Какие измерения бывают по характеру точности. Виды измерений и их характеристика

Виды измерений

Измерения как экспериментальные процессы весьма разнообразны. Это объясняется множеством экспериментальных величин, различным характером измерения величин, различными требованиями точности измерения и другие.

Наиболее распространена классификация видов измерений в зависимости от способа обработки экспериментальных данных. В соответствии с этой классификацией измерения делятся на прямые, косвенные, совместные и совокупные.

Косвенное измерение

Косвенное измерение - измерение, при котором искомое значение величины находится на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.

  • сопротивление резистора находим на основании закона Ома подстановкой значений силы тока и напряжения, получаемых в результате прямых измерений. (Проводим прямое измерение напряжения, проводим прямое измерение тока, потом на основании полученных ДВУХ чисел получаем косвенное «измерение» сопротивления)

Замечания (касается РФ)

Проблема данного определения в том, что под такую трактовку понятия «Косвенного измерения» попадают любые программные расчеты на ЭВМ. Это не гипотетическая ситуация - ВНИИМС выпустил соответствующие МИ 2955-2010, МИ3290-2010, МИ3286, МИ 2955-2010 это «Типовая методика аттестации программного обеспечения средств измерений». Теперь, все программное обеспечение АИИС (автоматизированные информационно-измерительные системы), обрабатывающее результаты измерений считается выполняющим и требует фиксации, аттестации, проверки. Под «фиксацией» в данных методиках испытаний (МИ) понимают расчет контрольных сумм файлов, и при любых изменениях контрольных сумм необходимо переповерять и переаттестовывать систему. Под подобную трактовку попадают любые программы, связанные с расчетами за электроэнергию, газ, воду, тепло и т. д. Естественно, поверку и аттестацию предполагается выполнять не бесплатно.

Совместное измерение

Совместное измерение - одновременное измерение нескольких неодноименных величин для нахождения зависимости между ними. При этом решается система уравнений.

  • определение зависимости сопротивления от температуры . При этом измеряются неодноименные величины, по результатам измерений определяется зависимость.
  • определение зависимости тока от напряжения: меняем напряжение, и смотрим, как при этом меняется ток, проводим соответствующие измерения меняющихся напряжения и тока, получаем зависимость тока от напряжения, а потом определяем, что это за зависимость, и все ее параметры.

Совокупное измерение

Совокупное измерение - это проведение ряда измерений (чаще всего прямых, но, вообще-то, измерения из ряда могут быть любыми - вспомните, как получаются сложные функции в математике) нескольких величин одинаковой размерности в различных сочетаниях, после чего искомые значения величин находятся решением системы уравнений. Число уравнений при этом должно быть равно числу измерений.

  • измерение сопротивления резисторов, соединённых треугольником. При этом измеряется значение сопротивления между вершинами. По результатам определяются сопротивления резисторов.
  • определение масс гирь набора гирь (1, 2, 2, 5) кг с использованием одной эталонной гири 1 кг и компаратора масс («весов», предназначенных для определения разности масс двух грузов). Компарируют, например:

Эталон с гирей 1 кг из набора; - эталон + гирю 1 кг из набора с гирей 2 кг из набора; - эталон + гирю 1 кг из набора с другой гирей 2 кг из набора; - гири 1 + 2 + 2 кг из набора с оставшейся гирей 5 кг из набора.

Замечания (касается РФ)

Проблема данного определения в том, что под такую трактовку понятия «Совокупного измерения» попадают любые программные расчеты на ЭВМ. Это не гипотетическая ситуация - ВНИИМС выпустил соответсвующие МИ 2955-2010, МИ3290-2010, МИ3286, МИ 2955-2010 это «Типовая методика аттестации программного обеспечения средств измерений». Теперь, все программное обеспечение АИИС (автоматизированные информационно-измерительные системы), обрабатывающее результаты измерений считается выполняющим «косвенные (или совокупные) измерения» и тебует фиксации, аттестации, поверки. Под «фиксацией» в данных методиках испытаний (МИ) понимают расчет контрольных сумм файлов, и при любых изменениях контрольных сумм необходимо переповерять и переаттестовывать систему. Под подобную трактовку попадают любые программы, связанные с расчетами за электроэнергию, газ, воду, тепло и т. д. Естественно, поверку и аттестацию предполагается выполнять не бесплатно.


Wikimedia Foundation . 2010 .

