При каких процессах образуется молекула атф. Выход атф при аэробном распаде глюкозы до конечных продуктов

Вы для себя уяснили из предыдущей статьи, т.к. это очень важно. Теперь поговорим о том, как поддерживается движение миозинового мостика, откуда берется энергия для сократительных процессов в мышце.

Для всего нашего организма АТФ служит одним из основных источников энергии и мышечное волокно – не исключение. Напомню: – внутриклеточный источник энергии, поддерживающий все процессы, происходящие в клетке.

Как раз распад молекулы АТФ и протекает с выделением энергии , также в ходе распада выделяется ортофосфорная кислота, а АТФ превращается в аденезиндифосфат (АДФ).

При взаимодействии с нитью актина, головки миозиновых мостиков расщепляют молекулу АТФ, получая тем самым энергию для сокращения.

Однако следует понимать, что содержание «запасных» молекул АТФ в нашем организме невелико, поэтому для длительной работы мышц и, тем более, для интенсивных тренировок, нашему организму необходима энергетическая подпитка.

Восполнение энергетических ресурсов в мышце осуществляется тремя основными путями:

  1. Расщепление креатинфосфата. В ходе такой реакции, молекула креатинфосфата отдает свою фосфатную группу молекуле аденезиндифосфата (АДФ), в следствие чего АДФ снова превращается в АТФ, а креатинфосфат – в креатин.
    Однако такая энергетическая подпитка длится весьма ограниченное время, поддерживая энергетический баланс мышц лишь в самом начале их работы. Связано это с малым запасом креатинфосфата в мышечных клетках. Далее в работу включаются гликолиз и окисление в митохондриях.
  2. Гликолиз. В ходе данного химического процесса в мышце образуется две молекулы молочной кислоты – в результате распада молекулы глюкозы. Распад глюкозы происходит в при участии десяти специальных ферментов.
    Распад одной молекулы глюкозы способен пополнить энергетические запасы двух молекул АТФ. Гликолиз весьма быстро восполняет мышечные запасы АТФ, т.к. происходит без участия кислорода (анаэробный процесс).
    В мышечной ткани основной субстрат гликолиза – гликоген. Гликоген – сложный углевод, состоящий из разветвленных цепей единиц. Основная масса углеводов в нашем организме накапливается в виде гликогена, сосредоточенного в скелетной мускулатуре и печени. Запасы гликогена во многом определяют объемы нашей мускулатуры и энергетический потенциал мышц.
  3. Окисление органических веществ. Данный процесс происходит в при участии кислорода (аэробный процесс), также для его протекания необходимо присутствие специальных ферментов. Доставка кислорода занимает определенное время, поэтому данный процесс запускается после расщепления креатинфосфата и гликолиза.
    Окисление органических веществ осуществляется поэтапно: запускается процесс гликолиза, но еще несформировавшиеся молекулы молочной кислоты (молекулы пирувата) направляются в митохондрии для дальнейших окислительных процессов, в результате которых образуется энергия с выделением воды (Н2О) и углекислого газа (СО2). При помощи образовавшейся энергии формируется 38 молекул АТФ.
    Если в результате анаэробного распада глюкозы (гликолиза) восстанавливается 2 молекулы АТФ, то аэробный процесс (окисление в митохондриях) способен восстановить в 19 раз больше молекул АТФ.

Вывод: молекула АТФ – основной и универсальный энергетический источник для мышечной активности, но запасы АТФ в мышечном волокне малы, поэтому постоянно пополняются расщеплением креатинфосфата, гликолизом и окислением органических веществ в митохондриях.

Причем гликолиз и окисление – основные пути восстановления АТФ, и каждому из этих способов соответствует свой тип мышечного волокна. Об этом мы поговорим в статье .

Материалы данной статьи охраняются законом о защите авторских прав. Копирование без указания ссылки на первоисточник и уведомления автора ЗАПРЕЩЕНО!

В биологии АТФ - это источник энергии и основа жизни. АТФ - аденозинтрифосфат - участвует в процессах метаболизма и регулирует биохимические реакции в организме.

Что это?

Понять, что такое АТФ, поможет химия. Химическая формула молекулы АТФ - C10H16N5O13P3. Запомнить полное название несложно, если разбить его на составные части. Аденозинтрифосфат или аденозинтрифосфорная кислота - нуклеотид, состоящий из трёх частей:

  • аденина - пуринового азотистого основания;
  • рибозы - моносахарида, относящегося к пентозам;
  • трёх остатков фосфорной кислоты.

