Непрерывность функции имеющей конечную производную. Дифференцируемость функции

Функция y = f(x) называется дифференцируемой в некоторой точке x 0 , если она имеет в этой точке определенную производную, т.е. если предел отношения существует и конечен.

Если функция дифференцируема в каждой точке некоторого отрезка [а ; b ] или интервала (а ; b ), то говорят, что она дифференцируема на отрезке [а ; b ] или соответственно в интервале (а ; b ).

Справедлива следующая теорема, устанавливающая связь между дифференцируемыми и непрерывными функциями.

Теорема. Если функция y = f(x) дифференцируема в некоторой точке x 0 , то она в этой точке непрерывна.

Таким образом, из дифференцируемости функции следует ее непрерывность.

Доказательство . Если , то

где α бесконечно малая величина, т.е. величина, стремящаяся к нулю при Δx →0. Но тогда

Δy =f "(x 0 ) Δx +αΔx => Δy →0 при Δx →0, т.е f(x) - f(x 0) →0 при x x 0 , а это и означает, что функция f(x) непрерывна в точке x 0 . Что и требовалось доказать.

Таким образом, в точках разрыва функция не может иметь производной. Обратное утверждение неверно: существуют непрерывные функции, которые в некоторых точках не являются дифференцируемыми (т.е. не имеют в этих точках производной).

Рассмотрим на рисунке точки а, b, c.

В точке a при Δx →0 отношение не имеет предела (т.к. односторонние пределы различны при Δx →0-0 и Δx →0+0). В точке A графика нет определенной касательной, но есть две различные односторонние касательные с угловыми коэффициентами к 1 и к 2 . Такой тип точек называют угловыми точками.

В точке b при Δx →0 отношение является знакопостоянной бесконечно большой величиной . Функция имеет бесконечную производную. В этой точке график имеет вертикальную касательную. Тип точки - "точка перегиба" c вертикальной касательной.

В точке c односторонние производные являются бесконечно большими величинами разных знаков. В этой точке график имеет две слившиеся вертикальные касательные. Тип - "точка возврата" с вертикальной касательной - частный случай угловой точки.

Примеры.

1. Рассмотрим функцию y=|x| . Эта функция непрерывна в точке x = 0, т.к. .

Покажем, что она не имеет производной в этой точке.

f (0+Δx ) = f x ) = |Δx |. Следовательно, Δy = f x ) - f (0) = |Δx |

Но тогда при Δx < 0 (т.е. при Δx стремящемся к 0 слева)

А при Δx > 0

Т.о., отношение при Δx → 0 справа и слева имеет различные пределы, а это значит, что отношение предела не имеет, т.е. производная функции y=|x | в точке x = 0 не существует. Геометрически это значит, что в точке x = 0 данная "кривая" не имеет определенной касательной (в этой точке их две).


2. Функция определена и непрерывна на всей числовой прямой. Выясним, имеет ли эта функция производную при x = 0.

Следовательно, рассматриваемая функция не дифференцируема в точке x = 0. Касательная к кривой в этой точке образует с осью абсцисс угол p/2, т.е. совпадает с осью Oy .

Производные элементарных функций.

1.
y = x n .
Если n - целое положительное число, то, используя формулу бинома Ньютона:

(a + b ) n = a n +n·a n-1 ·b + 1/2?n(n - 1)a n-2 ?b 2 + 1/(2?3)?n(n - 1)(n - 2)a n-3 b 3 +…+ b n ,

можно доказать, что

Итак, если x получает приращение Δx , то f(x x) = (x + Δx) n , и, следовательно,

Формулы 3 и 5 докажите самостоятельно.

Определение: Производной от функции в точкеназывается предел, к которому стремится отношение ее приращенияв этой точке к соответствующему приращениюаргумента, когда последнее стремится к нулю:

Т.е., если определена в, то

Теорема 1:

График функции имеет невертикальную касательную тогда и только тогда, когда существует конечное значение производной этой функции в данной точке.

Доказательство:

Пусть существует значение f’()-конечное, тогда

Пусть существует невертикальная касательная => существует - конечный.

Секущая стремится к касательной.

Теорема доказана.

Билет 2 Непрерывность функции, имеющей производную.