  • Виды дрессировки собак
  • Виды навесов

Смотреть что такое "Виды измерений" в других словарях:

    Виды преобразователей расхода жидкости (газа) - Преобразователь расхода жидкости (газа), в котором создается сигнал измерительной информации, основанный на зависимости акустического эффекта в потоке жидкости (газа) от ее расхода Источник: ГОСТ 15528 86: Средства измерений рас …

    Виды расходомеров жидкости (газа) - Расходомер жидкости (газа), принцип действия которого основан на зависимости акустического эффекта в потоке жидкости (газа) от ее расхода Источник: ГОСТ 15528 86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Тер … Словарь-справочник терминов нормативно-технической документации

    Виды счетчиков для измерения объема или массы протекающей жидкости (газа) - Счетчик жидкости (газа), принцип действия которого основан на том, что при помощи различных подвижных преобразовательных элементов жидкость (газ) разделяют на доли объема, а затем производят их циклическое суммирование Источник … Словарь-справочник терминов нормативно-технической документации

    Виды испытаний - Термины рубрики: Виды испытаний Акт технического испытания Арбитражные измерения Аттестация методики испытаний База испытаний …

    Мир измерений (журнал) - Мир измерений ежемесячный метрологический научно технический журнал. Содержание 1 Назначение 2 История 3 Аудитория 4 … Википедия

    вид измерений - Часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин. Пример. В области электрических и магнитных измерений могут быть выделены как виды измерений: измерения электрического сопротивления,… … Справочник технического переводчика

    Градуировка средств измерений - – метрология, операция, в результате которой определяется градуировочная характеристика средства измерений, т. е. зависимость показаний гредства измерений от измеряемой физ. величины. Г. производится обычно с помощью более точных, чем… … Энциклопедия терминов, определений и пояснений строительных материалов

    ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения - Терминология ГОСТ 15528 86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа: 26. Акустический преобразователь расхода D. Akustischer Durch flußgeber E. Acoustic flow transducer F … Словарь-справочник терминов нормативно-технической документации

    Эталон единицы измерений - – эталон, воспроизводящий одно значение измеряемой величины (одну точку шкалы). Примечание. Воспроизводимое эталоном единицы измерений значение величины может отличаться от единицы измерений. В настоящее время воспроизводят значение единицы … Энциклопедия терминов, определений и пояснений строительных материалов

    Вид средства измерений - – совокупность средств измерений, предназначенных для измерений данной физической величины. [РМГ 29 99] Рубрика термина: Приборы Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника … Энциклопедия терминов, определений и пояснений строительных материалов

Книги

  • Автоматизация измерений, контроля и испытаний. Учебник для студентов учреждений высшего профессионального образования , Латышенко Константин Павлович. Учебник создан в соответствии с Федеральным государственным образовательным стандартом по направлению подготовки`Стандартизация и метрология`(квалификация`бакалавр`). Рассмотрены виды…

Измерение – нахождение истинного значения физической величины опытным путём с использованием специальных технологических устройств, имеющих нормированные характеристики.

Существует 4 основных вида измерений:

1)Прямое измерение – измерение, при котором искомое значение физической величины находят непосредственно из опытных данных или с помощью технического средства измерения непосредственно отсчитывающего значение измеряемой величины по шкале. В этом случае уравнение измерения имеет вид: Q=qU .

2)Косвенное измерение – измерение, при котором значение физической величины находят на основании известной функциональной зависимости между этой величиной и величинами, подлежащими прямым измерениям. В этом случае уравнение измерения имеет вид: Q=f(x1,x2,…,xn) , где x1 - xn – физические величины, полученные путём прямых измерений.

3)Совокупные измерения – производятся одновременно измерение нескольких одноименных величин, при котором искомое значение находят путём решения системы уравнений, полученных при прямых измерениях различных сочетаний этих величин.

4)Совместные измерения – производимые одновременно двух или нескольких неодноимённых физических величин для нахождения функциональной зависимости между ними. Как правило, эти измерения проводятся путём клонирования эксперимента и составления таблицы матрицы рангов.

Кроме того измерения классифицируется по: условиям проведения, характеристике точности, числу выполняемых измерений, характеру измерений во времени, выражению результата измерений.

9. Метод измерений. Классификация методов измерения.

Метод измерений – совокупность приёмов использования принципов и средств измерения. Все существующие методы измерений условно делятся на 2 основных вида:Метод непосредственной оценки – значения определяемой величины определяется непосредственно по отчетному устройству прибора или измерительного устройства прямого действия.Метод сравнения с мерой – измеряется величина, сравнивающаяся с величиной заданной мерой. При этом сравнение может быть переходное, равновремённое, разновремённое и другие. Метод сравнения с мерой делится на следующие два метода:- Нулевой метод - предусматривает одновременное сравнение измеряемой величины и меры, а результирующий эффект воздействия доводится с помощью прибора сравнения до нуля.- Дифференциальный - на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой, пример – схема неуравновешенного моста.

