Наука о звуке в воде сканворд. О звуке

Гидроакустика (от греч. hydor - вода, akusticoc - слуховой) - наука о явлениях, происходящих в водной среде и связанных с распространением, излучением и приемом акустических волн. Она включает вопросы разработки и создания гидроакустических средств, предназначенных для использования в водной среде.

История развития

Гидроакустика - быстро развивающаяся в настоящее время наука, и имеющая, несомненно, большое будущее. Ее появлению предшествовал долгий путь развития теоретической и прикладной акустики. Первые сведения о проявлении интереса человека к распространению звука в воде мы находим в записках известного ученого эпохи Возрождения Леонардо да Винчи :

Первые измерения расстояния посредством звука произвел русский исследователь академик Я. Д. Захаров. 30 июня 1804 г. он совершил полет на воздушном шаре с научной целью и в этом полете воспользовался отражением звука от поверхности земли для определения высоты полета. Находясь в корзине шара, он громко крикнул в рупор, направленный вниз. Через 10 сек пришло отчетливо слышное эхо. Отсюда Захаров заключил, что высота шара над землей равнялась приблизительно 5 х 334 = 1670 м. Этот способ лег в основу радио и гидролокации.

Наряду с разработкой теоретических вопросов в России проводились практические исследования явлений распространения звуков в море. Адмирал С. О. Макаров в 1881 - 1882 гг. предложил использовать для передачи информации о скорости течения под водой прибор, названный флюктометром. Этим было положено начало развитию новой отрасли науки и техники - гидроакустической телеметрии .

Схема гидрофонической станции Балтийского завода обр.1907г.: 1 - водяной насос; 2 - трубопровод; 3 - регулятор давления; 4 - электромагнитный гидравлический затвор (телеграфный клапан); 5 - телеграфный ключ; 6 - гидравлический мембранный излучатель; 7 - борт корабля; 8 - танк с водой; 9 - герметизированный микрофон

В 1890-х гг. на Балтийском судостроительном заводе по инициативе капитана 2 ранга М. Н. Беклемишева начали работы по разработке приборов гидроакустической связи. Первые испытания гидроакустического излучателя для звукоподводной связи проводились в конце XIX в. в опытовом бассейне в Галерной гавани в Петербурге. Излучаемые им колебания хорошо прослушивались за 7 верст на Невском плавучем маяке. В результате исследований в 1905г. создали первый прибор гидроакустической связи, в котором роль передающего устройства играла специальная подводная сирена, управляемая телеграфным ключом, а приемником сигналов служил угольный микрофон, закрепленный изнутри на корпусе корабля. Сигналы регистрировались аппаратом Морзе и на слух. Позднее сирену заменили излучателем мембранного типа. Эффективность прибора, названного гидрофонической станцией, значительно повысилась. Морские испытания новой станции состоялись в марте 1908г. на Черном море, где дальность уверенного приема сигналов превышала 10км.

Первые серийные станции звукоподводной связи конструкции Балтийского завода в 1909-1910 гг. установили на подводных лодках «Карп» , «Пескарь» , «Стерлядь» , «Макрель » и «Окунь » . При установке станций на подводных лодках в целях уменьшения помех приемник располагался в специальном обтекателе, буксируемом за кормой на кабель-тросе. К подобному решению англичане пришли лишь во время Первой мировой войны. Затем эту идею забыли и только в конце 1950-х г г. ее снова стали использовать в разных странах при создании помехоустойчивых гидролокационных корабельных станций.

Толчком к развитию гидроакустики послужила первая мировая война . Во время воины страны Антанты несли большие потери торгового и военного флота из-за действия немецких подводных лодок. Возникла необходимость в поиске средств борьбы с ними. Вскоре они были найдены. Подводную лодку в подводном положении можно услышать по шуму, создаваемому гребными винтами и работающими механизмами. Прибор, обнаруживающий шумящие объекты и определяющий их местонахождение, был назван шумопеленгатор . Французский физик П. Ланжевен в 1915 г. предложил использовать чувствительный приемник из сегнетовой соли для первой шумопеленгаторной станции.

Основы гидроакустики

Особенности распространения акустических волн в воде

Компоненты события появления эхосигнала.

Начало всесторонних и фундаментальных исследований по распространению акустических волн в воде было положено в годы Второй мировой войны, что диктовалось необходимостью решения практических задач военно-морских флотов и в первую очередь подводных лодок. Экспериментальные и теоретические работы были продолжены и в послевоенные годы и обобщены в ряде монографий. В результате этих работ были выявлены и уточнены некоторые особенности распространения акустических волн в воде: поглощение, затухание, отражение и рефракция.

Поглощение энергии акустической волны в морской воде обуславливается двумя процессами: внутренним трением среды и диссоциацией растворенных в ней солей. Первый процесс преобразует энергию акустической волны в тепловую, а второй - преобразуясь в химическую энергию, выводит молекулы из равновесного состояния, и они распадаются на ионы. Этот вид поглощения резко возрастает с увеличением частоты акустического колебания. Наличие в воде взвешенных частиц, микроорганизмов и температурных аномалий приводит также к затуханию акустической волны в воде. Как правило, эти потери невелики, и их включают в общее поглощение, однако иногда, как, например, в случае рассеяния от следа корабля, эти потери могут составить До 90 %. Наличие температурных аномалий приводит к тому, что акустическая волна попадает в зоны акустической тени, где она может претерпеть многократные отражения.

Наличие границ раздела вода - воздух и вода - дно приводит к отражению от них акустической волны, причем, если в первом случае акустическая волна отражается полностью, то во втором случае коэффициент отражения зависит от материала дна: плохо отражает илистое дно, хорошо - песчаное и каменистое. На небольших глубинах из-за многократного отражения акустической волны между дном и поверхностью возникает подводный звуковой канал, в котором акустическая волна может распространяться на большие расстояния. Изменение величины скорости звука на разных глубинах приводит к искривлению звуковых «лучей» - рефракции.

Рефракция звука (искривление пути звукового луча)

Рефракция звука в воде: а - летом; б - зимой; слева - изменение скорости с глубиной.