Функция f (x), определенная в некоторой окрестности точки a, называется непрерывной в этой точке, если

Теорема: (необходимое условие существования производной)

Если функция имеет конечнуюв точке, тонепрерывна в точке.

Доказательство:

Следовательно - непрерывна в точке.

Теорема доказана.

Замечание : обратное утверждение неверно, если функция непрерывна в точке, то отсюда не следует, что она имеет производную в этой точке.

Утверждение : если функция имеет в точке правую и левую производную, то она непрерывна и справа и слева.

Билет 3

Производная суммы, произведения, частного.

Производная обратной функции.

Определение дифференцируемой функции. Необходимое и достаточное условие дифференцируемости.

Пусть функция имеет производную в точке(конечную):.

Тогда для достаточно малыхможно записать в виде суммыи некоторой функции, которую мы обозначим через, которая стремится к нулю вместе с:,

и приращение в точке может быть записано в виде:

или (1) ,

ведь выражение понимается как функция оттакая, что ее отношение кстремится к нулю вместе с.

Пояснение:

Определение .

Функция называется дифференцируемой в точке, если ее приращение можно представить в виде:(2),

где А не зависит от , но вообще зависит от.

Теорема 1:

Для того, чтобы функция была дифференцируемой в точке, необходимо и достаточно, чтобы она имела конечную производную в этой точке.

Доказательство:

Достаточность условия доказана выше: из существования конечной производной следовала возможность представленияв виде (1), где можно положить.

Необходимость условия . Пусть функция дифференцируема в точке. Тогда из (2), предполагая, получаем.

Предел правой части при существует и равен А:.

Это означает, что существует производная . Теорема доказана.

Билет 6 Дифференциал функции, его геометрический смысл.

Если функция f имеет производную f΄(x o ) в точке x o , то существует предел , где Δf=f(x o + Δx)-f(x o ) ,,или, гдеA=f΄(x o ) .

Определение:

Функция f дифференциируема в точке x o , если ее приращение представимо в виде:

Где A Δx=df . (*)

Дифференциал - это главная линейная часть приращения функции.

Если существует конечная производная f΄(x o ) в точке x o , то функция f(x) дифференцируема в этой точке.

Верно и обратное: если функция f дифференцируема в точке x o , т.е. ее приращение представимо в виде (*), то она имеет производную в точке x o , равную A :

Геометрический смысл дифференциала:

A и B – точки графика f(x) , соответствующие значениям x o и (x o + Δx) независимой переменной. Ординаты точек A и B соответственно равны f(x o ) и f(x o + Δx) . Приращение функции Δf=f(x o + Δx)-f(x o ) в точке x o равно длине отрезка BD и представимо в виде суммы Δf=BD=DC+CB , где DC=tgα Δx=f΄(x o ) Δx и α есть угол между касательной в точке A к графику и положительным направлением оси x . Отсюда видно, что DC есть дифференциал функции f в точке x o :

DC=df=f΄(x o ) Δx .

При этом на долю второго члена CB приращения Δf приходится величина . Эта величина, при больших Δx , может быть даже больше, чем главный член, но она есть бесконечно малая более высокого порядка, чем Δx , когда Δx→0 .

Теорема. Если функция в некоторой точке x = x 0 имеет (конечную) производную , то

1) приращение функции может быть представлено в виде

или, короче, , где a есть величина, зависящая от Dx и вместе с ним стремящаяся к нулю, т.е. ;

2) функция в этой точке необходимо непрерывна.

Доказательство. 1) Согласно определению производной, . Пользуясь теоремой, о представлении функции имеющей предел в виде суммы этого предела и бесконечно малой, запишем

, где .

Определяя отсюда Dy , придем к формуле (3.6).

2) Чтобы доказать непрерывность функции, рассмотрим выражение (3.6). При Dx ®0 сумма в правой части (3.6) обращается в нуль. Следовательно, , или , а это означает, что функция в точке x 0 непрерывна.

Из доказанной теоремы следует, что функция, имеющая производную в данной точке, будет непрерывной в этой точке. Однако непрерывная в данной точке функция не всегда имеет производную в этой точке. Так, в точке x 0 = 1 функция y = |x – 1| является непрерывной, но производной в этой точке не имеет. Это означает, что данное условие является лишь необходимым.

