Что такое солитоны. Солитоны в кооперативных биологических процессах надмолекулярного уровня

После расчетов и поиска аналогий эти ученые установили, что уравнение, которое использовали Ферми, Паста и Улам, при уменьшении расстояния между грузиками и при неограниченном росте их числа переходит в уравнение Кортевега-де Фриса. То есть по существу задача, предложенная Ферми, сводилась к численному решению уравнения Кор­тевега-де Фриса, предложенного в 1895 году для описания уединенной волны Рассела. Примерно в те же годы было показано, что для описания ионно-звуковых волн в плазме используется также уравне­ние Кортевега-де Фриса. Тогда стало ясно, что это уравнение встречается во многих областях физики и, следовательно, уединенная волна, которая опи­сывается этим уравнением, является широко рас­пространенным явлением.

Продолжая вычислительные эксперименты по моделированию распространения таких волн, Крус­кал и Забуски рассмотрели их столкновение. Оста­новимся подробнее на обсуждении этого замеча­тельного факта. Пусть имеются две уединенные волны, описываемые уравнением Кортевега-де Фриса, которые различаются амплитудами и дви­жутся друг за другом в одном направлении (рис. 2). Из формулы для уединенных волн (8) следует, что скорость движения таких волн тем выше, чем боль­ше их амплитуда, а ширина пика уменьшается с ростом амплитуды. Таким образом, высокие уеди­ненные волны движутся быстрее. Волна с большей амплитудой догонит движущуюся впереди волну с меньшей амплитудой. Далее в течение некоторого времени две волны будут двигаться вместе как еди­ное целое, взаимодействуя между собой, а затем они разъединятся. Замечательным свойством этих-волн является то, что после своего взаимодействия форма и

Рис. 2. Два солитона, описываемые уравнением Кортевега-де Фриса,

до взаимодействия (вверху) и после (внизу)

скорость этих волн восстанавливаются. Обе волны после столкновения лишь смещаются на не­которое расстояние по сравнению с тем, как если бы они двигались без взаимодействия.

Процесс, у которого после взаимодействия волн сохраняются форма и скорость, напоминает упру­гое столкновение двух частиц. Поэтому Крускал и Забуски такие уединенные волны назвали солитонами (от англ. solitary- уединенный). Это специ­альное название уединенных волн, созвучное элек­трону, протону и многим другим элементарным частицам, в настоящее время общепринято.

Уединенные волны, которые были открыты Рас­селом, и в самом деле ведут себя как частицы. Боль­шая волна не проходит через малую при их взаимо­действии. Когда уединенные волны соприкасаются, то большая волна замедляется и уменьшается, а волна, которая была малой, наоборот, ускоряется и подрастает. И когда малая волна дорастает до разме­ров большой, а большая уменьшается до размеров малой, солитоны разделяются и больший уходит вперед. Таким образом, солитоны ведут себя как уп­ругие теннисные мячи.

Дадим определение солитона . Солитоном на­зывается нелинейная уединенная волна, которая сохраняет свою форму и скорость при собственном движении и столкновении с себе подобными уеди­ненными волнами, то есть представляет собой ус­тойчивое образование. Единственным результатом взаимодействия солитонов может быть некоторый сдвиг фаз.

Открытия, связанные с уравнением Кортевега - де Фриса, не закончились открытием солитона. Следующим важным шагом, имеющим отношение к этому замечательному уравнению, было создание нового метода решения нелинейных уравнений в частных производных. Хорошо известно, что най­ти решения нелинейных уравнений очень сложно. До 60-х годов нашего столетия считалось, что такие уравнения могут иметь только некоторые частные решения, удовлетворяющие специально заданным начальным условиям. Однако уравнение Кортевега-де Фриса и в этом случае оказалось в исключи­тельном положении.

В 1967 году американские физики К.С. Гарднер, Дж.М. Грин, М. Крускал и Р. Миура показали, что решение уравнения Кортевега-де Фриса может быть в принципе получено для всех начальных усло­вий, которые определенным образом обращаются в нуль при стремлении координаты к бесконечности. Они использовали преобразование уравнения Кортевега - де Фриса к системе двух уравнений, называ­емой теперь парой Лакса (по имени американского математика Питера Лакса, внесшего большой вклад в развитие теории солитонов), и открыли новый ме­тод решения ряда очень важных нелинейных урав­нений в частных производных. Этот метод получил название метода обратной задачи рассеяния, по­скольку в нем существенно используется решение задачи квантовой механики о восстановлении по­тенциала по данным рассеяния.

2.2. Групповой солитон

Выше мы говорили, что на практике волны, как правило, распространяются группами. Подобные группы волн на воде люди наблюдали с незапамят­ных времен. На вопрос о том, почему для волн на воде так типичны "стаи" волн, удалось ответить Т. Бенжамену и Дж. Фейеру только в 1967 году. Тео­ретическими расчетами они показали, что простая периодическая волна на глубокой воде неустойчива (теперь это явление называется неустойчивостью Бенжамена-Фейера), и поэтому волны на воде из-за неустойчивости разбиваются на группы. Уравнение, с помощью которого описывается распространение групп волн на воде, было получено В.Е. Захаровым в 1968 году. К тому времени это уравнение уже было известно в физике и носило название нелинейного уравнения Шрёдингера. В 1971 году В.Е. Захаров и А.Б. Шабат показали, что это нелинейное уравне­ние имеет решения также в виде солитонов, более того, нелинейное уравнение Шрёдингера, так же как и уравнение Кортевега-де Фриса, может быть проинтегрировано методом обратной задачи рассея­ния. Солитоны нелинейного уравнения Шрёдинге­ра отличаются от обсуждаемых выше солитонов Кортевега-де Фриса тем, что они соответствуют форме огибающей группы волн. Внешне они на­поминают модулированные радиоволны. Эти солитоны называются групповыми солитонами, а иногда солитонами огибающей. Это название от­ражает сохраняемость при взаимодействии огиба­ющей волнового пакета (аналог штриховой ли­нии, представленной на рис. 3), хотя сами волны под огибающей двигаются со скоростью, отличной от групповой. При этом форма огибающей описывается

Рис. 3. Пример группового солитона (штриховая линия)

зависимостью

a(x,t)=a 0 ch -1 ( )

где а а - амплитуда, а l - половина размера солитона. Обычно под огибающей солитона находится от 14 до 20 волн, причем средняя волна самая большая. С этим связан хорошо известный факт, что самая вы­сокая волна в группе на воде находится между седь­мой и десятой (девятый вал). Если в группе волн об­разовалось большее количество волн, то произойдет ее распад на несколько групп.

Нелинейное уравнение Шрёдингера, как и урав­нение Кортевега- де Фриса, также имеет широкую распространенность при описании волн в различ­ных областях физики. Это уравнение было предло­жено в 1926 году выдающимся австрийским физи­ком Э. Шрёдингером для анализа фундаментальных свойств квантовых систем и первоначально ис­пользовано при описании взаимодействия внут­риатомных частиц. Обобщенное или нелинейное уравнение Шрёдингера описывает совокупность явлений в физике волновых процессов. Например, оно используется для описания эффекта самофоку­сировки при воздействии мощного лазерного луча на нелинейную диэлектрическую среду и для опи­сания распространения нелинейных волн в плазме.


3. Постановка задачи

3.1. Описание модели.В настоящее время наблюдается значи­тельно возрастающий интерес к исследованию нелинейных волно­вых процессов в различных областях физики (например, в оптике, физике плазмы, радиофизике, гидродинамике и т.д.). Для изучения волн малой, но конечной амплитуды в дисперсионных средах в каче­стве модельного уравнения часто используют уравнение Кортевега-де Фриза (КдФ):

u t + ии х + b и ххх = 0 (3.1)

Уравнение КдФ было использовано для описания магнитозвуковых волн, распространяющихся строго поперек магнитного поля или под углами, близкими к

.

Основные предположения, которые делаются при выводе уравне­ния: 1) малая, но конечная амплитуда, 2) длина волны велика по сравнению с длиной дисперсии.

Компенсируя действие нелинейности, дисперсия дает возможность формироваться в дисперсионной среде стационарным волнам конеч­ной амплитуды - уединенным и периодическим. Уединенные волны для уравнения КдФ после работы стали называться солитонами . Периодические волны носят название кноидальных волн. Соот­ветствующие формулы для их описания даны в .