Скорость распространения звука изменяется с глубиной, причём изменения зависят от времени года и дня, глубины водоёма и ряда других причин. Звуковые лучи, выходящие из источника под некоторым углом к горизонту, изгибаются, причём направление изгиба зависит от распределения скоростей звука в среде: летом, когда верхние слои теплее нижних, лучи изгибаются книзу и в большинстве отражаются от дна, теряя при этом значительную долю своей энергии; зимой, когда нижние слои воды сохраняют свою температуру, между тем как верхние слои охлаждаются, лучи изгибаются кверху и многократно отражаются от поверхности воды, при этом теряется значительно меньше энергии. Поэтому зимой дальность распространения звука больше, чем летом. Вертикальное распределение скорости звука (ВРСЗ) и градиент скорости оказывают определяющее влияние на распространение звука в морской среде. Распределение скорости звука в различных районах Мирового океана различно и меняется во времени. Различают несколько типичных случаев ВРСЗ:

Рассеивание и поглощение звука неоднородностями среды.

Распространение звука в подводном звук. канале: а - изменение скорости звука с глубиной; б - ход лучей в звуковом канале.

На распространение звуков высокой частоты, когда длины волн очень малы, оказывают влияние мелкие неоднородности, обычно имеющиеся в естественных водоёмах: пузырьки газов, микроорганизмы и т. д. Эти неоднородности действуют двояким образом: они поглощают и рассеивают энергию звуковых волн. В результате с повышением частоты звуковых колебаний дальность их распространения сокращается. Особенно сильно этот эффект заметен в поверхностном слое воды, где больше всего неоднородностей.

Рассеивание звука неоднородностями, а также неровностями поверхности воды и дна вызывает явление подводной реверберации , сопровождающей посылку звукового импульса: звуковые волны, отражаясь от совокупности неоднородностей и сливаясь, дают затягивание звукового импульса, продолжающееся после его окончания. Пределы дальности распространения подводных звуков так же ограничиваются собственными шумами моря, имеющими двоякое происхождение: часть шумов возникает от ударов волн на поверхности воды, от морского прибоя, от шума перекатываемой гальки и т. п.; другая часть связана с морской фауной (звуки, производимые гидробионтами: рыбами и др. морскими животными). Этим очень серьёзным аспектом занимается биогидроакустика.

Дальность распространения звуковых волн

Дальность распространения звуковых волн является сложной функцией частоты излучения, которая однозначно связана с длиной волны акустического сигнала. Как известно, высокочастотные акустические сигналы быстро затухают благодаря сильному поглощению водной средой. Низкочастотные сигналы напротив способны распространяться в водной среде на большие расстояния. Так акустический сигнал с частотой 50 Гц способен распространяться в океане на расстояния в тысячи километров, в то время как сигнал с частотой 100 кГц, обычный для гидролокатора бокового обзора, имеет дальность распространения всего 1-2 км. Приблизительные дальности действия современных гидролокаторов с различной частотой акустического сигнала (длиной волны) приведены в таблице:

Области применения.

Гидроакустика получила широкое практическое применение, поскольку ещё не создано эффективной системы передачи электромагнитных волн под водой на сколько-нибудь значительном расстоянии, и звук поэтому является единственным возможным средством связи под водой. Для этих целей пользуются звуковыми частотами от 300 до 10000 гц и ультразвуками от 10000 гц и выше. В качестве излучателей и приёмников в звуковой области используются электродинамические и пьезоэлектрические излучатели и гидрофоны, а в ультразвуковой - пьезоэлектрические и магнитострикционные.

Наиболее существенные применения гидроакустики:

  • Для решения военных задач;
  • Морская навигация;
  • Звукоподводная связь;
  • Рыбопоисковая разведка;
  • Океанологические исследования;
  • Сферы деятельности по освоению богатств дна Мирового океана;
  • Использование акустики в бассейне (дома или в тренировочном центре по синхронному плаванию)
  • Тренировка морских животных.

Примечания

Литература и источники информации

ЛИТЕРАТУРА:

  • В.В. Шулейкин Физика моря . - Москва: «Наука», 1968г.. - 1090 с.
  • И.А. Румынская Основы гидроакустики . - Москва: «Судостроение», 1979 г.. - 105 с.
  • Ю.А. Корякин Гидроакустические системы . - СПб: «Наука Санкт-Петербурга и морская мощь России», 2002 г.. - 416 с.

Эксперименты итальянских физиков позволили наконец-то дать окончательное объяснение явлению быстрого звука в воде. Из двух существующих сегодня теорий — вискоэластичной и двухкомпонентной — эти эксперименты подтвердили первую и опровергли вторую.

В обычных условиях скорость звука в воде составляет примерно 1,5 километра в секунду и не зависит от частоты звуковой волны. Однако уже давно известно, что ультразвуковые колебания с частотой несколько терагерц (1 терагерц = 10 12 Гц) распространяются в воде со скоростью примерно вдвое большей. Это явление было открыто экспериментально 20 лет назад, намеки на него появлялись и при численном моделировании динамики воды на атомарном уровне, но несмотря на всё это общепринятого его объяснения до сих пор не было. Только сейчас, благодаря экспериментам итальянских физиков, опубликованных в статье S. C. Santucci et al., Physical Review Letters, 97, 225701 (27 November 2006) , в природе этого явления расставлены все точки над «i» (статья доступна также на сайте авторов, PDF , 274 Кб).

Сразу стоит подчеркнуть, что опыты со столь высокочастотным ультразвуком ставить очень непросто. Акустические излучатели в этом диапазоне пока не придуманы, и потому физикам приходится определять скорость такого ультразвука косвенными методами. Для этого воду облучают потоком нейтронов или рентгеновских лучей, которые, сталкиваясь с молекулами воды, порождают в микроскопическом объемчике быстрые колебания и передают им часть своей энергии и импульса. Из соотношения этих двух величин и выводится скорость распространения звуковых колебаний.

На сегодня существует две основных теории, претендующих на объяснение этого явления. В соответствии с первой, для звука всё более высокой частоты вода становится всё более упругой и всё менее подвижной средой (такие среды называются вискоэластиками). В результате колебания с такой высокой частотой распространяются скорее через упругую, почти твердую среду, а в твердом теле скорость звука выше, чем в жидкости (скорость звука во льду, например, как раз и составляет примерно 3 км/сек).