Рис. 1. Строение молекулы АТФ.

Более подробная расшифровка АТФ представлена в таблице.

АТФ впервые обнаружили гарвардские биохимики Суббарао, Ломан, Фиске в 1929 году. В 1941 году немецкий биохимик Фриц Липман установил, что АТФ является источником энергии живого организма.

Образование энергии

Фосфатные группы соединены между собой высокоэнергетическими связями, которые легко разрушаются. При гидролизе (взаимодействии с водой) связи фосфатной группы распадаются, высвобождая большое количество энергии, а АТФ превращается в АДФ (аденозиндифосфорную кислоту).

Условно химическая реакция выглядит следующим образом:

ТОП-4 статьи которые читают вместе с этой

АТФ + Н2О → АДФ + Н3РО4 + энергия

Рис. 2. Гидролиз АТФ.

Часть высвободившейся энергии (около 40 кДж/моль) участвует в анаболизме (ассимиляции, пластическом обмене), часть - рассеивается в виде тепла для поддержания температуры тела. При дальнейшем гидролизе АДФ отщепляется ещё одна фосфатная группа с высвобождением энергии и образованием АМФ (аденозин-монофосфата). АМФ гидролизу не подвергается.

Синтез АТФ

АТФ располагается в цитоплазме, ядре, хлоропластах, в митохондриях. Синтез АТФ в животной клетке происходит в митохондриях, а в растительной - в митохондриях и хлоропластах.

АТФ образуется из АДФ и фосфата с затратой энергии. Такой процесс называется фосфорилированием:

АДФ + Н3РО4 + энергия → АТФ + Н2О

Рис. 3. Образование АТФ из АДФ.

В растительных клетках фосфорилирование происходит при фотосинтезе и называется фотофосфорилированием. У животных процесс протекает при дыхании и называется окислительным фосфорилированием.

В животных клетках синтез АТФ происходит в процессе катаболизма (диссимиляции, энергетического обмена) при расщеплении белков, жиров, углеводов.

Функции

Из определения АТФ понятно, что эта молекула способна давать энергию. Помимо энергетической аденозинтрифосфорная кислота выполняет другие функции:

  • является материалом для синтеза нуклеиновых кислот;
  • является частью ферментов и регулирует химические процессы, ускоряя или замедляя их протекание;
  • является медиатором - передаёт сигнал синапсам (местам контакта двух клеточных мембран).

Что мы узнали?

Из урока биологии 10 класса узнали о строении и функциях АТФ - аденозинтрифосфорной кислоты. АТФ состоит из аденина, рибозы и трёх остатков фосфорной кислоты. При гидролизе фосфатные связи разрушаются, что высвобождает энергию, необходимую для жизнедеятельности организмов.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 522.

Важнейшим веществом в клетках живых организмов является аденозинтрифосфорная кислота или аденозинтрифосфат. Если ввести аббревиатуру этого названия, то получим АТФ (англ. ATP). Это вещество относится к группе нуклеозидтрифосфатов и играет ведущую роль в процессах метаболизма в живых клетках, являясь для них незаменимым источником энергии.

Вконтакте

Первооткрывателями АТФ стали учёные-биохимики гарвардской школы тропической медицины - Йеллапрагада Суббарао, Карл Ломан и Сайрус Фиске. Открытие произошло в 1929 году и стало главной вехой в биологии живых систем. Позднее, в 1941 году, немецким биохимиком Фрицем Липманом было установлено, что АТФ в клетках является основным переносчиком энергии.

Строение АТФ

Эта молекула имеет систематическое наименование, которое записывается так: 9-β-D-рибофуранозиладенин-5′-трифосфат, или 9-β-D-рибофуранозил-6-амино-пурин-5′-трифосфат. Какие соединения входят в состав АТФ? Химически она представляет собой трифосфорный эфир аденозина - производного аденина и рибозы . Это вещество образуется путём соединения аденина, являющегося пуриновым азотистым основанием, с 1′-углеродом рибозы при помощи β-N-гликозидной связи. К 5′-углероду рибозы затем последовательно присоединяются α-, β- и γ-молекулы фосфорной кислоты.