3.2. Постановка дифференциальной задачи.В работе иссле­дуется численное решение задачи Коши для уравнения Кортевега-де Фриза с периодическими условиями по пространству в прямоуголь­нике Q T ={(t , x ):0< t < T , x Î [0, l ].

u t + ии х + b и ххх = 0 (3.2)

u(x,t)| x=0 =u(x,t)| x=l (3.3)

с начальным условием

u(x,t)| t=0 =u 0 (x) (3.4)

4. Свойства уравнения Кортевега - де Фриза

4.1. Краткий обзор результатов по уравнению КдФ.Задача Коши для уравнения КдФ при различных предположениях отно­сительно u 0 (х) рассматривалась во многих работах . Задача о существовании и единственности решения с условиями периодично­сти в качестве краевых условий была решена в работе с помощью метода конечных разностей. Позже, при менее сильных предположе­ниях, существование и единственность были доказана в статье в пространстве L ¥ (0,T,H s (R 1)), где s>3/2, а в случае периодической задачи - в пространстве L ¥ (0,T,H ¥ (C))где С - окружность дли­ны, равной периоду, на русском языке эти результаты представлены в книге .

Аннотация . Доклад посвящен возможностям солитонного подхода в надмолекулярной биологии, прежде всего, для моделирования широкого класса естественных волнообразных и колебательных движений в живых организмах. Автором выявлено множество примеров существования солитоноподобных надмолекулярных процессов («биосолитонов») в локомоторных, метаболических и иных явлениях динамической биоморфологии на самых разных линиях и уровнях биологической эволюции. Под биосолитонами понимаются, прежде всего, характерные одногорбые (однополярные) локальные деформации, движущиеся вдоль биотела с сохранением своей формы и скорости.

Солитоны, называемые иногда «волновыми атомами», наделены необычными с классической (линейной) точки зрения свойствами. Они способны к актам самоорганизации и саморазвития: автолокализации; улавливания энергии; размножения и гибели; образования ансамблей с динамикой пульсирующего и иного характера. Солитоны были известны в плазме, жидких и твердых кристаллах, классических жидкостях, нелинейных решетках, магнитных и других полидоменных средах, и пр. Обнаружение биосолитонов свидетельствует, что в связи со своей механохимией живое вещество является солитонной средой с разнообразным физиологическим использованием солитонных механизмов. Возможна исследовательская охота в биологии за новыми видами солитонов – бризерами, вобблерами, пульсонами и т.п., выведенными математиками на «кончике пера» и лишь затем обнаруживаемыми физиками в природе. Доклад базируется на монографиях: С.В.Петухов «Биосолитоны. Основы солитонной биологии», 1999; С.В.Петухов «Бипериодическая таблица генетического кода и число протонов», 2001.

Солитоны являются важным объектом современной физики. Интенсивное развитие их теории и приложений началось после опубликования в 1955 году Ферми, Паста и Уламом работы по компьютерному расчету колебаний в простой нелинейной системе из цепи грузиков, связанных нелинейными пружинками. Вскоре были развиты необходимые математические методы, позволяющие решать солитонные уравнения, представляющие собой нелинейные дифференциальные уравнения в частных производных. Солитоны, называемые иногда «волновыми атомами», обладают свойствами волн и частиц одновременно, но не являются в полном смысле ни тем, ни другим, а составляют новый объект математического естествознания. Они наделены необычными с классической (линейной) точки зрения свойствами. Солитоны способны к актам самоорганизации и саморазвития: автолокализации; улавливанию энергии, приходящей извне в «солитонную» среду; размножению и гибели; образованию ансамблей с нетривиальной морфологией и динамикой пульсирующего и иного характера; самоусложнению этих ансамблей при поступлении в среду дополнительной энергии; преодолению тенденции к беспорядку в содержащих их солитонных средах; и пр. Их можно трактовать как специфическую форму организации физической энергии в веществе, и соответственно можно говорить о «солитонной энергии» по аналогии с известными выражениями «волновая энергия» или «вибрационная энергия». Солитоны реализуются как состояния особых нелинейных сред (систем) и имеют принципиальные отличия от обычных волн. В частности, солитоны зачастую представляют собой устойчивые автолокализованные сгустки энергии с характерной формой одногорбой волны, движущейся с сохранением формы и скорости без диссипации своей энергии. Солитоны способны к неразрушающим столкновениям, т.е. способны при встрече проходить сквозь друг друга без нарушения своей формы. Они имеют многочисленные применения в технике.

Под солитоном обычно понимается уединенный волноподобный объект (локализованное решение нелинейного дифференциального уравнения в частных производных, принадлежащего к определенному классу так называемых солитонных уравнений), который способен существовать без диссипации своей энергии и при взаимодействии с другими локальными возмущениями всегда восстанавливает свою первоначальную форму, т.е. способен к неразрушающим столкновениям. Как известно, солитонные уравнения «возникают самым естественным образом при изучении слабо нелинейных дисперсионных систем различных типов в различных пространственных и временных масштабах. Универсальность этих уравнений оказывается настолько поразительной, что многие были склонны видеть в этом нечто магическое… Но это не так: дисперсионные слабо затухающие или незатухающие нелинейные системы ведут себя одинаково, независимо от того, встречаются ли они при описании плазмы, классических жидкостей, лазеров или нелинейных решеток» . Соответственно, известны солитоны в плазме, жидких и твердых кристаллах, классических жидкостях, нелинейных решетках, магнитных и других полидоменных средах, и пр. (Движение солитонов в реальных средах зачастую не носит абсолютно недиссипативного характера, сопровождаясь малыми потерями энергии, что теоретиками учитывается посредством добавления малых диссипативных членов в солитонные уравнения).

Отметим, что живое вещество пронизано множеством нелинейных решеток: от молекулярных полимерных сеток до надмолекулярных цитоскелетов и органического матрикса. Перестройки этих решеток имеют важное биологическое значение и вполне могут вести себя солитоноподобным образом. Кроме того, солитоны известны как формы движения фронтов фазовых перестроек, например, в жидких кристаллах (см., например, ). Поскольку многие системы живых организмов (в том числе, жидкокристаллические) существуют на грани фазовых переходов, то естественно полагать, что фронты их фазовых перестроек в организмах также будут зачастую двигаться в солитонной форме.

Еще первооткрыватель солитонов Скотт Рассел в прошлом веке экспериментально показал , что солитон выступает как концентратор, ловушка и транспортер энергии и вещества, способный к неразрушающим столкновениям с другими солитонами и локальными возмущениями. Очевидно, что эти особенности солитонов могут быть выгодны для живых организмов, а потому биосолитонные механизмы могут специально культивироваться в живой природе механизмами естественного отбора. Перечислим некоторые из таких выгод:

  • - 1) самопроизвольное улавливание энергии, вещества и пр., а также их самопроизвольная локальная концентрация (автолокализация) и бережная, без потерь транспортировка в дозированной форме внутри организма;
  • - 2) легкость управления потоками энергии, вещества и пр. (при их организации в солитонной форме) за счет возможного локального переключения характеристик нелинейности биосреды с солитонного на несолитонный вид нелинейности и обратно;
  • - 3) развязка для множества тех одновременно и в одном месте протекающих в организме, т.е. накладывающихся друг на друга процессов (локомоторных, кровеобеспечивающих, метаболических, ростовых, морфогенетических и пр.), которые нуждаются в относительной независимости своего протекания. Эта развязка может быть обеспечена именно способностью солитонов к неразрушающим столкновениям.

Впервые проведенное нами исследование надмолекулярных кооперативных процессов в живых организмах с солитонной точки зрения выявило наличие в них множества макроскопических солитоноподобных процессов . Предметом изучения явились, прежде всего, непосредственно наблюдаемые локомоторные и иные биологические движения, высокая энергоэкономичность которых давно предполагалась биологами. На первом этапе исследования нами было обнаружено, что у множества живых организмов биологические макродвижения зачастую имеют солитоноподобный вид характерной одногорбой волны локальной деформации, движущейся вдоль живого тела с сохранением своей формы и скорости и иногда демонстрирующей способность к неразрушающим столкновениям. Эти «биосолитоны» реализуются на самых разных ветвях и уровнях биологической эволюции у организмов, различающихся по размерам на несколько порядков величины.

В докладе представлены многочисленные примеры таких биосолитонов. В частности, рассмотрен пример ползания улитки Helix, происходящего за счет пробегания по ее телу одногорбой волнообразной деформации с сохранением своей формы и скорости. Подробные регистрации этого вида биологического движения взяты из книги . В одном варианте ползания (при одной «походке») у улитки реализуются деформации локального растяжения, идущие по опорной поверхности ее тела спереди назад. При другом, более медленном варианте ползания по той же телесной поверхности проходят деформации локального сжатия, идущие в обратном направлении от хвостовой части к голове. Оба названных типа солитонных деформаций — прямой и ретроградный — могут реализовываться у улитки одновременно со встречными столкновениями между ними. Подчеркнем, что их столкновение носит неразрушающий характер, характерный для солитонов. Другими словами, после столкновения они сохраняют форму и скорость, то есть свою индивидуальность: «присутствие больших ретроградных волн не влияет на распространение нормальных и много более коротких прямых волн; оба типа волн распространялись без какого-либо признака взаимного вмешательства» . Этот биологический факт известен с начала века, хотя до нас никогда исследователями не связывался с солитонами.