Вторая теория основана на том факте, что вода состоит из переплетенной сети ионов двух типов: очень легких ионов водорода и тяжелых ионов кислорода. Вычисления показывают, что часто в таких двухкомпонентных средах с сильно различающимися массами существует специальный тип быстрых звуковых волн, которые распространяются исключительно через сеть легких атомов. Эта теория уже хорошо себя зарекомендовала для описания быстрого звука в двухкомпонентных газах и металлических сплавах, и потому кажется естественным, что она будет работать и для воды.

Обе эти модели, разумеется, согласуются с описанными выше экспериментами, однако они совершенно по-разному описывают переход от нормального звука к быстрому, который должен происходить при меньших частотах, в гигагерцевом диапазоне. Поэтому для ответа на вопрос, какая из двух моделей верна, требуется измерить зависимость скорости звука от частоты в этой промежуточной области. Дополнительная сложность такого эксперимента состоит в том, что наиболее четко переход от нормального к быстрому звуку проявляется в очень холодной и даже переохлажденной воде (то есть ниже нуля градусов Цельсия). Эксперименты с переохлажденной водой требуют сноровки, поскольку при малейшем возмущении она быстро кристаллизуется.

Именно этот опыт и поставили итальянские физики. Изучая рассеяние оптических и ультрафиолетовых фотонов, они смогли просканировать частотный диапазон звуковых колебаний от 1 до 100 ГГц и впервые получили точные данные о скорости звуковых колебаний в этом диапазоне. Эксперимент абсолютно четко показал, что при повышении частоты (или при понижении температуры) скорость звука действительно постепенно отходит от «нормальной» зависимости и начинает расти (в существовании такого плавного перехода, кстати, мнения тоже разделялись).

Кроме того, авторы статьи сравнили свои данные с предсказаниями обеих моделей и доказали, что эксперимент подтверждает вискоэластичную модель и противоречит выводам двухкомпонентной модели. Таким образом, можно считать, что в многолетнем споре приверженцев двух моделей поставлена точка. В целом же, эта работа лишний раз подчеркивает поразительное разнообразие структурных и динамических свойств воды (для дальнейшего ознакомления см. популярную статью: Ю. И. Головин. Вода и лед — знаем ли мы о них достаточно? // СОЖ , 2000, № 9, с. 66-72).

Статья из журнала "Техника - молодёжи" №11 за 1939 год о самых ранних исследованиях и исследователях звука. Статья оформлена довольно милыми рисунками Льва Смехова . Оказалось, что Лев Смехов - это дядя всем известного актёра Вениамина Смехова.

Звук с давних пор считался одним из самых загадочных явлений природы. В самом деле, что порождает звук? Что заставляет его неведомыми путями распространяться и достигать нашего слуха? Почему звук, едва родившись, так быстро замирает? Эти вопросы издавна волновали пытливый ум человека.

Ничего не зная о природе звука, человечество на протяжении тысячелетий пользовалось им. Люди очень давно подметили некоторые закономерности в этом явлении, выделив из массы звуков отдельные комбинации их, производившие приятное впечатление на слух. Это было одной из причин зарождения музыки, старейшего из искусств.

Наши отдаленные предки установили чисто практическим путем основные закономерности построения музыкальных инструментов . Они знали, например, что лира или арфа обладают хорошим тоном лишь в том случае, если их струны по своей длине и толщине подобраны с соблюдением некоторых числовых соотношений. Только в этом случае каждая струна дает звук определенного тона. Правильное сочетание этих тонов является основой музыкальной гармонии.

Однако, почему все это происходит, причину явления, древние мастера музыкальных инструментов объяснить не могли.

Первый, кто математически исследовал числовые соотношения тонов в музыкальных инструментах, был великий математик древности Пифагор , живший в VI в. до н. э. Рассказывают, что однажды ученый, проходя мимо кузницы, заметил интересное явление: удары молотов о наковальню воспроизводили звуки музыкальных тонов - кварту, квинту и октаву. Пифагор стал искать причины столь необычайной музыкальности кузнечных инструментов. В этот период Пифагор разрабатывал свою теорию, числа как основы всего существующего. Надеясь и здесь найти числовые соотношения, которые помогли бы объяснить превращение кузнечных инструментов в музыкальные, ученый решил взвесить молоты. Оказалось, что веса меньших молотов составляют три четверти, две трети и половину веса большого. Тогда Пифагор попросил кузнецов взять другие молоты, веса которых не соответствовали бы найденным пропорциям. Однако новые молоты уже не давали музыкальных тонов.

Этот случай послужил Пифагору поводом для постановки целой серии опытов. При помощи несложных приборов знаменитый геометр обнаружит, что высота тона струны зависит от ее длины и степени натяжения. Кроме того, исследованиями ученого было установлено, что в правильно настроенном музыкальном инструменте длины струн должны находиться в тех же. отношениях, какие были найдены при изучении музыкально звучащих молотов.

Открытый Пифагором закон давал объяснение только одному частному явлению из области звука. Более глубокие причины найденной закономерности, так же как и вообще природа звука, по-прежнему оставались загадкой.

О природе и причинах распространения звука древние натурфилософы выдвигали много предположений. Кое-кто уже тогда высказывал смелую догадку о колебательной природе звуковых явлений. Эти идеи нашли наиболее верное и полное обобщение в сочинениях римского писателя Сенеки , жившего в I в. н. э. Его семь книг, объединенных под общим заглавием «Естественные вопросы», были своеобразной энциклопедией естествознания, которая сохранила научную ценность почти до конца Средневековья. В этих книгах, написанных весьма живо и убедительно, Сенека рассказывает о самых разнообразных проблемах естествознания, в том числе и о звуке. Вот что пишет он о природе звуковых явлений:

«Что такое звук голоса, как не сотрясение воздуха ударами языка? Какое пение было бы возможно слышать, не будь этой упругой воздушной жидкости? Разве звуки рожка, трубы и гидравлического органа не объясняются все той же упругой силой воздуха?»

Сенека очень близко подошел к современным взглядам на природу звука. Правда, это были только предположения, не подкрепленные опытными, практическими исследованиями.

Последующие полторы тысячи лет очень мало прибавили к тому, что было известно людям о природе звука. В XVII в. Френсис Бэкон , основатель опытного метода в науке, считал, что звук может распространяться не иначе, как при посредстве некоторой «упругой жидкости», которая, по его мнению, входит в состав воздуха. Это неверное утверждение Бэкона повторяло по существу отвлеченные рассуждения древних натурфилософов .