Таким образом, молекула АТФ содержит такие соединения, как аденин, рибозу и три остатка фосфорной кислоты. АТФ - это особое соединение, содержащее связи, при которых высвобождается большое количество энергии. Такие связи и вещества называются макроэргическими. Во время гидролиза этих связей молекулы АТФ происходит выделение количества энергии от 40 до 60 кДж/моль, при этом данный процесс сопровождается отщеплением одного или двух остатков фосфорной кислоты.

Вот как записываются эти химические реакции :

  • 1). АТФ + вода→АДФ + фосфорная кислота + энергия;
  • 2). АДФ + вода→АМФ + фосфорная кислота + энергия.

Энергия, высвобожденная в ходе указанных реакций, используется в дальнейших биохимических процессах, требующих определённых энергозатрат.

Роль АТФ в живом организме. Её функции

Какую функцию выполняет АТФ? Прежде всего, энергетическую. Как уже было выше сказано, основной ролью аденозинтрифосфата является энергообеспечение биохимических процессов в живом организме. Такая роль обусловлена тем, что благодаря наличию двух высокоэнергетических связей, АТФ выступает источником энергии для многих физиологических и биохимических процессов, требующих больших энергозатрат. Такими процессами являются все реакции синтеза сложных веществ в организме. Это, прежде всего, активный перенос молекул через клеточные мембраны, включая участие в создании межмембранного электрического потенциала, и осуществление сокращения мышц.

Кроме указанной, перечислим ещё несколько, не менее важных, функций АТФ , таких, как:

Как образуется АТФ в организме?

Синтез аденозинтрифосфорной кислоты идёт постоянно , т. к. энергия организму для нормальной жизнедеятельности нужна всегда. В каждый конкретный момент содержится совсем немного этого вещества - примерно 250 граммов, которые являются «неприкосновенным запасом» на «чёрный день». Во время болезни идёт интенсивный синтез этой кислоты, потому что требуется много энергии для работы иммунной и выделительной систем, а также системы терморегуляции организма, что необходимо для эффективной борьбы с начавшимся недугом.

В каких клетках АТФ больше всего? Это клетки мышечной и нервной тканей, поскольку в них наиболее интенсивно идут процессы энергообмена. И это очевидно, ведь мышцы участвуют в движении, требующем сокращения мышечных волокон, а нейроны передают электрические импульсы, без которых невозможна работа всех систем организма. Поэтому так важно для клетки поддерживать неизменный и высокий уровень аденозинтрифосфата.

Каким же образом в организме могут образовываться молекулы аденозинтрифосфата? Они образуются путём так называемого фосфорилирования АДФ (аденозиндифосфата) . Эта химическая реакция выглядит следующим образом:

АДФ + фосфорная кислота + энергия→АТФ + вода.

Фосфорилирование же АДФ происходит при участии таких катализаторов, как ферменты и свет, и осуществляется одним из трёх способов:

Как окислительное, так и субстратное фосфорилирование использует энергию веществ, окисляющихся в процессе такого синтеза.

Вывод

Аденозинтрифосфорная кислота - это наиболее часто обновляемое вещество в организме. Сколько в среднем живёт молекула аденозинтрифосфата? В теле человека, например, продолжительность её жизни составляет менее одной минуты, поэтому одна молекула такого вещества рождается и распадается до 3000 раз за сутки. Поразительно, но в течение дня человеческий организм синтезирует около 40 кг этого вещества! Настолько велики потребности в этом «внутреннем энергетике» для нас!

Весь цикл синтеза и дальнейшего использования АТФ в качестве энергетического топлива для процессов обмена веществ в организме живого существа представляет собой саму суть энергетического обмена в этом организме. Таким образом, аденозинтрифосфат является своего рода «батарейкой», обеспечивающей нормальную жизнедеятельность всех клеток живого организма.

Изучались изменения креатинфосфорной кислоты после убоя животного. Ход распада креатинфосфата после прекращения жизни животного можно наблюдать по кривой, представленной на рис. 24.
Полученные данные свидетельствуют о снижении количества фосфора креатинфосфорной кислоты приблизительно через 7 ч после убоя до 12% от первоначального уровня. Следовательно, большая часть креатинфосфата распадается еще до того момента, когда наблюдаются первые физически обнаруживаемые признаки окоченения. К этому моменту содержание креатинфосфата в мышцах не превышает 5% общего кислоторастворимого фосфора. Отсюда вывод: креатинфосфорная кислота, принимая участие в гликолитическом цикле, действует только как средство происходящего при этом ресинтеза АТФ и не может играть какой-либо другой роли в изменениях, связанных с послеубойным окоченением мышц.