Как подчеркивали Gray и другие классики исследования локомоций (пространственных перемещений у организмов), последние являются в высокой степени энергоэкономичными процессами. Это существенно для жизненно важного обеспечения организму возможности перемещаться без утомления на длительные дистанции в поисках пищи, спасения от опасности и т.п. (организмы вообще крайне бережно обращаются с энергией, запасать которую им вовсе не просто). Так, у улитки солитонная локальная деформация тела, за счет которой осуществляется перемещение ее тела в пространстве, происходит только в зоне отрыва тела от поверхности опоры. А вся контактирующая с опорой часть тела является недеформированной и покоится относительно опоры. Соответственно, во все время протекания по телу улитки солитоноподобной деформации такая волнообразная локомоция (или процесс массопереноса) не требует энергетических затрат на преодоление сил трения улитки об опору, являясь в этом плане максимально экономной. Конечно, можно предполагать, что часть энергии при локомоции все-таки диссипируется на взаимное трение тканей внутри тела улитки. Но если эта локомоторная волна является солитоноподобной, то она обеспечивает также минимизацию потерь на трение внутри тела. (Насколько нам известно, вопрос о потерях энергии на внутрителесное трение при локомоциях недостаточно изучен экспериментально, однако, вряд ли организм прошел мимо возможности минимизировать их). При рассмотренной организации локомоции все (или почти все) энергозатраты на нее сводятся к затратам на начальное создание каждой такой солитоноподобной локальной деформации. Именно физика солитонов дает предельно энергоэкономичные возможности обращения с энергией. И ее использование живыми организмами выглядит закономерным, тем более, что окружающий мир насыщен солитонными средами и солитонами.

Нельзя не отметить, что, по крайней мере, с начала века исследователи представляли волнообразные локомоции как некоторый эстафетный процесс. В ту пору «досолитонной физики» естественной физической аналогией такого эстафетного процесса был процесс горения, при котором локальная телесная деформация передавалась от точки к точке подобно поджиганию. Это представление об эстафетных диссипативных процессах типа горения, называемых в наши дни автоволновыми, было наилучшим из возможного в то время и оно давно стало привычным для многих. Однако сама физика не стояла на месте. И в ней в последние десятилетия развилось представление о солитонах как новом типе недиссипативных эстафетных процессов высшей энергоэкономичности с немыслимыми прежде, парадоксальными свойствами, что дает основу для нового класса нелинейных моделей эстафетных процессов.

Одно из важных преимуществ солитонного подхода перед традиционным автоволновым при моделировании процессов в живом организме определено способностью солитонов к неразрушающим столкновениям. Действительно, автоволны (описывающие, например, перемещение зоны горения вдоль горящего шнура) характеризуются тем, что за ними остается зона невозбудимости (сгоревший шнур), а потому две автоволны при столкновении друг с другом прекращают свое существование, не имея возможности двигаться по уже «выгоревшему участку». Но на участках живого организма одновременно протекает множество биомеханических процессов – локомоторных, кровеобеспечивающих, метаболических, ростовых, морфогенетических и пр., а потому, моделируя их автоволнами, теоретик сталкивается со следующей проблемой взаимного уничтожения автоволн. Один автоволновой процесс, двигаясь по рассматриваемому участку организма за счет непрерывного выжигания на нем энергетических запасов, делает эту среду невозбудимой для других автоволн на некоторое время до тех пор, пока на данном участке не восстановятся запасы энергии для их существования. В живом веществе эта проблема особенно актуальна еще и потому, что виды энергохимических запасов в нем сильно унифицированы (в организмах имеется универсальная энергетическая валюта – АТФ). Поэтому трудно полагать, что факт одновременного существования многих процессов на одном участке в организме обеспечивается тем, что каждый автоволновой процесс в организме движется за счет выжигания своего специфического вида энергии, не выжигая энергии для других. Для солитонных моделей этой проблемы взаимного уничтожения сталкивающихся в одном месте биомеханических процессов не существует в принципе, поскольку солитоны в силу их способности к неразрушающим столкновениям спокойно проходят друг сквозь друга и на одном участке одновременно их число может быть как угодно велико. По нашим данным, для моделирования биосолитонных феноменов живого вещества особое значение имеют солитонное уравнение синус-Гордона и его обобщения.

Как известно, в полидоменных средах (магнетики, сегнетоэлектрики, сверхпроводники и пр.) солитоны выступают в качестве междоменных стенок. В живом веществе феномен полидоменности играет важную роль в морфогенетических процессах. Как и в других полидоменных средах, в полидоменных биологических средах он связан с классическим принципом Ландау-Лифшица минимизации энергии в среде. В этих случаях солитонные междоменные стенки оказываются местами повышенной концентрации энергии, в которых зачастую особенно активно протекают биохимические реакции.

Способность солитонов играть роль паровозиков, транспортирующих порции вещества в нужное место в пределах солитонной среды (организма) по законам нелинейной динамики, также заслуживает всяческого внимания в связи с биоэволюционными и физиологическими проблемами. Добавим, что биосолитонная физическая энергия способна гармонично сосуществовать в живом организме с известными химическими видами его энергии. Развитие концепции биосолитонов позволяет, в частности, открыть исследовательскую «охоту» в биологии за аналогами разных видов солитонов — бризеров, вобблеров, пульсонов и пр., выведенных математиками «на кончике пера» при анализе солитонных уравнений и затем обнаруживаемых физиками в природе. Многие колебательные и волновые физиологические процессы могут в итоге получить для своего описания содержательные солитонные модели, связанные с нелинейным, солитонным характером биополимерного живого вещества.

Например, это относится к базовым физиологическим движениям живого биополимерного вещества типа сердечных биений и т.п. Напомним, что у человеческого эмбриона в возрасте трех недель, когда он имеет рост всего в четыре миллиметра, первым приходит в движении сердце. Начало сердечной деятельности обусловлено какими-то внутренними энергетическими механизмами, так как в это время у сердца еще нет никаких нервных связей для управления этими сокращениями и оно начинает сокращаться, когда еще нет крови, которую надо перекачивать. В этот момент сам эмбрион представляет собой по существу кусочек полимерной слизи, в которой внутренняя энергия самоорганизуется в энергоэкономичные пульсации. Аналогичное можно сказать о возникновении сердечных биений в яйцах и икринках животных, куда подвод энергии извне минимизирован существованием скорлупы и других изолирующих покровов. Подобные формы энергетической самоорганизации и самолокализации известны в полимерных средах, в том числе, небиологического типа и по современным представлениям имеют солитонную природу, поскольку солитоны являются наиболее энергоэкономичными (недиссипативными или малодиссипативными) самоорганизующимися структурами пульсирующего и иного характера. Солитоны реализуются во множестве природных сред, окружающих живые организмы: твердых и жидких кристаллах, классических жидкостях, магнетиках, решетчатых структурах, плазме и пр. Эволюция живого вещества с ее механизмами естественного отбора не прошло мимо уникальных свойств солитонов и их ансамблей.

Имеют ли данные материалы какое-либо отношение к синергетике? Да, безусловно. Как определено в монографии Хагена /6, с.4/, «в рамках синергетики изучается такое совместное действие отдельных частей какой-либо неупорядоченной системы, в результате которого происходит самоорганизация – возникают макроскопические пространственные, временные или пространственно-временные структуры, причем рассматриваются как детерминированные, так и стохастические процессы». Существует много типов нелинейных процессов и систем, которые изучаются в рамках синергетики. Курдюмов и Князева /7, с.15/, перечисляя ряд этих типов, специально отмечают, что среди них одним из важных и интенсивно изучаемых являются солитоны. В последние годы начал издаваться международный журнал «Хаос, солитоны и фракталы» («Chaos, Solitons & Fractals»). Солитоны, наблюдаемые в самых разных природных средах, представляют собой яркий пример нелинейного кооперативного поведения множества элементов системы, приводящего к формированию специфических пространственных, временных и пространственно-временных структур. Наиболее известный, хотя далеко не единственный вид таких солитонных структур – описанная выше самолокализующаяся устойчивая по форме одногорбая локальная деформация среды, бегущая с постоянной скоростью. Солитоны активно используются и изучаются в современной физике. С 1973 года, начиная с работ Давыдова /8/, солитоны применяются также в биологии для моделирования молекулярных биологических процессов. В настоящее время во всем мире имеется множество публикаций по применению таких «молекулярных солитонов» в молекулярной биологии, в частности, для осмысления процессов в белках и ДНК. Наши работы /3, 9/ явились первыми в мировой литературе публикациями на тему «надмолекулярных солитонов» в биологических явлениях надмолекулярного уровня. Подчеркнем, что из существования молекулярных биосолитонов (которое, по мнению многих авторов, еще предстоит доказать) никак не следует существование солитонов в кооперативных биологических надмолекулярных процессах, объединяющих мириады молекул.