Между тем к этому времени уже зарождалась опытная наука о звуке . В итальянском городке Флоренции великий ученый Галилей получал музыкальные звуки, быстро проводя ножом по краю монеты, пиастра. Галилей нашел, что когда число зазубрин на монете велико, то получается высокий тон. Отсюда ученый сделал вывод, что высота тона зависит от частоты толчков.

Опыты Галилея послужили основой для работ французского ученого, монаха Мерсенна . В 1636 г. Мерсенн выпустил книгу, в которой описал свои исследования. Он хотел проверить закономерность музыкальных звуков, найденную Пифагором, и объяснить причины её. После длительных исследований и кропотливых изысканий Мерсенн выяснил, что высота тона зависит исключительно от частоты колебаний звучащего тела. Он установил также закон колебания струн, согласно которому число колебаний обратно пропорционально длине струны и квадратному корню из ее веса и прямо пропорционально квадратному корню из степени натяжения ее. Подобный же закон оказался справедливым и в отношении длины труб. Чем короче труба, тем большее число колебаний она дает, тем выше ее звук.

Эти опыты пролили свет на природу звука. Исследования Мерсенна доказали, что звук есть не что иное, как колебания частиц воздуха, вызываемые звучащим телом. Музыкальные молоты, поразившие Пифагора и положившие начало его исследованиям, порождали звук, ударяясь о наковальню. Понятно теперь, что более легкие молоты вызывали быстрые, т. е. частые, колебания, а тяжелые - медленные. Числа колебаний молотов были пропорциональны их весам.

Работы многочисленных ученых подтвердили основную идею Мерсенна. Было установлено, что всякое колеблющееся тело с числом колебаний от 20 до 20 тыс. в секунду порождает в воздухе волны, воспринимаемые ухом в виде звука.

Когда была выяснена колебательная природа звука, возник вопрос: какова же скорость распространения звуковых волн? Издавна было известно, что звук распространяется гораздо медленнее, чем свет. Многим приходилось наблюдать, как удар (например молотом о наковальню или топором дровосека о дерево), производимый на некотором расстоянии от наблюдателя, воспринимается ухом несколько позже, чем глазом. Это происходит потому, что звуку требуется известное время, чтобы дойти до наблюдателя, в то время как свет распространяется практически мгновенно.

Первое определение скорости распространения звука в воздухе было произведено французским физиком и философом Пьером Гассенди в середине XVII в.

В то время многие считали истиной утверждение Аристотеля , будто высокие тона распространяются быстрее низких. Гассенди решил проверить это. Его опыт заключался в следующем. На определенном расстоянии от наблюдателя производились одновременно выстрелы из ружья и пушки. При этом измерялся промежуток времени между появлением вспышки пороха и звуком выстрела, доходившим до наблюдателя. Опыт показал, что звуки обоих выстрелов распространяются с одинаковой скоростью. Попутно Гассенди определил скорость распространения звука; по его расчетам, она оказалась равной 449 метрам в секунду.

Несмотря на неточность результата, опыт Гассенди имел очень большое значение для дальнейших исследований. Он давал метод, которым воспользовались впоследствии многие ученые. Применив более совершенные приборы, они нашли истинную скорость звука в воздухе. При этом было обнаружено, что она не остается постоянной, а изменяется в зависимости от температуры и давления: в теплый летний день она меньше, чем в холодный, зимний, а, например, при 0° скорость звука составляет около 332 метров в секунду.

В 1667 г, знаменитый исследователь, соотечественник и сподвижник Ньютона, Роберт Гук произвел серию опытов, раскрывших новые свойства звука. До этого времени многие ученые, подобно Бэкону, считали воздух единственной средой, в которой звук способен распространяться. А между тем в обыденной жизни встречались явления, говорившие о другом. Было известно, например, что, припав ухом к земле, можно услышать конский топот. Точно так же, нырнув в воду, можно явственно слышать шум прибоя, плеск весел движущейся лодки, удары камней друг о друга. Гук знал, конечно, об этих фактах. Он решил опровергнуть неправильное утверждение Бэкона и его последователей.

Проведя серию очень интересных и оригинальных опытов, ученый пришел к результатам, которые записал в своем лабораторном журнале: «До сих пор никто еще не занимался вопросом о том, при посредстве каких других сред, кроме воздуха, звук может быть воспринят человеческим ухом. Я утверждаю, что с помощью вытянутой проволоки я передавал звук на значительное расстояние, и притом со скоростью если не равной скорости света, то во всяком случае несравненно более значительной, нежели скорость звука в воздухе».

Гук проделывал весьма любопытный опыт. Он прикладывал скрипку к медной пластинке с припаянной к ней проволокой. Эта проволока выходила через окно в сад и на значительном расстоянии от дома оканчивалась небольшой мембраной. Человек, находившийся у мембраны, мог явственно слышать игру на скрипке, которая происходила в закрытой комнате.

Дальнейшие исследования показали, что скорость распространения звука в различных твердых телах неодинакова. Из всех металлов железо обладает наибольшей звукопроводностью. Скорость звука в нем равна 5 тыс. метров в секунду, а, например, в свинце звук распространяется со скоростью всего 1200 метров в секунду.

После работ Гука и других ученых физики решили исследовать, распространяется ли звук в жидкостях.

В 1827 г. французский геометр и физик Штурм вместе с швейцарским физиком и инженером Колладоном решили определить скорость распространения звука в воде. Опыты были проведены на Женевском озере, глубина и чистота которого делали его особенно пригодным для этой цели. На одном конце озера, близ местечка Ролль, на якоре стояла лодка, в которой поместился Штурм. Он должен был давать одновременные световые и звуковые сигналы при помощи особого механизма. Механизм действовал таким образом, что одновременно с ударом молоточка о находящийся под водой колокол вспыхивала небольшая кучка пороха. Появление света в этот момент служило сигналом отправления звука.

Колладон отъехал от Штурма на 12 километров. Здесь он принимал световые и звуковые сигналы с другого конца озера. В одной руке учёный держал слуховую трубу, конец которой был опущен в воду, в другой - секундомер. Определяя время, прошедшее между появлением светового сигнала от вспышки пороха и гулом колокола, Колладон вычислял скорость распространения звука в воде. Этот опыт был повторен несколько раз. Оказалось, что скорость звука в воде почти в четыре раза больше, чем в воздухе. При температуре воды в 8° она равна 1431 метру в секунду.