Оба эти метода делятся на следующие:

1) Метод противопоставления – измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения с помощью которого устанавливаются соотношения между этими величинами. (во сколько раз?)

2) Метод замещения – измеряемую величину замещают известной величиной, воспроизводимой мерой. Широко применяется при измерении неэлектрических величин, при этом методе одновременно или периодически сравнивается измеряемая величина с мерной величиной, а далее измеряют разницу между ними, используя совпадение отметок шкалы или совпадение периодических сигналов по времени.

3) Метод совпадений – разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадения отметок шкал или периодических сигналов.

Из всех методов измерения метод сравнения с мерой является более точным по сравнению с методом непосредственной оценки, причём дифференциальный метод измерения является более точным, чем нулевой метод измерения.

Недостатком нулевого метода измерения является необходимость иметь большой число мер, различных сочетаний для воспроизведения мерных величин кратных измеряемым. Разновидностью нулевого метода является компенсационный метод измерения, при котором происходит измерения физической величины без нарушения процесса в котором она участвует.

1. По точности оценки погрешности

Технические

Лабораторные (исследовательские)

    с точным оцениванием погрешности

    с приближенным оцениванием погрешности

Метрологические

    эталонные

Контрольно-поверочные

2. По связи с объектом:

    контактные

    бесконтактные

4. По способу получения результата:

    прямые

    косвенные

    совокупные

    совместные

3. По характеру изменения измеряемой величины:

    статические

    динамические

    статистические

5. По методу измерения:

    непосредственной оценки

    сравнения с мерой:

    противопоставления

    дифференциальный

    нулевой

    замещения

    дополнения

6. По отношению к основным единицам:

    абсолютные

    относительные

7. По условиям измерений

    равноточные

    неравноточные

9. По числу измерений величины:

    однократные

    многократные

8. По природе измеряемой величины:

    механические

    электрические и магнитные

    теплофизические

    оптические

    физико-химические

    акустические

    радиационные

10. По степени достаточности измерений:

    необходимые

    избыточные

1. Технические измерения – измерения, проводимые с помощью рабочих средств измерений. Применяются с целью контроля и управления в процессе производства на предприятиях различных отраслей промышленности, в социальной сфере, в быту. Например, измерения температуры в ходе технологического процесса, измерение плотности раствора формальдегида при контроле качества формалина, времени пробега 100 метров спортсменом, массы трех окорочков на рынке. При технических измерениях нет необходимости определять и анализировать погрешности получаемых результатов. Поэтому принимается приписанная средству измерений или методике выполнения измерений погрешность, достаточная для решения данной практической задачи. Технические измерения наиболее массовый вид измерений

Метрологические измерения – измерения, проводимые при помощи эталонов и образцовых средств измерений с целью воспроизведения единиц физических величин и передачи их размера рабочим средствам измерений. Эталонные измерения – это измерения максимально возможной точности, достижимые при существующем уровне развития техники и технологий, например, измерения фундаментальных физических констант – абсолютного значения ускорения свободного падения, массы изотопов химических элементов. В контрольно-поверочных измерениях погрешность должна быть определена или подтверждена и не должна превышать заданного значения. Сюда относятся измерения, выполняемые лабораториями государственного метрологического надзора. Например, «ГОСТ 8.024-75 ГСИ. Государственный первичный эталон и общесоюзная поверочная схема для СИ плотности жидкости».

Лабораторные измерения являются промежуточными между техническими и метрологическими и могут быть выполнены с различной точностью в зависимости от цели исследования.

2. Контактный метод измерений, контактный метод – чувствительный элемент прибора приводится в контакт с объектом измерения. Примеры: 1. Измерение диаметра вала штангенциркулем, измерительной скобой или контроль проходным и непроходным калибрами. 2.Измерение температуры тела термометром.

Бесконтактный метод измерений, бесконтактный метод – метод измерений, основанный на том, что чувствительный элемент средства измерений не приводится в контакт с объектом измерения. Примеры: 1. Измерение расстояния до объекта радиолокатором.. 2. Измерение температуры в доменной печи пирометром.

3. Статическое измерение – измерение физической величины, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерений. Пределы допускаемых отклонений не существенны по отношению к номинальному значению измеряемой величины. Примеры:1. Измерение электрической проводимости растра электролита при постоянной температуре. 2. Измерение массы соли при фасовке её в пакеты.