ЛИТЕРАТУРА:

  1. Додд Р. и др. Солитоны и нелинейные волновые уравнения. М., 1988, 694 с.
  2. Каменский В.Г. ЖЭТФ, 1984, т.87, вып. 4(10), с. 1262-1277.
  3. Петухов С.В. Биосолитоны. Основы солитонной биологии. – М., 1999, 288 с.
  4. Gray J. Animal locomotion. London, 1968.
  5. Петухов С.В. Бипериодическая таблица генетического кода и число протонов. – М., 2001, 258 с.
  6. Хаген Г. Синергетика. – М., Мир, 1980, 404 с.
  7. Князева Е.Н., Курдюмов С.П. Законы эволюции и самоорганизации сложных систем. — М., Наука, 1994, 220 с.
  8. Давыдов А.С. Солитоны в биологии. – Киев, Наукова Думка, 1979.
  9. Петухов С.В. Солитоны в биомеханике. Депонировано в ВИНИТИ РАН 12 февраля 1999 г, №471-В99. (Указатель ВИНИТИ «Депонированные научные работы», № 4 за 1999 г.)

Summary . The report discusses the opportunities opened up by a solitonic approach to supramolecular biology, first of all, for modeling a wide class of natural wave movements in living organisms. The results of author’s research demonstrate the existence of soliton-like supramolecular processes in locomotor, metabolic and other manifestations of dynamic biomorphology on a wide variety of branches and levels of biological evolution.

Solitons, named sometimes « wave atoms », have unusual properties from the classical (linear) viewpoint. They have ability for self-organizing: auto-localizations; catching of energy; formation of ensembles with dynamics of pulsing and other character. Solitons were known in plasma, liquid and firm crystals, classical liquids, nonlinear lattices, magnetic and others poly-domain matters, etc. The reveal of biosolitons points out that biological mechano-chemistry makes living matter as solitonic environment with opportunities of various physiological use of solitonic mechanisms. The report is based on the books: S.V. Petoukhov «Biosolitons. Bases of solitonic biology », Moscow, 1999 (in Russian).

Петухов С.В., Солитоны в кооперативных биологических процессах надмолекулярного уровня // «Академия Тринитаризма», М., Эл № 77-6567, публ.13240, 21.04.2006


Человеку даже без специального физического или технического образования несомненно знакомы слова «электрон, протон, нейтрон, фотон». А вот созвучное с ними слово «солитон» многие, вероятно, слышат впервые. Это и неудивительно: хотя то, что обозначается этим словом, известно более полутора столетий, надлежащее внимание солитонам стали уделять лишь с последней трети XX века. Солитонные явления оказались универсальными и обнаружились в математике, гидромеханике, акустике, радиофизике, астрофизике, биологии, океанографии, оптической технике. Что же это такое – солитон?

Во всех вышеперечисленных областях есть одна общая черта: в них или в отдельных их разделах изучаются волновые процессы, а проще говоря – волны. В наиболее общем смысле волна – это распространение возмущения какой-либо физической величины, характеризующей вещество или поле. Это распространение обычно происходит в какой-то среде – воде, воздухе, твердых телах. И только электромагнитные волны могут распространяться в вакууме. Все, несомненно, видели, как от брошенного в воду камня, «возмутившего» спокойную поверхность воды, расходятся сферические волны. Это пример распространения «одиночного» возмущения. Очень часто возмущение представляет собой колебательный процесс (в частности, периодический) в самых различных формах – качание маятника, колебания струны музыкального инструмента, сжатие и расширение кварцевой пластинки под действием переменного тока, колебания в атомах и молекулах. Волны – распространяющиеся колебания – могут иметь различную природу: волны на воде, звуковые, электромагнитные (в том числе световые) волны. Различие физических механизмов, реализующих волновой процесс, влечет за собой различные способы его математического описания. Но волнам разного происхождения присущи и некоторые общие свойства, для описания которых используют универсальный математический аппарат. А это означает, что можно изучать волновые явления, отвлекаясь от их физической природы.

В теории волн так обычно и делают, рассматривая такие свойства волн, как интерференция, дифракция, дисперсия, рассеяние, отражение и преломление. Но при этом имеет место одно важное обстоятельство: такой единый подход правомерен при условии, что изучаемые волновые процессы различной природы линейны. О том, что под этим понимается, мы поговорим чуть позже, а сейчас лишь заметим, что линейными могут быть только волны с не слишком большой амплитудой. Если же амплитуда волны велика, она становится нелинейной, и это имеет прямое отношение к теме нашей статьи – солитонам.

Поскольку мы все время говорим о волнах, нетрудно догадаться, что солитоны – тоже что-то из области волн. Это действительно так: солитоном называют весьма необычное образование – «уединенную» волну (solitary wave). Механизм ее возникновения долгое время оставался загадкой для исследователей; казалось, что природа этого явления противоречит хорошо известным законам образования и распространения волн. Ясность появилась сравнительно недавно, и сейчас изучают солитоны в кристаллах, магнитных материалах, волоконных световодах, в атмосфере Земли и других планет, в галактиках и даже в живых организмах. Оказалось, что и цунами, и нервные импульсы, и дислокации в кристаллах (нарушения периодичности их решеток) – все это солитоны! Солитон поистине «многолик». Кстати, именно так и называется прекрасная научно-популярная книга А. Филиппова «Многоликий солитон». Ее мы рекомендуем читателю, не боящемуся довольно большого количества математических формул.

Чтобы понять основные идеи, связанные с солитонами, и при этом обойтись практически без математики, придется поговорить в первую очередь об упоминавшейся уже нелинейности и о дисперсии – явлениях, лежащих в основе механизма образования солитонов. Но сначала расскажем о том, как и когда был обнаружен солитон. Он впервые явился человеку в «обличии» уединенной волны на воде.

…Это случилось в 1834 году. Джон Скотт Рассел, шотландский физик и талантливый инженер-изобретатель, получил предложение исследовать возможности навигации паровых судов по каналу, соединяющему Эдинбург и Глазго. В то время перевозки по каналу осуществлялись с помощью небольших барж, которые тащили лошади. Чтобы выяснить, как нужно переоборудовать баржи при замене конной тяги на паровую, Рассел начал вести наблюдения за баржами различной формы, движущимися с разными скоростями. И в ходе этих опытов он неожиданно столкнулся с совершенно необычным явлением. Вот как он описал его в своем «Докладе о волнах»:

«Я следил за движением баржи, которую быстро тянула по узкому каналу пара лошадей, когда баржа неожиданно остановилась. Но масса воды, которую баржа привела в движение, собралась около носа судна в состоянии бешеного движения, затем неожиданно оставила его позади, катясь вперед с огромной скоростью и принимая форму большого одиночного возвышения – округлого, гладкого и четко выраженного водяного холма. Он продолжал свой путь вдоль канала, нисколько не меняя своей формы и не снижая скорости. Я последовал за ним верхом, и когда нагнал его, он по-прежнему катился вперед со скоростью при мерно 8 – 9 миль в час, сохранив свой первоначальный профиль возвышения длиной около тридцати футов и высотой от фута до полутора футов. Его высота постепенно уменьшалась, и после одной или двух миль погони я потерял его в изгибах канала».

Обычная линейная волна имеет форму правильной синусоиды (а). Нелинейная волна Кортевега – де Фриза выглядит как последовательность далеко разнесенных горбиков, разделенных слабо выраженной впадиной (б). При очень большой длине волны от нее остается только один горб – «уединенная» волна, или солитон (в).