К концу XVIII в. колебательная природа звука уже ни у кого не вызывала сомнений.

Знаменитый английский математик, физик и астроном Исаак Ньютон первый произвел блестящий математический анализ волнового и колебательного движений. Он дал формулу, по которой можно было теоретическим путем вычислить скорость звука в различных средах. Исследования Ньютона продолжал Лаплас и другие математики. Их теоретические работы вполне совпали с результатами многочисленных опытов. Так, например, скорость распространения звука в воздухе и других средах, вычисленная на основании математических формул, вполне совпадала с опытными данными. Казалось бы, все, что можно знать о звуке, уже известно. Но вот в 1787 г. в Лейпциге вышла книга молодого немецкого физика Хладни. В этой книге описывались невероятные вещи. Если верить исследователю, то, оказывается, звук можно не только слышать, но и видеть.


Эрнст Хладни всю свою научную деятельность посвятил изучению звуковых явлений. Ему были известны работы Даниила Бернулли и Леонарда Эйлера о вибрациях прута и струн. Это были исследования простейших звучащих тел. Но как ведут себя более сложные звучащие тела, вроде, например, колокола? На этот вопрос современная Хладни наука не давала ответа. О том, что не только струны, но и многие другие предметы - бокалы, трубки, пластинки - можно заставить звучать, проводя по ним смычком, было известно давно. Ученый решил применить смычок к исследованию звучащих тел. Лаборатория исследователя наполнилась многочисленными предметами самой неожиданной формы и назначения. Бокалы, стаканы, чашки, металлическая посуда, пластинки, прутья и стержни из стекла и металла - каждый отвечал своим «голосом» на прикосновение магического смычка.

Конечно, все это не было простой забавой. Вскоре ученый подметил интересное явление. Он налил в чашку воды, желая проверить, одинаково ли звучат пустая чашка и чашка, наполненная жидкостью. Как только Хладни провел смычком по краю чашки, на поверхности воды появилась мелкая зыбь, вызванная дрожанием стенок сосуда. Эта зыбь была слишком мелка, чтобы ее можно было изучать, к тому же она быстро пропадала. Исследователь задумался над тем, как бы сделать эту зыбь более устойчивой.

Хладни взял медный кружок и, закрепив стержень, на котором был укреплен кружок, провел смычком по краю кружка. Кружок начал вибрировать, давая звук низкого тона. Когда звук прекратился, исследователь посыпал кружок песком. После этого он опять провел смычком по краю кружка. Можно представить удивление и радость ученого, когда на звучащем кружке появились четкие линии. Песок соскакивал с вибрирующих частей кружка и собирался там, где движения совсем не было. Теперь стал виден характер вибрации звучащего тела. Чем выше был тон кружка, тем сложнее получались песчаные фигуры.

Известие об опытах Хладни быстро облетело весь ученый мир. Физики всех стран тщательно изучали загадочные Хладниевы фигуры. Эти опыты имели громадное значение не только для изучения звука, но и для популяризации акустики вообще. Опыты Хладни и в наше время служат прекрасной демонстрацией колебательной природы звуковых явлений.

Впоследствии были найдены и другие способы делать звук видимым. Можно, например, приделать к мембране острие, которое упирается в закопченную пластинку. Когда около этого простого прибора ведется разговор, мембрана колеблется, и дрожание ее передается острию. В это время пластинке сообщают поступательное движение. Острие чертит на закопченной поверхности зигзагообразную линию. Характер этой линии меняется в зависимости от характера звуков, воспринимаемых мембраной.

Перед учеными встала новая заманчивая задача. Надо было найти способ фиксирования звуковых колебаний, чтобы потом можно было по полученным следам воспроизвести записанный разговор.

Эту задачу блестяще разрешил знаменитый американский изобретатель Томас Эдисон . В 1876 г. он устроил приспособление к телеграфному аппарату Морзе, позволяющее чисто механическим путем передавать телеграмму, полученную с одной линии, на другую. Этот прибор состоял из металлического цилиндра с винтовой нарезкой. При вращении цилиндра по нарезке ходил металлический штифт. Между цилиндром и штифтом помещался лист бумаги. Во время приема телеграммы штифт прорезал бумагу соответственно принимаемым сигналам.

Однажды Эдисон пустил свой аппарат с необычайной быстротой. Когда скорость возросла до того, что телеграфные сигналы уже нельзя было различить, изобретатель заметил, что аппарат издает музыкальный тон. Этот тон менялся в зависимости от характера передаваемых сигналов. У Эдисона возникла мысль заменить телеграфные сигналы Морзе следами, оставляемыми человеческой речью. Неутомимый исследователь немедленно же осуществил свою идею. Он сделал диафрагму, натянув на рамку промасленную бумагу. К центру диафрагмы был приделан острый стальной штифтик. Вместо бумаги телеграфный цилиндр был обернут оловянной фольгой. Затем Эдисон начал медленно вращать цилиндр, одновременно произнося над диафрагмой различные слова. Звуковые колебания вызывали дрожание диафрагмы, а вместе е ней и штифтика, который, вдавливаясь в фольгу; оставлял на ней след в виде канавки неравномерной глубины. Так впервые был записан человеческий голос. Оставалось воспроизвести его. Эдисон снял первую диафрагму и поместил над цилиндром другую, снабженную тонким и гибким острием. Цилиндр снова был приведен во вращательное движение. Острие, встречая на своем пути возвышения и углубления, вычерченные штифтом на оловянном листе, передавало эти колебания диафрагме. Машина заговорила; фонограф увидел свет.

Изобретение Эдисона ученые встретили по-разному. Одни восхищались, другие недоверчиво качали головой, третьи считали, что здесь какой-то очень ловкий обман. Трудно было отвыкнуть от привычного мнения о звуке, как о материи легкой, подвижной и неуловимой; трудно было поверить, что звук можно поймать, зафиксировать и заставить повторяться сколько угодно раз. По отзывам современников, «фонограф поражал тех, кто его понимает, столько же, если не больше, чем тех, для которых он непонятен».