Производная сложной функции

Теорема. Пусть 1) функция v = j (x ) имеет в некоторой точке x производную , 2) функция y = f (v ) имеет в соответствующей точке v производную Тогда сложная функция у = f (j (x )) в упомянутой точке х также будет иметь производную, равную произведению производных функций f (v ) и j (x ): [ f (j (x )) ]" = или короче

Доказательство. Придадим х произвольное приращение Δх ; пусть Δv – соответствующее приращение функции v = j (x ) и, наконец, Δу – приращение функции y = f (v ), вызванное приращением Δv . Воспользуемся соотношением (3.6), которое, заменяя x на v , перепишем в виде (a зависит от Δv и вместе с ним стремится к нулю). Разделив его почленно на Dx , получим

.

Если Dx устремить к нулю, то, согласно (3.6) (при условии, что у = v ), будет стремиться к нулю и Δv , а тогда, как мы знаем, будет также стремиться к нулю зависящая от Δv величина a . Следовательно, существует предел

который и представляет собой искомую производную .

Таким образом, производная сложной функции равна произведению производной внешней функции на производную внутренней функции.

Случай сложной функции, полученной в результате нескольких суперпозиций, исчерпывается последовательным применением правила (3.7). Так, если у = f (u ), u = j (v ), v = y (x ), то

Примеры. 1. Пусть y = log a sin x ,иначе говоря, y = log a v , где v = sin x . По правилу (3.7)

2. , т.е. y= e u , u = v 2 , v = sin x. По правилу (3.8)

1.7. Производная показательно степенной функции



Пусть u = u (x ) > 0 и v = v (x ) – функции, имеющие производные в фиксированной точке x . Найдем производную функции y = u v . Логарифмируя это равенство, получим: ln y = v ln u.

Продифференцируем обе части данного равенства по x :

.

Отсюда , или

Таким образом, производная показательно – степенной функции состоит из двух слагаемых: первое слагаемое получается, если при дифференцировании предположить, что и есть функция от х , а v есть постоянная (т.е. рассматривать u v как степенную функцию); второе слагаемое получается, если предположить, что v есть функция от х , а u = const (т.е. рассматривать u v как показательную функцию).

Примеры. 1. Если y = x tg x , то, полагая u = x , v = tg x ,согласно (3.9) имеем

= tg x x tg x – 1 + x tg x ln x sec 2 x .

Прием, примененный в данном случае для нахождения производной и состоящий в том, что сначала находят производную логарифма рассматриваемой функции, широко применяется при дифференцировании функций: при отыскании производной функции эти функции сначала логарифмируют, а затем из равенства, полученного после дифференцирования логарифма функции, определяют производную функции. Такая операция называется логарифмическим дифференцированием.

2.Требуется найти производную от функции

.

Логарифмируя, находим:

ln y = 2ln(x + 1) + ln(x – 1) – 3 ln(x + 4) – x.

Дифференцируем обе части последнего равенства:

.

Умножая на у и подставляя вместо у , получаем.

Теорема: Если функция y = f (x ) дифференцируема в некоторой точке x = x 0, то она в этой точке непрерывна.

Таким образом, в точках разрыва функция не может иметь производной. Обратное заключение неверно, т.е. из того, что в какой-нибудь точке x = x 0 функция y = f (x ) непрерывна не следует, что она в этой точке дифференцируема. Например, функция y = |x | непрерывна для всех x (–Ґ< х < Ґ), но в точке x = 0 не имеет производной. В этой точке не существует касательной к графику. Есть правая касательная и левая, но они не совпадают.

Производная сложной функции

Теорема: Пусть функция , определенная и непрерывная в окрестности , имеет производную в точке . Функция определена и непрерывна в окрестности , где , и имеет производную в точке . Тогда сложная функция имеет производную в точке и

.

где и - б.м.ф. Тогда

и , где б.м.ф. в точке .

28. Производная суммы, произведения и частного двух функций.

Производная суммы (разности) функций

Производная алгебраической суммы функций выражается следующей теоремой.

Производная суммы (разности) двух дифференцируемых функций равна сумме (разности) производных этих функций:

Производная конечной алгебраической суммы дифференцируемых функций равна такой же алгебраической сумме производных слагаемых. Например,

Производная произведения функций.

Пусть u(x) и u(x) - дифференцируемые функции. Тогда произведение функций u(x)v(x) также дифференцируемо и

Производная произведения двух функций не равана произведению производных этих функций.