Рассел назвал обнаруженное им явление «уединенной волной трансляции». Однако его сообщение встретили скепсисом признанные авторитеты в области гидродинамики – Джордж Эйри и Джордж Стокс, полагавшие, что волны при движении на большие расстояния не могут сохранять свою форму. Для этого у них были все основания: они исходили из общепринятых в то время уравнений гидродинамики. Признание «уединенной» волны (которая была названа солитоном гораздо позже – в 1965 году) произошло еще при жизни Рассела трудами нескольких математиков, которые показали, что существовать она может, и, кроме того, были повторены и подтверждены опыты Рассела. Но споры вокруг солитона все же долго не прекращались – слишком велик был авторитет Эйри и Стокса.

Окончательную ясность в проблему внесли голландский ученый Дидерик Иоханнес Кортевег и его ученик Густав де Фриз. В 1895 году, через тринадцать лет после смерти Рассела, они нашли точное уравнение, волновые решения которого полностью описывают происходящие процессы. В первом приближении это можно пояснить следующим образом. Волны Кортевега – де Фриза имеют несинусоидальную форму и становятся синусоидальными только в том случае, когда их амплитуда очень мала. При увеличении длины волны они приобретают вид далеко разнесенных друг от друга горбов, а при очень большой длине волны остается один горбик, который и соответствует «уединенной» волне.

Уравнение Кортевега – де Фриза (так называемое КдФ-уравнение) сыграло очень большую роль в наши дни, когда физики поняли его универсальность и возможность приложения к волнам различной природы. Самое замечательное, что оно описывает нелинейные волны, и теперь следует более подробно остановиться на этом понятии.

В теории волн фундаментальное значение имеет волновое уравнение. Не приводя его здесь (для этого требуется знакомство с высшей математикой), отметим лишь, что искомая функция, описывающая волну, и связанные с ней величины содержатся в первой степени. Такие уравнения называются линейными. Волновое уравнение, как и любое другое, имеет решение, то есть математическое выражение, при подстановке которого обращается в тождество. Решением волнового уравнения служит линейная гармоническая (синусоидальная) волна. Подчеркнем еще раз, что термин «линейная» употребляется здесь не в геометрическом смысле (синусоида – не прямая линия), а в смысле использования первой степени величин в волновом уравнении.

Линейные волны подчиняются принципу суперпозиции (сложения). Это означает, что при наложении нескольких линейных волн форма результирующей волны определяется простым сложением исходных волн. Это происходит потому, что каждая волна распространяется в среде независимо от других, между ними нет ни обмена энергией, ни иного взаимодействия, они свободно проходят одна через другую. Иными словами, принцип суперпозиции означает независимость волн, и именно поэтому их можно складывать. При обычных условиях это справедливо для звуковых, световых и радиоволн, а также для волн, которые рассматриваются в квантовой теории. Но для волн в жидкости это не всегда верно: складывать можно лишь волны очень малой амплитуды. Если попытаться сложить волны Кортевега – де Фриза, то мы вообще не получим волну, которая может существовать: уравнения гидродинамики нелинейны.

Здесь важно подчеркнуть, что свойство линейности акустических и электромагнитных волн соблюдается, как было уже отмечено, при обычных условиях, под которыми подразумеваются, прежде всего, небольшие амплитуды волн. Но что значит – «небольшие амплитуды»? Амплитуда звуковых волн определяет громкость звука, световых – интенсивность света, а радиоволн – напряженность электромагнитного поля. Радиовещание, телевидение, телефонная связь, компьютеры, осветительные приборы и многие другие устройства работают в тех самых «обычных условиях», имея дело с разнообразными волнами малой амплитуды. Если же амплитуда резко увеличивается, волны теряют линейность и тогда возникают новые явления. В акустике давно известны ударные волны, распространяющиеся со сверхзвуковой скоростью. Примеры ударных волн – раскаты грома во время грозы, звуки выстрела и взрыва и даже хлопанье кнута: его кончик движется быстрее звука. Нелинейные световые волны получают с помощью мощных импульсных лазеров. Прохождение таких волн через различные среды меняет свойства самих сред; наблюдаются совершенно новые явления, составляющие предмет изучения нелинейной оптики. Например, возникает световая волна, длина которой в два раза меньше, а частота, соответственно, вдвое больше, чем у входящего света (происходит генерация второй гармоники). Если направить на нелинейный кристалл, скажем, мощный лазерный пучок с длиной волны λ 1 = 1,06 мкм (инфракрасное излучение, невидимое глазом), то на выходе кристалла возникает кроме инфракрасного зеленый свет с длиной волны λ 2 = 0,53 мкм.


Так ведет себя нелинейная волна на поверхности воды при отсутствии дисперсии. Ее скорость не зависит от длины волны, но увеличивается с ростом амплитуды. Гребень волны движется быстрее, чем подошва, фронт становится все круче, и волна опрокидывается. Но уединенный горб на воде можно представить в виде суммы составляющих с разной длиной волны. Если среда обладает дисперсией, длинные волны в ней побегут быстрее коротких, выравнивая крутизну фронта. В определенных условиях дисперсия полностью компенсирует влияние нелинейности, и волна будет долго сохранять свою первоначальную форму – образуется солитон.

Если нелинейные звуковые и световые волны образуются только в особых условиях, то гидродинамика нелинейна по самой своей природе. А поскольку гидродинамика проявляет нелинейность уже в самых простых явлениях, почти столетие она развивалась в полной изоляции от «линейной» физики. Никому просто не приходило в голову искать что-либо похожее на «уединенную» волну Рассела в других волновых явлениях. И только когда были разработаны новые области физики – нелинейные акустика, радиофизика и оптика, – исследователи вспомнили о солитоне Рассела и задались вопросом: только ли в воде может наблюдаться подобное явление? Для этого надо было понять общий механизм образования солитона. Условие нелинейности оказалось необходимым, но не достаточным: от среды требовалось еще что-то, чтобы в ней смогла родиться «уединенная» волна. И в результате исследований стало ясно – недостающим условием оказалось наличие дисперсии среды.

Напомним кратко, что это такое. Дисперсией называется зависимость скорости распространения фазы волны (так называемой фазовой скорости) от частоты или, что то же самое, длины волны (см. «Наука и жизнь» № 2, 2000 г., стр. 42). Несинусоидальную волну любой формы по известной теореме Фурье можно представить совокупностью простых синусоидальных составляющих с различными частотами (длинами волн), амплитудами и начальными фазами. Эти составляющие из-за дисперсии распространяются с различными фазовыми скоростями, что приводит к «размыванию» формы волны при ее распространении. Но солитон, который тоже можно представить как сумму указанных составляющих, как мы уже знаем, при движении свою форму сохраняет. Почему? Вспомним, что солитон – волна нелинейная. И вот тут-то и лежит ключ к раскрытию его «тайны». Оказывается, что солитон возникает тогда, когда эффект нелинейности, делающий «горб» солитона более крутым и стремящийся его опрокинуть, уравновешивается дисперсией, делающей его более пологим и стремящейся его размыть. То есть солитон возникает «на стыке» нелинейности и дисперсии, компенсирующих друг друга.

Поясним это на примере. Предположим, что на поверхности воды образовался горбик, который начал перемещаться. Посмотрим, что будет, если не учитывать дисперсию. Скорость нелинейной волны зависит от амплитуды (у линейных волн такой зависимости нет). Быстрее всех будет двигаться вершина горбика, и в некоторый следующий момент его передний фронт станет круче. Крутизна фронта увеличивается, и с течением времени произойдет «опрокидывание» волны. Подобное опрокидывание волн мы видим, наблюдая прибой на морском берегу. Теперь посмотрим, к чему приводит наличие дисперсии. Первоначальный горбик можно представить суммой синусоидальных составляющих с различными длинами волн. Длинноволновые составляющие бегут с большей скоростью, чем коротковолновые, и, следовательно, уменьшают крутизну переднего фронта, в значительной степени выравнивая его (см. «Наука и жизнь» № 8, 1992 г.). При определенной форме и скорости горбика может наступить полное восстановление первоначальной формы, и тогда образуется солитон.

Одно из удивительных свойств «уединенных» волн состоит в том, что они во многом подобны частицам. Так, при столкновении два солитона не проходят друг через друга, как обычные линейные волны, а как бы отталкиваются друг от друга подобно теннисным мячам.

На воде могут возникать солитоны и другого типа, названные групповыми, так как их форма весьма сходна с группами волн, которые в реальности наблюдаются вместо бесконечной синусоидальной волны и перемещаются с групповой скоростью. Групповой солитон весьма напоминает амплитудно-модулированные электромагнитные волны; его огибающая несинусоидальна, она описывается более сложной функцией – гиперболическим секансом. Скорость такого солитона не зависит от амплитуды, и этим он отличается от КдФ-солитонов. Под огибающей обычно находится не более 14 – 20 волн. Средняя – самая высокая – волна в группе оказывается, таким образом, в интервале от седьмой до десятой; отсюда известное выражение «девятый вал».