Энгельгардтом и Любимовой были открыты ферментативные свойства миозина, вызывающего расщепление АТФ. По данным одного из авторов, имеет место следующий механизм этого процесса: при ферментативном распаде АТФ соединяется с миозином, в результате чего отщепляется третья частица фосфорной кислоты, а АДФ отделяется от миозина. Свободный миозин соединяется с новой молекулой АТФ или с актином.
Кроме того, указанные авторы установили, что АТФ в свою очередь влияет на механические свойства нитей миозина, значительно увеличивая их растяжимость. В этом отношении АТФ превышает по силе действия другие органические эфиры, содержащие пирофосфатные связи. Эти работы позволили по-новому подойти к рассмотрению вопросов о причинах послеубойного окоченения.
Эрдош показал, что процессы распада АТФ и увеличения степени жесткости мускулов кролика при развитии послеубойного окоченения протекают параллельно.
Принимая во внимание значение АТФ в процессах гликолиза при сокращении мускулов и в изменении механических свойств миозиновых нитей, Эрдош и Сент-Дьердьи пришли к выводу о-зависимости окоченения мускулов от недостатка АТФ. Аналогичные результаты другие авторы получили для мускулов различных видов животных: кроликов, крупного рогатого скота, лошадей, а также рыб.
Известно, что АТФ непрерывно синтезируется в процессе гликолиза в количестве 1,5 моля на каждый моль образующейся молочной кислоты. Однако этот синтез в той или другой степени уравновешивается расщеплением АТФ миозином. Поэтому пока имеются неизрасходованные резервы гликогена, не может произойти полного распада АТФ, и мускул не переходит в состояние окоченения.
Ниже показана взаимосвязь между растяжимостью мускула и содержанием АТФ по данным Марша. Наступление окоченения здесь выражается в единицах уменьшения растяжимости мускула (1/L) в % от максимального.

На рис. 25 показано, что изменения растяжимости мускулов зависят не только от концентрации АТФ, но и от наличия резервов гликогена в мышечной ткани. В группе животных с высокими запасами гликогена, где распад АТФ задерживается из-за большей продолжительности гликолитического цикла, изменения растяжимости протекают в более поздние сроки и при более низком содержании АТФ.

Бейт-Смит и Бендолл обнаружили начало быстрой фазы окоченения при 78-85% начального содержания АТФ в мускулах кролика, имеющих конечную величину pH 6,6, и окончание, когда ее количество достигает 20% первоначального уровня. Однако в мускулах, имеющих конечную величину pH 5,8, критический уровень концентрации АТФ в начале быстрой фазы составляет только 30% ее первоначального содержания.
Небольшие изменения концентрации АТФ в конце процесса гликолиза оказывают решающее влияние на растяжимость мускула и конечное падение скорости превращения АТФ соответствует в каждом отдельном случае наступлению окоченения. Это положение иллюстрируется кривыми рис. 25, построенными по данным Лоури, а также Бейт-Смита и Бендолла. Следовательно, окоченение должно зависеть не только от определенного уровня содержания АТФ, но и от скорости его снижения, связанной с ослаблением ресинтеза и зависящей от наличия резервов гликогена.
Оказалось также возможным определить коэффициенты Q10 для изменений величины растяжения и содержания АТФ и креатинфосфата в мускулах кролика в процессе его окоченения. Эти коэффициенты приведены в табл. 11.

Точное совпадение коэффициентов Q10 для процессов распада АТФ и изменения растяжимости мускулов является дополнительным доказательством наличия тесной взаимосвязи между ними.
На мясе крупного рогатого скота динамика легкогидрируемого P АТФ впервые прослежена в 1951 г. Представленные на рис. 26 экспериментальные данные об изменениях легкогидролизуемого фосфора мяса крупного рогатого скота говорят о том, что количество АТФ в парном мясе составляет в среднем 159,78 мг % (19,69 мг % легкогидролизуемого Р). В результате быстропроисходящего распада содержание легкогидролизуемого P к 12-му часу снижается до 9,1% первоначальной величины, т. е. за этот период времени разлагается свыше 90% АТФ, содержавшейся в парном мясе.


