, пропорциональны площади соприкосновения слоев и скорости скольжения. В итоге, И. Ньютон получил зависимость, характеризующую связь вязкости с явлением внутреннего трения, получившую название одноименного закона.

Пусть жидкость течет вдоль плоской стенки параллельными слоями. Каждый слой будет двигаться со своей скоростью, причем скорость слоев будет увеличиваться по мере отдаления от стенки.

Рассмотрим два слоя жидкости, движущиеся на расстоянии Δy друг от друга. Поскольку между слоями присутствует сила трения и благодаря взаимному торможению различные слои имеют различные скорости, и слой А движется со скоростью v, а слой Б - со скоростью (v+Δv). Величина Δv является абсолютным сдвигом слоя А по слою Б, а величина Δv/Δy - относительным сдвигом, или градиентом скорости. Тогда при движении возникает касательное напряжение τ (тау), которое характеризует трение на единицу площади (напряжением внутреннего трения) .

Напряжение внутреннего трения имеет физический смысл зависимости:

где F тр - сила внутреннего трения, Н; S - площадь соприкосновения поверхностей, м 2 .

Тогда согласно закону Ньютона зависимость между напряжением и относительным сдвигом будет иметь вид:

т.е. напряжение внутреннего трения пропорционального градиенту скорости.

Коэффициент пропорциональности µ (мю) называется динамическим коэффициентом вязкости . Из формулы видно, что динамический коэффициент вязкости численно равен напряжению внутреннего трения в том случае, когда относительная скорость двух плоскостей А и Б, отстоящих друг от друга на расстоянии 1 м, равна 1м/с.

Размерность динамического коэффициента вязкости следует из формулы. Так как напряжение τ есть сила, отнесенная к единице площади, то его размерность равна:

Размерность градиента скорости:


Отсюда размерность динамического коэффициента вязкости:

Таким образом, за единицу измерения динамической вязкости в системе единиц СИ принимают:

В физической системе единицей динамической вязкости является пуаз, обозначается «П »:

Динамическая вязкость у капельных жидкостей, молекулы которых расположены весьма близко друг к другу, при повышении температуры уменьшается в связи с увеличением скорости броуновского движения, ос-лабляющего удерживающие связи, то есть силы сцепления.

Зависимость коэффициента μ от температуры в общем виде выражается формулой:

где - значение при t = 0°C; а и b - опытные коэффициенты, зависящие от физико-химических свойств (от рода) жидкости; t - температура жидкости в °С.

У газов силы притяжения между молекулами проявляют себя только при сильном сжатии, а в обычных условиях молекулы газов находятся в состоянии хаотичного теплового движения и трение слоев газа друг о друга происходит только вследствие столкновения молекул. При повышении температуры скорость молекул возрастает, растет число их столкновений и вязкость возрастает.

Для пресной воды Пуазейлем получена формула:

Для воздуха известна формула Милликена:

В гидравлике для характеристики вязких свойств газов и паров иногда вместо динамического употребляется другой коэффициент вязкости, обозначаемый буквой η (эта) и связанный с динамическим коэффициентом уравнением

где g - ускорение силы тяжести, м/с 2 .

Очевидно, этот коэффициент вязкости η имеет размерность:

При этом единицей измерения η в технической системе единиц является

В гидравлике и на производстве широко применяется так называемый кинематический коэффициент вязкости ν (ню), определяемый как отношение динамической вязкости к плотности:

Размерность кинематического коэффициента вязкости:

В системе СИ для ν принята единица: .

Единицей измерения коэффициента ν в физической системе служит стокс, обозначается «Ст »:

Например, кинематический коэффициент вязкости воды равен

Величину, обратную динамической вязкости называют текучестью .

Вязкость для всех капельных жидкостей убывает с повы-шением температуры. Для получения точных гидравлических расчетов рекомендуется иметь график (или таблицу) зависимости вязкости от температуры, построенный на основе спе-циальных определений в лаборатории. Весьма осторожно следует относиться к различного рода номограммам и формулам, служащим для определения вязкости смеси двух или нескольких различных нефтепродуктов.

График, характеризующий зависимость изменения вязкости жидкости от температуры называется вискограммой (Рис. 1.3).

Рис.1.3. Вискограмма

Для определения вязкости жидкости при любой произвольной температуре T с достаточной точностью используется формула Рейнольдса-Филонова:

где ν - вязкость при известной температуре Т , u - коэффициент крутизны вискограммы, который характеризует угол наклона касательной вискограммы к оси абсцисс (Рис. 1.4) и определяется по формуле:

Рис.1.4 Определение коэффициента крутизны вискограммы

Таким образом, можно охарактеризовать любую жидкость и определить ее вязкость при любой температуре, зная координаты двух произвольных точек вискограммы. Стоит заметить, что для капельных жидкостей коэффициент вискограммы положителен, однако существуют жидкости, у которых вязкость мало изменяется при изменении температуры, для газообразных - коэффициент вискограммы отрицателен. Существуют жидкости, вязкость которых мало зависит от температуры, они представляют собой сложные химические соединения и используются в качестве рабочих в гидравлических машинах, например в вискомуфтах.

Существуют жидкости, для которых закон И. Ньютона неприменим. В отличие от обычных, ньютоновских, эти жидкости называют неньютоновскими , или аномальными.

Значения кинематической вязкости ν воды и воздуха

Вязкость различных сортов жидкости одного названия, например, нефти, в зависимости от химического состава и молекулярного строения может иметь различные значения.

Для вязких нефтей средние значения u = 0,05 + 0,1 на 1°С.

Вязкость жидкостей, как показывают опыты, зависит также от давления. При возрастании давления она обычно увеличивается. Исключением является вода, для которой при температуре до 32° С с повышением давления вязкость уменьшается. При давлениях, встречающихся в практике (до 20 МПа), изменение вязкости жидкостей весьма мало и при обычных гидравлических расчетах не учитывается.