Рамки статьи не позволяют рассмотреть многие другие типы солитонов, например солитоны в твердых кристаллических телах – так называемые дислокации (они напоминают «дырки» в кристаллической решетке и тоже способны перемещаться), родственные им магнитные солитоны в ферромагнетиках (например, в железе), солитоноподобные нервные импульсы в живых организмах и многие другие. Ограничимся рассмотрением оптических солитонов, которые в последнее время привлекли внимание физиков возможностью их использования в весьма перспективных линиях оптической связи.

Оптический солитон – типичный групповой солитон. Его образование можно уяснить на примере одного из нелинейно-оптических эффектов – так называемой самоиндуцированной прозрачности. Этот эффект заключается в том, что среда, поглощающая свет небольшой интенсивности, то есть непрозрачная, внезапно становится прозрачной при прохождении сквозь нее мощного светового импульса. Чтобы понять, почему это происходит, вспомним, чем обусловлено поглощение света в веществе.

Световой квант, взаимодействуя с атомом, отдает ему энергию и переводит на более высокий энергетический уровень, то есть в возбужденное состояние. Фотон при этом исчезает – среда поглощает свет. После того как все атомы среды возбуждаются, поглощение световой энергии прекращается – среда становится прозрачной. Но такое состояние не может длиться долго: фотоны, летящие следом, заставляют атомы возвращаться в исходное состояние, испуская кванты той же частоты. Именно это и происходит, когда через такую среду направляется короткий световой импульс большой мощности соответствующей частоты. Передний фронт импульса перебрасывает атомы на верхний уровень, частично при этом поглощаясь и становясь слабее. Максимум импульса поглощается уже меньше, а задний фронт импульса стимулирует обратный переход с возбужденного уровня на основной. Атом излучает фотон, его энергия возвращается импульсу, который и проходит через среду. При этом форма импульса оказывается соответствующей групповому солитону.

Совсем недавно в одном из американских научных журналов появилась публикация о ведущихся известной фирмой «Белл» (Bell Laboratories, США, штат Нью-Джерси) разработках передачи сигналов на сверхбольшие расстояния по оптическим волоконным световодам с использованием оптических солитонов. При обычной передаче по оптико-волоконным линиям связи сигнал должен подвергаться усилению через каждые 80 – 100 километров (усилителем может служить сам световод при его накачке светом определенной длины волны). А через каждые 500 – 600 километров приходится устанавливать ретранслятор, преобразующий оптический сигнал в электрический с сохранением всех его параметров, а затем вновь в оптический для дальнейшей передачи. Без этих мер сигнал на расстоянии, превышающем 500 километров, искажается до неузнаваемости. Стоимость этого оборудования очень высока: передача одного терабита (10 12 бит) информации из Сан-Франциско в Нью-Йорк обходится в 200 миллионов долларов на каждую ретрансляционную станцию.

Использование оптических солитонов, сохраняющих свою форму при распространении, позволяет осуществить полностью оптическую передачу сигнала на расстояния до 5 – 6 тысяч километров. Однако на пути создания «солитонной линии» имеются существенные трудности, которые удалось преодолеть только в самое последнее время.

Возможность существования солитонов в оптическом волокне предсказал в 1972 году физик-теоретик Акира Хасегава, сотрудник фирмы «Белл». Но в то время еще не было световодов с низкими потерями в тех областях длин волн, где можно наблюдать солитоны.

Оптические солитоны могут распространяться только в световоде с небольшим, но конечным значением дисперсии. Однако оптического волокна, сохраняющего требуемое значение дисперсии во всей спектральной ширине многоканального передатчика, просто не существует. А это делает «обычные» солитоны непригодными для использования в сетях с длинными линиями передачи.

Подходящая солитонная технология создавалась в течение ряда лет под руководством Линна Молленауэра, ведущего специалиста Отдела оптических технологий все той же фирмы «Белл». В основу этой технологии легла разработка оптических волокон с управляемой дисперсией, позволившая создать солитоны, форма импульсов которых может поддерживаться неограниченно долго.

Метод управления состоит в следующем. Величина дисперсии по длине волоконного световода периодически изменяется между отрицательным и положительным значениями. В первой секции световода импульс расширяется и сдвигается в одном направлении. Во второй секции, имеющей дисперсию противоположного знака, происходят сжатие импульса и сдвиг в обратном направлении, в результате чего его форма восстанавливается. При дальнейшем движении импульс опять расширяется, затем входит в следующую зону, компенсирующую действие предыдущей зоны, и так далее – происходит циклический процесс расширений и сжатий. Импульс испытывает пульсацию по ширине с периодом, равным расстоянию между оптическими усилителями обычного световода – от 80 до 100 километров. В результате, по заявлению Молленауэра, сигнал при объеме информации более 1 терабита может пройти без ретрансляции по меньшей мере 5 – 6 тысяч километров со скоростью передачи 10 гигабит в секунду на канал без каких-либо искажений. Подобная технология сверхдальней связи по оптическим линиям уже близка к стадии реализации.

Доктор технических наук А. Голубев
«Наука и жизнь» № 11, 2001 г., стр. 24 – 28
http://razumru.ru

СОЛИТОН

СОЛИТОН

Структурно устойчивая уединённая волна в нелинейной диспергирующей среде. С. ведут себя подобно ч-цам: при вз-ствии между собой или с нек-рыми др. возмущениями С. не разрушаются, а расходятся вновь, сохраняя свою структуру неизменной. Структура С. поддерживается стационарной за счёт баланса между действием нелинейности среды (см. НЕЛИНЕЙНЫЕ СИСТЕМЫ) и дисперсии (см. ДИСПЕРСИЯ ВОЛН). Напр., в случае гравитац. волн на поверхности жидкости для достаточно длинной плоской (l->2pH, где Н - глубина водоёма) дисперсия отсутствует, волны распространяются с фазовой скоростью v=?(g(H+h)), где g- , h - возвышение поверхности воды в данной точке профиля волны. Вершина волны движется быстрее её подножия (нелинейность), поэтому крутизна фронта волны растёт до тех пор, пока протяжённость фронта не станет соизмеримой с величиной 2pН, после чего v будет зависеть от крутизны фронта (дисперсия). В результате на профиле волны появляются (рис. 1), развитие к-рых приводит к образованию С.

Рис. 1. Эволюция профиля волны на поверхности водоёма глубины Н.

Рис. 5. Связанная пара солитонов.

В системах с сильной дисперсией, если профиль стационарной волны близок к синусоидальному, также возможно существование модулир. волн в виде локализованных волн. пакетов со стационарно движущейся огибающей, к-рые также обнаруживают «частицеподобное» поведение при вз-ствии (С. «огибающей»). Такие С. возможны для волн на поверхности глубокого водоёма, ленгмюровских волн в плазме, мощных коротких (пикосекундных) световых импульсов в рабочей среде лазера и т. д.

С. играют важную роль в теории конденсир. состояния в-ва, в частности в квант. статистике, теории фазовых переходов. Солитонные решения имеют нек-рые ур-ния, предложенные для описания элем. ч-ц. Изучение св-в С. как «частицеподобных» волн, в т. ч. и возможных трёхмерных С., в к-рых убывает по всем направлениям в трёхмерном пр-ве (а не только по одной координате, как в приведённых выше примерах), привело к попыткам использовать С. при построении квант. нелинейной теории поля.

Физический энциклопедический словарь. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

СОЛИТОН

(от лат. solus - один) - локализованное стационарноеили стационарное в среднем возмущение однородной или пространственно-периодич. С. характеризуется следующими свойствами: локализован в конечной области;распространяется без деформации, перенося энергию, момент импульса;сохраняет свою структуру при взаимодействии с др. такими же С.; может образовыватьсвязанные состояния, ансамбли. Профиль (форма) С. определяется в нелинейнойсреде двумя конкурирующими процессами: расплыванием волны из-за дисперсиисреды и «опрокидыванием» нарастающего волнового фронта из-за нелинейности.