Производная частного функций.

Пусть u(x) и u(x) - дифференцируемые функции. Тогда, если v(x) ≠ 0 , то производная частного этих функций вычисляется по формуле

29. Производная обратной функции. Производная функции, заданной параметрически.

ТЕОРЕМА (производная обратной функции)

Пусть непрерывная, строго монотонная (возрастающая или убывающая) функция на отрезке и имеющая в точке производную . Тогда обратная функция имеет производную в точке и

.

ДОК.

= .

Теорема. (производная функции, заданной параметрически) Пусть функция x = φ(t) имеет обратную функцию t = Ф(x). Если функцииx=φ(t) , y = ψ(t) дифференцируемы и φ"(t) 0 , тогда

Доказательство

Так как функция x = φ(t) имеет обратную функцию, то формально y можно выразить черезx : y = ψ(Ф (x)) . Так как функция x = φ(t) дифференцируема, то, по теореме 5 , функция t = Ф(x) также дифференцируема.

Используя правила дифференцирования, получаем чтд

Аналогичную формулу можно получить и для второй производной y"" x :

Окончательно получаем

30. Производные высших порядков. Формула Лейбница.

Если f определена на интервале (a,b)®R, диф-ма в " точке xÎ(a,b) то на (a,b) возникает новая функция f:(a,b)®R, значение которой в точке x=f(x). Функция f сама может иметь производную (f): на (a,b)®R она по отношению к исходной функции называется второй производной от f и обозначается f(x), d 2 f(x)/dx 2 или f xx (x), f x 2 (x); Опр . Если определена производная f (n -1) (x) порядка n-1 от f то производная порядка n определяется формулой f (n) (x)=(f n -1))’(x). Для нее принято обозначение f (n) (x)=d n f(x)/dx n – ф-ла Лейбница , f (0) (x):=f(x).

31. Понятие дифференцируемости функции и первого дифференциала. Необходимое и достаточное условие дифференцируемости.

1.Дифференциалом функции y = f(x) называется главная линейная относительно D x часть приращения D y, равная произведению производной на приращение независимой переменной

dy = f" (x )D x.

Заметим, что дифференциал независимой переменной равен приращению этой переменной dx = D x. Поэтому формулу для дифференциала принято записывать в следующем виде:

dy = f" (x )dx.

2. Дифференцируемость. Функция называется дифференцируемой в точке x, если ее приращение ∆y в этой точке может быть представлено в виде: ∆y=A∆x + α(∆x) ∆x, где A не зависит от ∆x, α и α(∆x) – бесконечно малая функция относительно ∆x при ∆x→0.

32. Геометрический смысл производной и дифференциала. Касательная и нормаль к графику.

Пусть f определена на (a,b) и непрерывна в точке x 0 Î(a,b), пусть y 0 =f(x 0), M 0 (x 0 ,y 0); x 0 +DxÎ(a,b), Dy=f(x 0 +Dx)-f(x 0), M(x 0 +Dx, y 0 +Dy). M 0 M: y=k(x-x 0)+y 0 (1),

1 )Если $ кон. предел lim D x ® 0 k(Dx)=k 0 то прямая y=k 0 (x-x 0)+y 0 (2) назыв.

(наклонной) касательной к графику f в точке (x 0 ,y 0);

2 ) Если $ бесконечный предел

lim D x ® 0 k(Dx)=¥, то прямая x=x 0 – вертикальная касательная к графику в точке (х 0 ,у 0);

При х=х 0 (2) – предельное положение (1) т.о. предельное положение секущей М 0 М

Dх®0 это касательная y=f(x) в точке х 0 , т.к. lim D x ® 0 k(Dx)=lim D x ® 0 Dy/Dx=f(x 0) то уравнение

касательной имеет вид y=f(x 0)(x-x 0)+ y 0 , где y 0 =f(x 0) (3). Из 3 получаем что производная в точке х 0 =tga, a - угол между касательной и осью Ох, первое слагаемое f(x 0)(x-x 0)=f(x 0)Dx, Dx=x-x 0 является диф-ом dy в точке х 0 Þ y-y 0 =dy т.о. дифференциал функции равен приращению ординаты касательной в соответствующей точке графика.