Как будет показано ниже, распад АТФ в процессе нарастания посмертного окоченения вызывает переход большей части актомиозина в нерастворимое состояние. При этом вследствие наличия в мясе на данной стадии его послеубойных изменений остаточного легкогидролизуемого фосфора не может образоваться высокоактивный актомиозин. В дальнейшем распад легкогидролизуемого фосфора резко замедляется, а в некоторых случаях к концу вторых суток хранения практически приостанавливается. После вторых суток наблюдается некоторое увеличение его количества. Ни в одной серии опытов не наблюдалось полного исчезновения легкогидролизуемого фосфора в процессе хранения мяса.
Данные о наличии и увеличении количества легкогидролизуемого P в охлажденном мясе крупного рогатого скота впоследствии были подтверждены Пальминым.
Как известно, кроме аденозинтрифосфорной кислоты (АТФ), аденозиндифосфорная кислота (АДФ) и пирофосфорная кислота также содержат легкогидролизуемый фосфор. Установить его наличие и природу в охлажденном мясе очень важно для правильного понимания сущности созревания мяса, т. к. актомиозиновый комплекс диссоциирует на составляющие его компоненты (актин и миозин) не только в присутствии АТФ, но и пирофосфор ной кислоты.
Следовательно, в присутствии этих кислот актомиозин с высоким процентом активности не может образоваться. Аденозин-дифосфорная и ортофосфорная кислоты такими свойствами не обладают.
Из полученных нами данных следует, что через 1-2 суток после убоя фракция остаточного фосфора в основном состоит из неорганического ортофосфата и негидролизуемого фосфора. Следовательно, на этой стадии послеубойного хранения наличие остаточного фосфора в этой фракции не может быть отнесено за счет АТФ, АДФ и пирофосфорной кислоты. Вместе с этим нами было доказано, что увеличение легкогидролизуемого фосфора на 4-6-е сутки созревания мяса должно быть отнесено за счет появления в экстракте пирофосфорной кислоты или АДФ, но не АТФ. Ввиду того, что пирофосфорная кислота оказывает на актомиозиновый комплекс действие, аналогичное АТФ, не исключена возможность влияния образующегося остаточного легкогидролизуемого фосфора на процесс диссоциации актомиозина на актин и миозин.
Результаты выполненных исследований также выясняют природу ферментов, ответственных за процесс послеубойных превращений АТФ.
Как уже было сказано, в этих превращениях принимают участие ферменты гликолиза и миозиновая АТФаза. Однако последний фермент не может быть единственным, принимающим участие в распаде АТФ, так как он катализирует только реакцию: АТФ → АДФ + неорганический фосфор (P).
Поэтому он должен был бы приводить к значительному увеличению количеств АДФ в мускулах после прекращения жизни животного.
Однако этого не происходит. Бейли показал, что после прекращения жизни АДФ обычно не накапливается в больших количествах в мускулах кролика. Поэтому необходимо вмешательство в этот процесс миокиназы. катализирующей реакцию

2АДФ → АТФ + АМФ.


Следовательно, миокиназа является дополнительным фактором, определяющим скорость распада АТФ.
Рассмотренные с таких позиций превращения АТФ убедительно объясняют явления, приводящие к послеубойному окоченению.

АТФ - это сокращённое название Аденозин Три-Фосфорной кислоты. А также можно встретить название Аденозинтрифосфат. Это нуклеоид, который играет огромную роль в обмене энергией в организме. Аденозин Три-Фосфорная кислота - это универсальный источник энергии, участвующий во всех биохимических процессах организма. Открыта эта молекула была в 1929 году учёным Карлом Ломанном. А значимость ее была подтверждена Фрицем Липманом в 1941 году.

Структура и формула АТФ

Если говорить об АТФ более подробно , то это молекула, которая даёт энергию всем процессам, происходящим в организме, в том числе она же даёт энергию для движения. При расщеплении молекулы АТФ происходит сокращение мышечного волокна, вследствие чего выделяется энергия, позволяющая произойти сокращению. Синтезируется Аденозинтрифосфат из инозина - в живом организме.

Для того чтобы дать организму энергию Аденозинтрифосфату необходимо пройти несколько этапов. Вначале отделяется один из фосфатов - с помощью специального коэнзима. Каждый из фосфатов даёт десять калорий. В процессе вырабатывается энергия и получается АДФ (аденозин дифосфат).