До нач. 1960-х гг. С. называли уединённую волну - неизменнойформы, распространяющийся с пост. скоростью по поверхности тяжёлой жидкостиконечной глубины и в плазме. Ныне под определение С. попадает множестворазнообразных физ. объектов. Первая классификация С. может быть сделанапо числу пространственных измерений, вдоль к-рых происходит локализациястационарного возмущения нелинейной среды. К одномерным С. относятся классич. 2p -импульсы и огибающей в нелинейной оптике (см. Солитоны оптические), локализов. коллективной проводимости в молекулахорганич. полупроводников и в одномерных металлах (см. Волны зарядовойплотности), С. (кванты магн. потока) в джозефсоновских контактах всверхпроводниках (см. Джозефсона эффект )и т. д. К двумерным С. дислокации в кристаллич. решётке, дисклинации в жидкихкристаллах, вихревые структуры в тонком слое сверхтекучей жидкости, Сверхтекучесть), магн. трубки (вихри Абрикосова) в сверхпроводниках 2-го рода (см. Сверхпроводимость), антициклональные области в геофиз. гидродинамике, в т. ч. «Большоекрасное пятно» на Юпитере, каналы самофокусировки в нелинейной оптике. Солитон в квантовой теории поля), чёрные дыры втеории гравитации. В квантовой теории поля рассматривают С., локализованныев четырёхмерном пространстве-времени,- инстантоны.

Математически С. представляют собой локализованные стационарные решениянелинейных дифференциальных уравнений в частных производных или их обобщений(дифференциально-разностных, интегро-дифференциальных и т. п. ур-ний).Во мн. случаях разл. физ. ситуации и явления описываются одними и темиже ур-ниями, напр. Кортевега - де Фриса уравнением, синус-Гордона уравнением, - Петвиашвили уравнением. Линейные ур-ния (кроме одномерного волнового ур-ния) не имеют локализованныхстационарных решений. С. представляют собой существенно нелинейные объекты, топологическимзарядом, т. е. если конфигурация волнового поля в присутствии С. топологическиотлична от конфигурации невозмущённого состояния. Значит. часть ур-ний, обратной задачи рассеяния метод, большинство из них являются интегрируемымигамильтоновыми системами.

Одномерные солитоны. Уединённая волна на поверхности жидкости конечнойглубины впервые наблюдалась в 1834 Дж. С. Расселлом (J. S. Russell). Матем.

Здесь Н - невозмущённая глубина жидкости,- скорость длинных волн малой амплитуды, x 0 - положениецентра С., бесстолкновительных ударных волн в плазме, возникающих, Моделируя на поведение цепочки атомов, связанных нелинейными упругимисилами и описываемых ур-ниями движения

где л - номер атома в цепочке, Э. Ферми (Е. Fermi), Дж. Паста (J. Pasta) иС. Улам (S. Ulam) в 1954 обнаружили аномально медленную стохастизацию вэтой системе. Система не термализовалась (в ней не устанавливалось термодинамич.

выведенное в 1895 для описания эволюции волнового пакета на поверхностижидхости малой глубины. Ур-ние КдФ является универсальным ур-нием, описывающимодномерные или квазиодномерные среды, в к-рых конкурируют слабая квадратичнаянелинейность [член 6 ии х вур-нии (3)] и слабаялинейная дисперсия [член и ххх в ур-нии (3)].Оказалось, что оно описывает также и колебат. поведение цепочки атомов,

В зависимости от соотношения указанных выше двух факторов система переходитиз одного состояния в другое, а в случае их взаимной компенсации возникаетС.

Из численного решения ур-ния (3) [Н. Забуски (N. Zabusky) и М. Крускал(М. Kruskal), 1964] следует, что С. обладают значит. устойчивостью и пристолкновениях рассеиваются упруго, сохраняя свою форму и амплитуду. Анализируяэто явление, М. Крускал, Дж. Грин (G. Green), Ч. Гарднер (С. Gardner) иР. Миура (R. Miura) открыли в 1967 фундам. метод обратной задачи рассеяния, :

Ур-ние (5) представляет собой стационарное ур-ние Шрёдингера с потенциалом- u(x,t). Если удовлетворяет ур-нию КдФ (3), то дискретныесобств. значения ур-ния Шрёдингера не зависят от времени и непосредственносвязаны с С. Если ур-ние (5) имеет N дискретных собств. значений , то при будут присутствовать N С. вида (4) с параметрами .В общем случае в решении содержится также осциллирующая «несолитонная часть».Решение ур-ния (5), определённое методом обратной задачи рассеяния, имеетвид:

В чисто солитонном случае

N-солитонное решение описывает рассеяние N С. друг на друге. парном столкновении С. с амплитудами С. приобретают сдвиги

т. е. быстрый С. приобретает положительный, а медленный - отрицательныйсдвиги. При взаимодействии N С. полный каждого С. равен алгебраич. взаимодействие нерелятивистских частиц, между к-рыми действуют парныесилы отталкивания. Напр., для двух С. (4) с одинаковыми амплитудами ,разделённых расстоянием L, много большим характерного размера С., потенциал силы отталкивания

Типичная картина возникновения С. в океане, сфотографированная из космоса, изображенана рис.: чётко видны пять полос (солитонов), перемещающихся снизу справавверх налево.

Шрёдингера нелинейное ур-ние для комплексной ф-ции u(x,t )

является одним из осн. ур-ний нелинейной физики, описывающим эволюциюоптич. волн в нелинейных кристаллах, ленгмюровских волн в плазме, тепловыхволн в твёрдых телах и др. При распространении одномерных квазигармонич. и хх)и линейной дисперсии (член ) происходит самомодуляция - возникают волны огибающей. В случае равновесиянелинейного самосжатия и дисперсионного расплывания появляются С. огибающей.

Здесь и v - амплитуда и скорость С. [в отличие от С. (4), эти параметрыявляются взаимно независимыми], Ф 0 и х 0 описывают фазу и положение С. в нач. момент.

В. Е. Захаров и А. Б. Шабат показали (1971), что ур-ние (7) также являетсяточно интегрируемым в рамках метода обратной задачи рассеяния с помощьювспомогат. переопределённой системы линейных ур-ний типа (5), (6) для многокомпонентной(векторной) ф-ции . Следствием точной интегрируемости является наличие точных многосолитонныхрешений. Как и в случае ур-ния КдФ, эти решения описывают чисто упругиестолкновения С. с сохранением формы, амплитуды и скорости. Единств. следствиемстолкновения являются фазовые сдвиги - изменения параметров Ф 0 и х 0 .

Одномерное ур-ние синус-Гордона. Точно интегрируемым с помощью вспомогат.

Это ур-ние встречается во мн. физ. задачах, в к-рых ангармонич. потенциалнелинейного самовоздействия волнового поля периодичен по полевой переменной Ф(х,t). Примерами являются в джозефсоновских переходах, волны зарядовой плотности в одномерных металлах, нелинейные волнынамагниченности в легко плоскостных и слабых ферромагнетиках и т. д.

Ур-ние (9) имеет солитонные решения двух разл. типов: т. н. кинки ибризеры. К и н к

представляет собой уединённую волну, обладающую топологич. зарядом , движущуюся со скоростью v (v 2 < 1). Кинк имеет смыслт. н. флаксона - кванта магн. потока в теории длинных джозефсоновских переходов, x 0 , характеризующих положение кинков в нач. v 1 ,v 2 (v 1 v 2)фазовыесдвиги равны:

Видно, что фазовые сдвиги не зависят от топологич. зарядов кинков.

Как и для С., описываемых ур-ниями (3) и (7), полный фазовый сдвиг любогокинка при рассеянии на совокупности остальных кинков в точности равен суммесдвигов, порождённых его столкновениями с каждым из остальных кинков поотдельности.

Наглядно два кинка, разделённых расстоянием L, много большим их характерныхразмеров ~ (1 - v 2) -1/2 , можно представлять как дверелятивистские частицы, взаимодействующие с потенциалом

Т. о., кинки с одинаковыми зарядами отталкиваются, с противоположными - притягиваются.

Пара кинков с противоположным зарядом может образовать связанное осциллирующеесостояние - т. н. б р и з е р, представляющий собой 2-й тип точного солитонногорешения ур-ния (9):

[движущийся бризер может быть получен из (11) преобразованием Лоренца].Параметр ,изменяющийся в пределах , характеризует энергию связи бризера, определённую разность энергий пары удалённых покоящихся (v= 0) кинков (10) и энергии бризера (11):. Столкновения бризеров друг с другом и с кинками также являются чистоупругими и сопровождаются аддитивными фазовыми сдвигами. В реальных системахбризер не наблюдается вследствие диссипации.