Фонограф Эдисона оказался родоначальником целого ряда акустических приборов. Развитие техники в наши дни выдвигает ряд новых проблем перед акустикой. Постройка радиостудий, борьба с уличным шумом, строительство больших аудиторий и концертных зал требуют знания законов поглощения звука.

В одном американском университетском городке была построена большая аудитория. Архитектор, проектировавший ее, не учел законов распространения и поглощения звука. Это привело к неожиданным результатам: присутствующие слышали одновременно и речь оратора, идущую непосредственно с кафедры, и звуки, отраженные от потолка. Все это, сливаясь вместе, создавало невообразимый звуковой хаос. Чтобы исправить ошибку архитектора, пришлось спустить с потолка на канатах большой брезент, который упорядочил акустику зала.

Строительство величайшего здания нашей эпохи - Дворца Советов - также выдвинуло ряд совершенно новых задач по акустике. Большой зал Дворца Советов будет вмещать 22 тыс. человек. Высота этого зала составит 100 метров. Советским ученым и инженерам нужно было разработать такую конструкцию купола, которая обеспечила бы полное поглощение всех звуков, доходящих до него. Нужно было создать своего рода «искусственное небо»: ведь под открытым небом все звуки, идущие вверх, замирают в высоте, обратно не возвращаясь. Задача осложнялась отсутствием материалов, которые обеспечили бы очень сильное поглощение звука. Теоретически этот вопрос был также совершенно не разработан. Советские ученые блестяще разрешили эту трудную задачу. На основе разработанной теории были найдены материалы, обладающие необходимыми звукопоглощающими свойствами. По своей акустике Большой зал Дворца Советов будет лучшей аудиторией в мире.

Так развивается наука о звуке, в которой последнее слово принадлежит советским ученым.

Киматика изучает свойства волн, этот термин был введён швейцарским учёным Хансом Йенни. Впервые учёный запечатлел на фотоплёнке воздействие звуковой волны на вещества разной природы - песок, вода, глина, рассыпанные на поверхности стальной пластины, под воздействием колебательных движений различной частоты принимали упорядоченный рисунок.

Киматика изучает свойства волн, этот термин был введён швейцарским учёным Хансом Йенни. Впервые учёный запечатлел на фотоплёнке воздействие звуковой волны на вещества разной природы - песок, вода, глина, рассыпанные на поверхности стальной пластины, под воздействием колебательных движений различной частоты принимали упорядоченный рисунок. Изображения рисунка зависели от частоты волны, чем выше частота, тем сложнее рисунок, полученный от воздействия звуковых волн.

Киматика - наука о формообразующих свойствах волн.

Ханс Йенни продолжал работу немецкого учёного Эрнста Хладни (1756- 1827 гг.). Учёный проводил эксперименты воздействия звуковых волн на капли воды, и вновь и вновь приходил к выводу, что на неорганическую и органическую материю действуют одни и те же законы гармонической организации.

Гармоникаисты говорили, что «звук является космической тропой или лучами творения, диагональными к космическому источнику».

Мир цвета, звука и формы управляется по одним и тем же законам, и между гармониками и гармоническими структурами существуют тесные взаимосвязи. Гармоникаисты говорили, что звук является космической тропой или лучами творения, диагональными к космическому источнику.

В медитации свет и молчание становятся идентичными, творящими преобразующими.

Популярная теория происхождения Вселенной, поддерживаемая большинством теоретиков - теория «Большого взрыва» . Согласно этой теории когда-то наша Вселенная представляла собой бесконечно малый сгусток, сверхплотный и раскаленный до очень высоких температур. Это нестабильное образование внезапно взорвалось, пространство быстро расширилось, а температура разлетающихся частиц, обладающих высокой энергией, начала снижаться. Взрыв был такой мощности, что световые и звуковые волны, возникшие в результате этого взрыва, преобразовывают свою энергию во всё новые и новые формы, при этом миллионы лет сотворяя мир в разных вариациях энергии звуковых и световых волн.

Числа и звуки

Исследования принципов, лежащих между музыкой и математикой, между звуком и числом со времён Пифагора, привлекало внимание учёных.

В двадцатых годах прошлого века немецкий учёный Ганс Кайзер разработал теорию мировых гармоник, возрождая забытую науку об обертонах (гармониках).

Кайзер исследовал закономерности, лежащие между звуком и числом.

Высота тона и длина струны находятся во взаимосвязи, - указывал Кайзер, то есть качество можно выводить из количества. Теория Кайзера утверждает, что принцип соотношение целых чисел является основой не только музыки, но и многих наук (химия, физика, астрономия, и др.). По мнению Кайзера, те формы в природе, в которых присутствуют гармонические соотношения в восприятии человека, считаются более красивыми. Соотношения, основанные на октаве (2:1), кварте (3:2), терции (5:4) отличаются особой соразмерностью.

Энергию Вселенной можно выразить октавой звукового спектра, октавой светового спектра, геометрической - иерархия форм кристаллов. Существует доказательная связь между частотами звука, цвета с геометрической формой. Наука, изучающая формы кристаллов и их внутреннего строения называется кристаллография . Энергии проявленных форм существуют в тесном взаимодействии, преобразуясь друг в друге, эти энергии создают новые формы.

Форма и звуки

В научном исследовании д-ра Дженни, известном как “Киматика”, автор продемонстрировал геометрию звуковых вибраций, используя тонкие контейнеры, наполненные следующими средами: песком, спорами грибка Лигодеум, мокрым гипсом и разными формами жидкости, обладающими крошечными частицами или плавающими в них “коллоидами”.

В этой книге особый интерес представляет коллоидная жидкость . Находясь в состоянии покоя, коллоиды равномерно распределяются в жидкости, и вода становится мутной. Д-р Дженни называет такое состояние “гидродинамическим рассеиванием”.

Однако когда контейнер вибрировал на чистых диатонических звуках, частицы в жидкости собирались в упорядоченные и изолированные видимые геометрические паттерны, многие из которых обладали двумерной и трехмерной структурой. Иными словами, в них можно было наблюдать сформировавшуюся и ясно воспринимаемую глубину, то есть, они не были “плоскими “. В этой книге это одно из самых важных положений, которое следует изучить и помнить, ибо оно предоставляет неопровержимое визуальное доказательство концепций, которые мы обсуждали.