Если организму для действия нужно больше энергии , то отделяется ещё один фосфат. Тогда формируется АМФ (аденозин монофосфат). Главный источник для выработки Аденозинтрифосфата - это глюкоза, в клетке она расщепляется на пируват и цитозол. Аденозинтрифосфат насыщает энергией длинные волокна, которые содержат протеин - миозин. Именно он формирует мышечные клетки.

В моменты, когда организм отдыхает, цепочка идёт в обратную сторону, т. е. формируется Аденозин Три-Фосфорная кислота. Опять же в этих целях используется глюкоза. Созданные молекулы Аденозинтрифосфата будут вновь использоваться, как только это станет необходимо. Когда энергия не нужна, она сохраняется в организме и высвобождается как только это потребуется.

Молекула АТФ состоит из нескольких, а точнее, трёх компонентов:

  1. Рибоза - это пятиуглеродный сахар, такой же лежит в основе ДНК.
  2. Аденин - это объединённые атомы азота и углерода.
  3. Трифосфат.

В самом центре молекулы Аденозинтрифосфата находится молекула рибозы, а её край является основной для аденозина. С другой стороны рибозы расположена цепочка из трёх фосфатов.

Системы АТФ

При этом нужно понимать, что запасов АТФ будет достаточно только первые две или три секунды двигательной активности, после чего её уровень снижается. Но при этом работа мышц может осуществляться только с помощью АТФ. Благодаря специальным системам в организме постоянно синтезируются новые молекулы АТФ. Включение новых молекул происходит в зависимости от длительности нагрузки.

Молекулы АТФ синтезируют три основные биохимические системы:

  1. Фосфагенная система (креатин-фосфат).
  2. Система гликогена и молочной кислоты.
  3. Аэробное дыхание.

Рассмотрим каждую из них в отдельности.

Фосфагенная система - в случае если мышцы будут работать недолго, но крайне интенсивно (порядка 10 секунд), будет использоваться фосфагенная система. В этом случае АДФ связывается с креатин фосфатом. Благодаря этой системе происходит постоянная циркуляция небольшого количества Аденозинтрифосфата в мышечных клетках. Так как в самих мышечных клетках тоже имеется фосфат креатина, он используется, чтобы восстановить уровень АТФ после высокоинтенсивной короткой работы. Но уже секунд через десять уровень креатин фосфата начинает снижаться - такой энергии хватает на короткий забег или интенсивную силовую нагрузку в бодибилдинге.

Гликоген и молочная кислота - снабжает энергией организм медленнее, чем предыдущая. Она синтезирует АТФ, которой может хватить на полторы минуты интенсивной работы. В процессе глюкоза в мышечных клетках формируется в молочную кислоту за счёт анаэробного метаболизма .

Так как в анаэробном состоянии кислород организмом не используется, то данная система даёт энергию так же как и в аэробной системе, но время экономится. В анаэробном режиме мышцы сокращаются крайне мощно и быстро. Такая система может позволить пробежать четыреста метров спринта или более длительную интенсивную тренировку в зале. Но долгое время работать таким образом не позволит болезненность в мышцах, которая появляется из-за переизбытка молочной кислоты.

Аэробное дыхание - эта система включается, если тренировка продолжается более двух минут. Тогда мышцы начинают получать Аденозинтрифосфат из углеводов, жиров и протеинов. В этом случае АТФ синтезируется медленно, зато энергии хватает надолго — физическая активность может продолжаться несколько часов. Это происходит благодаря тому, что глюкоза распадается без препятствий, у неё нет никаких противодействий, препятствующих со стороны - как препятствует молочная кислота в анаэробном процессе.

Роль АТФ в организме

Из предыдущего описания понятно, что основная роль аденозинтрифосфата в организме - это обеспечение энергией всех многочисленных биохимических процессов и реакций в организме. Большинство энергозатратных процессов у живых существ происходят благодаря АТФ.

Но помимо этой главной функции, аденозинтрифосфат выполняет и другие:

Роль АТФ в организме и жизни человека хорошо известна не только учёным, но и многим спортсменам и бодибилдерам, так как её понимание помогает сделать тренировки более эффективными и правильно рассчитывать нагрузки. Для людей, которые занимаются силовыми тренировками в зале, спринтерскими забегами и другими видами спорта, очень важно понимать, какие упражнения требуется выполнять в тот или иной момент времени. Благодаря этому можно сформировать желаемое строение тела, проработать мышечную структуру, снизить излишний вес и добиться других желаемых результатов.