В пределе Ф 2 1 подстановка

преобразует ур-ние (9) в нелинейное ур-ние Шрёдингера (7) (с верх. знаком).При этом бризер (11) (при ) преобразуется в покоящийся С. (8) с амплитудой

Многомерные солитоны. Двумерный С. является решением точно интегрируемогоур-ния Кадомцева - Петвиашвили

описывающего ионно-звуковые волны в плазме, на поверхности«мелкой» жидкости и т. д. Точное решение ур-ния (12)

содержащее произвольный комплексный параметр v, описывает устойчивыйдвумерный С. (т. н. л а м п), движущийся со скоростью и = (v x ,Vy),, . При решение. (13) убывает как ( х 2 + y 2 ) -1 ,т. е., в отличие от одномерных С. (4), (8), (10), (11), характеризующихсяэкспоненциальным спадом профиля при ,двумерный С. (13) имеет степенную асимптотику. Столкновения любого числалампов (13) являются чисто упругими, причём, в отличие от одномерных С.,фазовые сдвиги тождественно равны нулю.

Понятие С. можно обобщить и на случай неинтегрируемых нелинейных волновыхур-ний. Сюда можно отнести почти интегрируемые с и с т е м ы, отличающиесяот универсальных интегрируемых ур-ний малыми возмущающими членами, чтоимеет место в реальных физ. системах. Теория возмущений для почти интегрируемыхсистем также основана на методе обратной задачи рассеяния [Д. Кауп (D.Каир), 1976; В. И. Карпман и Е. М. Маслов, 1977]. В почти интегрируемыхсистемах С. более богата; в частности, малые возмущения могутпорождать неупругие взаимодействия С. и многосолитонные эффекты, отсутствующиев точно интегрируемом случае.

В системах, далёких от точно интегрируемых, взаимодействия С. оказываютсяглубоко неупругими. Так, неинтегрируемое релятивистски инвариантное волновоеур-ние

описывающее, напр., динамику параметра порядка при фазовых переходахтипа смещения в сегнетоэлектриках, имеет точное устойчивое решение типакинка:

Морякам давно известны одиночные волны большой высоты, которые губят корабли. Долгое время считалось, что подобное встречается только в открытом океане. Однако последние данные говорят о том, что одиночные волны-убийцы (до 20-30 метров высотой), или солитоны (от английского solitary – «уединенный»), могут появляться и в прибрежных зонах. Происшествие с «Бирмингемом” Мы находились примерно в 100 милях к юго-западу от Дурбана на пути в Кейптаун. Крейсер шел быстро и почти без качки, встречая умеренную зыбь и ветровые волны, когда внезапно мы провалились в яму и понеслись вниз навстречу следующей волне, которая прокатилась через первые орудийные башни и обрушилась на наш открытый капитанский мостик. Я был сбит с ног и на высоте 10 метров над уровнем моря оказался в полуметровом слое воды. Корабль испытал такой удар, что многие решили, что нас торпедировали. Капитан сразу же уменьшил ход, но эта предосторожность оказалась напрасной, так как умеренные условия плавания восстановились и больше «ям» не попадалось. Это происшествие, случившееся ночью с затемненным кораблем. было одним из наиболее волнующих в море. Я охотно верю, что груженое судно при таких обстоятельствах может потонуть». Так описывает неожиданную встречу с одиночной катастрофической волной британский офицер с крейсера “Бирмингем-. Эта история произошла во время Второй мировой войны, поэтому понятна реакция экипажа, решившего, что крейсер торпедирован. Не столь удачно закончилось аналогичное происшествие с пароходом “Уарита” в 1909 году. На нем находились 211 пассажиров и команда. Погибли все. Такие одиночные неожиданно появляющиеся в океане волны, собственно, и получили название волн-убийц, или солитонов. Казалось бы. любой шторм можно назвать -убийцей.. Ведь действительно, сколько судов погибло во время бури и гибнет сейчас? Сколько моряков нашли свое последнее пристанище в пучинах бушующего моря? И все же волны. возникающие в результате морских штормов и даже ураганов, “убийцами” не называют. Считается, что встреча с солитоном наиболее вероятна у южного побережья Африки. Когда транспортные морские пути благодаря Суэцкому каналу изменились и суда перестали ходить вокруг Африки, количество встреч с волнами-убийцами уменьшилось. Тем не менее уже после Второй мировой войны с 1947 года примерно за 12 лет с солитонами повстречались весьма крупные корабли – “Босфонтейн”. “Гиастеркерк”, “Оринфонтейн” и “Яхерефонтейн”, не считая более мелких местных судов. В период арабо-израильской войны Суэцкий канал был практически закрыт, и движение судов вокруг Африки снова стало интенсивным. От встречи с волной-убийцей в июне 1968 года погиб супертанкер «Уорлд Глори» водоизмещением более 28 тысяч тонн. Танкер получил штормовое предупреждение, и при подходе шторма все выполнялось по инструкции. Ничего плохого не предвиделось. Но среди обычных ветровых волн, которые серьезной опасности не представляли. неожиданно возникла огромная волна высотой около 20 метров с очень крутым фронтом. Она подняла танкер так, что его середина -опиралась» на волну, а носовая и кормовая части оказались в воздухе. Танкер был нагружен сырой нефтью и под своим весом разломился пополам. Эти половинки еще какое-то время сохраняли плавучесть, но через четыре часа танкер ушел на дно. Правда, большую часть экипажа удалось спасти. В 70-е годы «нападения» волн-убийц на корабли продолжались. В августе 1973 года судно “Нептун Сапфир”, шедшее из Европы в Японию, в 15 милях от мыса Хермис при ветре около 20 метров в секунду испытало неожиданный удар неизвестно откуда взявшейся одиночной волны. Удар был такой силы, что носовая часть судна длиной примерно 60 метров отломилась от корпуса! Судно «Нептун Сапфир» имело самую совершенную конструкцию для тех лет. Тем не менее встреча с волной-убийцей оказалась для него роковой. Подобных случаев описано довольно много. В страшный перечень катастроф, естественно, попадают не только крупные суда, на которых существуют возможности спасения экипажа. Встреча с волнами-убийцами для малых судов чаще всего заканчивается намного трагичнее. Такие корабли не только испытывают сильнейший удар. способный их разрушить, но на крутом переднем фронте волны могут запросто опрокинуться. Это происходит столь быстро, что рассчитывать на спасение невозможно.Это не цунами Что же это такое – волны-убийцы? Первая мысль, которая приходит в голову осведомленному читателю, – это цунами. После катастрофического «набега» гравитационных волн на юго-восточные берега Азии многие представляют цунами как жуткую стену воды с крутым передним фронтом, обрушивающуюся на берег и смывающую дома и людей. Действительно, цунами способны на многое. После появления этой волны у северных Курил гидрографы, изучая последствия, обнаружили приличных размеров катер, переброшенный через прибрежные холмы в глубь острова. То есть энергия цунами просто поражает. Однако это все касается цунами, «нападающих» на берег. В переводе на русский язык термин “цунами” означает “большая волна в гавани”. Ее очень трудно обнаружить в открытом океане. Там высота этой волны обычно не превышает одного метра, а средние, типичные размеры -десятки сантиметров. Да и уклон чрезвычайно маленький, ведь при такой высоте ее длина составляет несколько километров. Так что выявить цунами на фоне бегущих ветровых волн или зыби практически нереально. Почему же при «нападении» на берег цунами становятся такими устрашающими? Дело в том, что эта волна из-за своей большой длины приводит в движение воду по всей глубине океана. И, когда при распространении она достигает сравнительно мелководных районов, вся эта колоссальная масса воды из глубин поднимается вверх. Вот так «безобидная» в открытом океане волна становится разрушительной на побережье. Так что волны-убийцы – это не цунами. На самом дел солитоны – это необыкновенное и малоизученное явление. Их называют волнами, хотя на самом деле они нечто иное. Для возникновения солитонов, конечно, необходим некоторый изначальный импульс, удар, иначе откуда взяться энергии, но не только. В отличие от обычных волн солитоны распространяются на большие расстояния с очень малым рассеянием энергии. Это загадка, которая еще ждет изучения. Солитоны практически не взаимодействуют друг с другом. Как правило, они распространяются с разными скоростями. Конечно, может получиться так, что один солитон догонит другой, и тогда они суммируются по высоте, но потом все равно снова разбегаются по своим путям. Конечно, сложение солитонов – редкое событие. Но есть еще одна причина резкого возрастания у них крутизны и высоты. Причина эта – подводные уступы, через которые «пробегает» солитон. При этом в подводной части происходит отражение энергии, и волна как бы «выплескивается» вверх. Подобная ситуация изучалась на физических моделях международной научной группой. Опираясь на эти исследования, можно прокладывать более безопасные маршруты движения судов. Но загадок все же остается намного больше, чем изученных особенностей, и тайна волн-убийц по-прежнему ждет своих исследователей. Особенно загадочны солитоны внутри вод моря, на так называемом «слое скачка плотности». Эти солитоны могут приводить (или уже приводили) к катастрофам подводных лодок.