Есть пять основных трехмерных форм, и мы знаем их как Платоновы Тела, ибо честь их открытия принадлежит греческому философу Платону. Важно, чтобы было предельно ясно: наблюдая эти формы, на самом деле мы наблюдаем вибрацию . Сами формы могут не “существовать” как физический объект, а быть голограммой. Если вы попытаетесь их схватить или нарушить, они просто исчезнут и превратятся в рябь вокруг ваших пальцев. Тем не менее, не будучи нарушенными, формы будут существовать как очень реальная вибрация, и оказывать точно такое же давление на тело, которое вы ощущаете от очень громкого звука или раската грома.

Сейчас, когда мы увидели формы вибраций, работающие в жидкообразном эфире, мы знаем, что созданные их давлением силовые линии позволяют по-новому взглянуть на динамику гравитации. Имея неопровержимые свидетельства того, как эти геометрии формируют структурные особенности поверхности Земли, такие как континенты, подводные хребты и горные образования, нас больше не ослепит истина. И только дело времени, когда простые наблюдения превратятся в общеизвестное знание основной массы человечества.

Также, очень важно упомянуть следующее: когда студенты Фуллера повышали частоту в шаре, или Дженни повышал частоту в воде, старые формы растворялись и исчезали, а на их месте появлялась более сложная геометрическая форма. Такое явление работало и наоборот: когда частота понижалась до первоначального значения, вновь появлялись геометрии той же самой формы.

Поэтому, изучая динамику эфира, мы увидим: при повышении вибрационной частоты (или напряжения) энергии в данной области, сама геометрия этой области, например, формирующая Землю, будет спонтанно преобразовываться в более высокий порядок сложности. И эффекты повышения и понижения частоты происходят во всем Творении, включая все тела нашей Солнечной Системы, когда она двигается в Галактике.

Работа д-ра Спилхауса продемонстрировала, что со времени первичного “мега-континента” Пангеи, гравитационное поле Земли уже прошло через несколько подобных преобразований. В то время Земля имела единую кору. Это было до движения расширения, которое сейчас рассматривается в Теории Глобального Тектонического Расширения, созданной в 1933 году Отто Хильгенбергом.

Звук и энергия

Звук представляет собой поток энергии, текущей подобно водному потоку. Звук может изменить среду, через которую он проходит, и сам изменяется ею. Каждая звуковая волна - есть сила, которая творит соответственную реакцию. Существует активная сила, воспринимающая сила и область их взаимодействий.

Согласные колебания образуют гармоничные частоты, что приводит к притяжению субатомных частиц друг к другу.

Диссонансные колебания вызывают разъединение или взрыв частицы или формы.

Американский учённый, живший в 19 веке, посвятил большую часть своей жизни изучению звука как силы, которая со временем стала служить в его экспериментах первичным импульсом для возбуждения таинственной энергии. Одним из величайших итогов творческой деятельности Джона Кили было открытие сорока Законов, управляющих вибрациями.

Эти законы явились фундаментом созданной им физики симпатических вибраций.

Данная область исследований, где Джон Кили был одиноким пионером, рассматривает внутреннюю природу вибрационных феноменов, основанную на симпатических, то есть резонансных взаимодействиях.

Ученый говорил, что звук это «нарушение атомного равновесия, разрушающее существующие атомные частицы, а освобожденная при этом субстанция, несомненно, должна быть эфирным током некоторого порядка». По его представлениям, все в Природе колеблется, вибрирует . Можно сказать, что в основе всей Природы лежат вибрации разных частот, которые создают разнообразнейшие сочетания. При этом «созвучные», гармоничные сочетания вызывают притяжение и носят созидательный характер, а дисгармоничные вызывают отталкивание, разрушают.

Пример организованных вибраций - музыка. Когда две струны музыкального инструмента настроены в гармоническом сочетании (например, в терцию, квинту, октаву), движение одной из них рождает отклик в другой.

А ведь с древнейших времен была известна и другая музыка, «музыка сфер», создаваемая Солнцем, Луной и планетами. Сегодня мы можем услышать эту музыку в компьютерном переложении, но, быть может, для древних посвященных она звучала намного богаче и ярче.

Кили назвал основанную им науку Sympathetic Vibratory Physics «физика симпатических (ответных) вибраций» . Ему удалось не только объединить в этой науке фундаментальные физические понятия, но и выйти за рамки традиционной «физики», соединить ее с «метафизикой», с тем что лежит в области непознанного, в том числе и в духовной сфере.

Физика симпатических вибраций сведена в сорок законов, в которых постулированы, в частности, единство силы и материи, а также принципиальная бесконечность делимости последней. Для Кили сила есть освобожденная материя, а материя есть связанная сила, что блестяще подтвердилось в ХХ веке в виде известной даже школьнику формулы E=mc2. По расчетам Кили, энергии, содержащейся в ведре воды, вполне достаточно, чтобы сдвинуть наш мир с его курса.

К числу важнейших физических и метафизических категорий у Кили относится понятие нейтрального центра. Каждое проявленное тело во Вселенной от атома до звездной системы имеет в основании нейтральный центр, нерушимый фокус; вокруг него строится все, что мы осознаем в качестве материи, которая является его объективным проявлением.

«Сорок законов физики симпатических вибраций»

«Не существует разделения материи и силы на два различных понятия, поскольку они оба суть Едины. Сила есть освобожденная материя. Материя есть связанная сила.

Закон материи и силы.

В основе всей материи находится бесконечное и неизменное число атомолей, со-беспредельных с пространством и со-вечных с продолжительностью; они находятся в постоянном вибрационном движении, бесконечны в протяжении, неизменны в количестве и являются первоначалом всех форм энергии.

Закон вибрации тел.

Все когерентные агрегаты, изолированные от себе подобных тел, либо погруженные в среду, состоящую из материи в различных состояниях, вибрируют с установленным определённым тоном.

Закон колебания тел.

Все когерентные агрегаты, не изолированные от себе подобных тел, колеблются с периодом-частотой, которая гармонически соотносится с основным тоном вибрирующего тела; этот тон кратен тону атомоля.

Закон гармонических вибраций.

Все когерентные агрегаты постоянно вибрируют с периодом-частотой, которая гармонически соотносится с основным тоном вибрирующего тела; этот тон кратен тону атомоля.

Закон передачи вибрационной энергии.