3 )Если lim D x ® 0 Dy/Dx=¥, то касательной является прямая х=х 0 при этом в точке х 0 бескон. производная может существовать или не существовать.

33. Инвариантность формы первого дифференциала. Дифференциалы высших порядков, неинвариантность их формы в общем случае .

Дифференциалы высших порядков . Диф-ал от диф-ла первого порядка dy=f’(x)dx функции y=f(x) (рассматриваемого только как ф-и переменной х т.е. приращение аргумента х (dx) принимается постоянным, при условии что повторное приращ-е переменной х совпадает с начальным) называется вторым диф-ом d 2 f(x):d(df(x))=d(f’(x)dx)=d(f’(x))dx=f”(x)dxdx=f”(x)dx 2 отсюда f”(x)=d 2 f(x)/dx 2 ; Опр . Диф-ом n-го порядка n=1,2… называется дифференциалом от дифференциала порядка n-1 при условии что в диф-ле берутся одни и те же приращения dx, независимого от х. d n f(x)=d(d n -1 f(x)) не трудно видеть, что d n f(x)=f (n) (x)dx n (dx n =(dx) n) Þ f (n) (x)=d n f(x)/dx n .

Неинвариантность формы дифференциала порядка выше первого

Рассмотрим случай, когда х является не независимой переменной, а функцией от другой переменной

Теперь в правой части формулы (3) от переменной u зависит не только функция f (x ), но и дифференциал dx . Следовательно

Сравнивая формулы (2) и (4), убеждаемся, что дифференциалы второго (и более высоких порядков) не обладают инвариантностью формы.

34. Экстремумы функции. Необходимые условия экстремума (теорема Ферма).

Точки экстремума

Экстре́мум - максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума . Соответственно, если достигается минимум - точка экстремума называется точкой минимума , а если максимум - точкой максимума . В математическом анализе выделяют также понятие локальный экстремум (соответственно минимум или максимум) .

Точка x 0 называется точкой строгого локального максимума (минимума) функции f (x ), если для всех значений аргумента из некоторой достаточно малой δ - окрестности точки х 0 выполняется неравенство

f (x ) < f (x 0) (f (x ) > f (x 0))

при х x 0 .
Локальный максимум и локальный минимум объединяются общим названием экстремум. Из определения следует, что понятие экстремума носит локальный характер в том смысле, что неравенство f (x ) < f (x 0) (f (x ) > f (x 0)) может и не выполняться для всех значений х в области определения функции, а должно выполняться лишь в некоторой окрестности точки x 0 .