Все колеблющиеся и вибрирующие когерентные агрегаты создают в среде, в которую они погружены, распространяющиеся вовне концентрические волны чередующихся сжатий и разрежений с периодом-частотой, равной тону агрегата.

Закон симпатических колебаний.

Любой когерентный агрегат, погруженный в среду, пульсирующую с частотой, равной собственной частоте агрегата, колеблется совместно со средой с той же частотой независимо от того, составляет ли тон среды унисон или какую-либо гармонику основного тона колеблющегося агрегата.

Закон притяжения.

Ближайшие когерентные агрегаты, вибрирующие в унисон или с гармоническим соотношением частот, взаимно притягиваются.

Закон отталкивания.

Ближайшие когерентные агрегаты, вибрирующие в диссонансе, взаимно отталкиваются.

Закон циклов.

Гармонически связанные когерентные агрегаты образуют центры вибраций, которые соотносятся с основным тоном, но не являются кратными к гармоникам, а вторичные соединения между ними порождают диссонансные тона независимо от того, являются ли они унисонами или обертонами к первоначальному тону. Так из гармонии рождается дисгармония, неизбежная причина бесконечных превращений.

Закон гармоник.

Любой агрегат в состоянии вибрации создаёт, дополнительно к своему основному тону, ряд вибраций из симметричных дробных долей самого себя, составляющих одно-, двух-, трёх- или многократное соотношение с основным тоном.

Закон силы. Энергия проявляет себя в трёх формах:

  • ПОРОЖДАЮЩЕЙ (вибрирующий агрегат),
  • ПЕРЕДАЮЩЕЙ (распространение изохронных волн в среде, в которую он погружен),
  • ПРИТЯГИВАЮЩЕЙ (его воздействие на другие агрегаты, способные вибрировать в унисон или гармонически с ним).

Закон колебания атомарной субстанции.

Когерентная атомарная субстанция способна колебаться с тоном, изменяющимся прямо пропорционально плотности и обратно пропорционально линейным размерам в пределах частот от одного периода в единицу времени (для 1-й октавы) вплоть до частоты 21-й октавы, создавая порождающую силу Звучания (Sonity), чья передающая сила (Звук) распространяется в твёрдых, жидких и газообразных средах, а её статическое воздействие (Звучность - Sonism) создаёт притяжение или отталкивание между симпатически вибрирующими телами в соответствии с Законом Гармонического Притяжения или Отталкивания.

Закон звукотеплотности.

Внутренние вибрации атомарных субстанций и атомарных молекул способны вибрировать с периодом-частотой, прямо пропорциональной их плотности, обратно пропорциональной их линейным размерам и прямо пропорциональной их целостности в пределах от 21-й до 42-й октавы. При этом создаётся порождающая сила Звукотеплотность (Sono-thermity), чья передающая сила Звукотеплота (Sono-therm) распространяется в твёрдых, жидких, газообразных и сверхгазообразных средах и статически создаёт сцепление и объединение молекул или их распад в соответствии с Законом Притяжения и Отталкивания.

Закон колебания атомов.

Все атомы в состоянии целостности (tension) способны колебаться с частотой, обратно пропорциональной кубу их атомных весов и прямо пропорциональной степени их целостности, в пределах от 42-й до 63-й октавы в секунду. При этом создаётся порождающая сила, Теплотность (Thermity), чья передающая сила, Рад-энергия (Radenergy)*, распространяется в твёрдом, жидком, газообразном эфире и производит статическое воздействие (Cohesion and Chemism - Сцепление и Химизм) на другие атомы, вызывая их соединение или распад в соответствии с Законом Гармонического Притяжения и Отталкивания.

Закон вибраций атомолярных субстанций.

Атомы способны вибрировать внутри себя с частотой, обратно пропорциональной Дину (локальному коэффициенту гравитации) и атомному объёму и прямо пропорциональной атомному весу. При этом создаётся порождающая сила (Электричество), чья передающая сила распространяется в атомолярных твёрдых, жидких, газообразных средах и создаёт индукционное и статическое магнитное воздействие на другие атомы, вызывая их притяжение или отталкивание в соответствии с Законом Гармонического Притяжения и Отталкивания.

Закон колебания атомолей.

Атомоли, колеблющиеся с одинаковым тоном (определяемым их одинаковыми размерами и весом), создают порождающую силу Атомоляцию (Atomolity), чья передающая форма, Гравизм, распространяется в более разряженной среде и производит статическое воздействие на все другие атомоли, именуемое Гравитацией (Gravity).

Закон преобразования сил.

Все силы являются различными формами Универсальной Энергии, которые отличаются своими периодами-частотами, переходящими друг в друга через неразличимые приращения; при этом каждая форма занимает диапазон в 21 октаву.

Каждую форму или тон можно преобразовать в эквивалентную высоту другого тона, расположенного выше или ниже на шкале из 105 октав. Данное преобразование может осуществляться только через статическое воздействие, развиваемое либо вибрациями гармонических тонов, выше и ниже их основного тона, либо близлежащими системами при сложении и вычитании их тонов, или каким-то третьим образом, в зависимости от конкретных условий.

Закон атомного тона.

Каждый атом имеет свой собственный определённый тон естественной вибрации. Закон изменения атомного тона посредством Рад-энергии. Высота тона высших гармоник и обертонов излучаемой

Рад-энергии достаточна для того, чтобы вызвать расширение атома; это же воздействие, побуждая атомоли непрерывно вибрировать, вызывает сжатие атома; таким образом, через изменение объёма меняется тон атома.

Закон изменения атомного тона посредством электричества и магнетизма.

Электричество и магнетизм порождают внутренние вибрации в атоме, которые сопровождаются пропорциональными изменениями его объёма, и, следовательно, тона.

Одной из ошибок современной науки является рассмотрение одних феноменов в изоляции от других, физика симпатических вибраций открывает нам бесконечность мироздания, в которой все предметы и явления - части Единого Целого. опубликовано

Воздействие музыки на структуру воды. Опыты японских учёных.

О воздействии на воду простых слов и мыслей

Память воды. Привороты на воде. Запись эфира РЕН-ТВ.

Фрагмент документального фильма «Секретные истории: Закон мирового кодирования».
Телекомпания РЕН ТВ, передача была в эфире в декабре 2009 г.

P.S. И помните, всего лишь изменяя свое сознание - мы вместе изменяем мир! © econet