Пусть функция у = f{x) определена на интервале (а, 6). Возьмем некоторое значение х € {а, Ь). Дадим х приращение Дя любое, но такое, чтобы х + Дя € (а, 6). Тогда функция у = f(x) получит прирашение Определение. Функция у = f(x) называется дифференцируемой в точке х £ (а, 6), если прирашение функции отвечающее прирашению Ах аргумента, можно представить в виде где А - некоторое число, которое не зависит от Ах (но, вообше говоря, зависит Пример. Рассмотрим функцию у = х2. Во всякой то»«е х и при любом Дх имеем Отсюда, в силу определения, функция у = х2 дифференцируема в любой точке х, причем Следующая теорема выражает необходимое и достаточное условие дифференци-руемости функции. Теорема 1. Для того чтобы функция у = fix) была дифференцируемой в точке х, необходимо и достаточно, чтобы fix) в этой точке имела конечную производную f\x). Необходимость. Пусть функция у = fix) дифференцируема в точке х. Докажем, что в этой точке существует производная fix). Действительно, из дифференцируемости функции у = fix) в точке х следует, что приращение функции Ду, отвечающее приращению Дх аргумента, можно представить в виде Дифференцируемость функции. Дифференциал функции Непрерывность дифференцируемой функции Понятие дифференциала функции Геометрический смысл дифференциала где величина А для данной точки х постоянна (не зависит от. По теореме о связи функции, имеющей предел, с ее пределом и бесконечно малой функцией, отсюда следует, что Существование производной доказано. Одновременно мы установили, что Достаточность. Пусть функция в точке х имеет конечную производную /"(х). Докажем, что fix) в этой точке дифференцируема. Действительно, существование производной /"(х) означает, что при Дх 0 существует предел отношения и что Отсюда, в силу теоремы о связи функции, имеющей предел, с ее пределом и бесконечно малой функцией, вытекает, что где, значит, Так как в правой части формулы (2) величина х) не зависит от, то равенство (2) доказывает, что функция у = /(х) дифференцируема в точке Теорема 1 устанавливает, что для функции /(х) дифференцируемостьв данной точке х и сушествованйе конечной производной в этой точке - понятия равносильные. Поэтому операцию нахождения производной функции называют также дифференцированием этой функции. В дальнейшем, когда мы говорим, что функция /(х) имеет производную в данной точке, мы подразумеваем наличие конечной производной, если не оговорено противное. 2.1. Непрерывность дифференцируемой функции Теорема 2. Если функция дифференцируема в данной точке х, то она непрерывна в этой точке. Действительно, если функция у = /(х) дифференцируема в точке х, то приращение Ду этой функции, отвечающее приращению Дх аргумента, может быть представлено в виде где А - постоянная для данной точки х, а а 0 при Дх 0. Из равенства (3) следует, что Дифференцируемость функции. Дифференциал функции Непрерывность дифференцируемой функции Понятие дифференциала функции Геометрический смысл дифференциала что и означает, согласно определению, непрерывность функции у = /(х) в данной точке х. Обратное заключение неверно: из непрерывности функции /(х) в некоторой точке х не следует дифференцируемость функции в этой точке. Пример. Например, функция /(х) = |х| непрерывна в точке х = 0, но, как мы показали выше (, не имеет производной в точке х = 0 и потому не является дифференцируемой в этой точке. Приведем еше пример. Пример. Функция непрерывна на интервале (-о#, +о#). Для всех х # 0 она имеет производную, но в точке х = 0 она не имеет ни правой, ни левой производной, потому что величина не имеет предела, как при В приведенных примерах производная отсутствует лишь в одной точке. Так и думали в XVIII и начале XIX в., когда считали, что непрерывная функция может не иметь производной самое большее в конечном числеточек. Позжебыли построены (Больца-но, Вейерштрасс, Пеано, Ван дер Варден) примеры непрерывных на отрезке [а, Ь\ функций, не имеющих производной ни в одной точке отрезка. Понятие дифференциала функции Пусть функция у - /(х) дифференцируема в точке х, т.е. прирашение Ду этой функции, отвечающее приращению Дх аргумента, представимо в виде Определение. Если функция у = f(x) дифференцируема в точке х, точасть приращения функции А Дх при Аф 0 называется дифференциаюм функции у = /(х) и обозначается символом dy или df{x): В случае А Ф 0 дифференциал функции называют главной линейной частью приращения Ду функции, поскольку при Дх 0 величина а(Дх)Дх в равенстве (4) есть бесконечно малая функция более высокого порядка, чем А Дх. В случае, когда >1 = 0, считают, что дифференциал dy равен нулю. В силу теоремы I имеем А = /"(х), так что формула (5) для dy принимает вид. Наряду с понятием дифференциала функции вводят понятие дифференциала dx независимой переменной х, полагая по определению Тогда формулу для дифференциала функции у = /(х) можно записать в более симметричной форме Отсюда в свою очередь имеем: /"(х) = Это еще одно обозначение производной (iобозначение Лейбница), которую можно рассматривать как дробь - отношение дифференциала функции dy к дифференциалу аргумента dx. Введем еше одно понятие. Будем говорить, что функция у = /(х) дифференцируема на интервале (а, Ь), если она дифференцируема в каждой точке этого интервала. Дифференцируемость функции. Дифференциал функции Непрерывность дифференцируемой функции Понятие дифференциала функции Геометрический смысл дифференциала Геометрический смысл дифференциала Пусть имеем кривую, заданную уравнением у = /(х),гдс /(х) - дифференцируемая в точке х € (а, 6). Проведем касательную к этой кривой в точке М(х,у) и отметим на кривой еще точку М\ с абсциссой х -f dx. Как известно, /"(х) есть угловой коэффициент касательной, т.е. Рассмотрим треугольник MPQ (рис.8). Из рисунка видно, что Таким образом, дифференциал dy = f"(x)dx функции у = f(x) есть приращение ординаты касательной, проведенной к кривой у = f(x) в точке с абсциссой ж, при переходе от точки касания к точке с абсциссой х + dx.