Динамическое измерение – измерение изменяющейся по размеру физической величины. Примечания: 1. Термин «динамическое» относится к измеряемой величине. 2. Строго говоря, все физические величины подвержены тем или иным изменениям во времени. Это и убеждает в необходимости применения все более и более чувствительных средств измерений, которые дают возможность обнаруживать изменение величин, ранее считавшихся постоянными, поэтому разделение измерений на динамические и статические является условным .

Примеры: измерения переменных по амплитуде сигналов электротехнике, радиотехнике, электронике. В аналитической химии – это сигнала в хроматографии, спектрометрии, вольтамперометрии. Результат измерения представляют изменяющейся во времени величиной с указанием моментов времени, которым соответствуют эти значения.

4. Прямые измерения – измерения при которых искомое значение величины получают непосредственно. Например, длину измеряют непосредственно линейкой, температуру – термометром, силу – динамометром, силу тока – амперметром, напряжения - вольтметром, электрическое сопротивления - омметром, массы на весах. Уравнение прямого измерения: Х = q , где kX – цена деления средства измерения. Косвенные измерения . Определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной. Например, объем параллелепипеда находят умножением трех линейных величин (длины, ширины и высоты); электрическое сопротивление – делением падения измеренного вольтметром напряжения на силу измеренного амперметром электрического тока, концентрацию свинца в рыбных консервах методом атомно-абсорбционной спектрометрии, инверсионной вольтамперометрии – по градуировочноу графику в координатах измеряемое значение свойства - концентрация. Уравнение косвенного измерения: Х = f(у 1 , у 2 ,…,у n ) , где у i –значения i величин, найденных прямыми измерениями.

Совокупные измерения – проводимые одновременно измерения нескольких одноименных (однородных) величин, при которых искомое значение находят путём решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях. Например, при определении концентрации двух компонентов по спектру поглощения составляют систему уравнений: 1 ( 1 1 + 2 ( 1 2 = А 1

1 ( 2 1 + 2 ( 2 2 = А 2

где А – измеряемая величина оптической плотности раствора при длинах волн 1 и 2

1 и 2 - молярные коэффициенты светопоглощения, табличные значения.

Совместные измерения - проводимые одновременно (прямые и косвенные) измерения двух или нескольких разноименных (разнородных) величин для нахождения функциональной зависимости между ними. Например, сопротивление R t проводника при фиксированной температуре t определяется по формуле R t = R 0 (1 +  t) , где R 0 и - соответственно сопротивление при известной температуре t 0 (обычно 20 o C ) и температурный коэффициент (эти величины постоянные и измерены косвенным методом); t = t – t 0 - разность температур; t - заданное значение температуры, измеряемое прямым методом.

5. Метод измерений – прием или совокупность приемов сравнения измеряемой физической величины с её единицей в соответствии с реализованным принципом измерений. Метод измерений обычно обусловлен устройством средств измерений.

Метод непосредственной оценки – метод измерений, при котором значение величины определяют непосредственно по показывающему средству измерений. Пример: давление манометром, время секундомером, масса на циферблатных весах, температуру ртутным термометром и т.д.

Метод сравнения с мерой – метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой. Пример: – измерение массы на рычажных весах с уравновешиванием гирями (мерами), измерение содержания элемента в образце сравнением со стандартным образцом состава,

Нулевой метод измерений – метод сравнения с мерой, в которой результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля. Пример: измерение электрического сопротивления, индуктивностей и ёмкостей с помощью моста с полным его уравновешиванием, взвешивание на равноплечих весах

Метод измерений замещением метод сравнения с мерой, в котором измеряемую величину замещают мерой с известным значением величины.

Метод измерений дополнением – метод сравнения с мерой, в котором значение измеряемой величины дополняется мерой этой же величины с таким расчетом, чтобы на прибор сравнения воздействовала их сумма, равная заранее заданному значению.

Дифференциальный метод измерений - метод сравнения с мерой, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение. Незначительно отличающееся от значения измеряемой величины. и при котором измеряется разность между этими двумя величинами.

6. Абсолютное измерение – измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании физических констант, то есть в абсолютных единицах.. Примечание – Понятие «абсолютное измерение» применяется как противоположное понятию «относительное измерение» и рассматривается как измерение величины в ее единицах.

Относительное измерение – измерение отношения величины к одноименной величине, играющей роль единицы, или измерение величины по отношению к одноименной величине, принимаемой за исходную, то есть в относительных единицах. Примеры: измерение величины пропускания в инфракрасной спектрометрии, относительная влажность воздуха – есть отношение количества водяных паров в 1 м 3 воздуха к количеству водяных паров, которое насыщает 1 м 3 воздуха при данной температуре. Относительные измерения при прочих равных условиях могут быть выполнены более точно, чем абсолютные, так как в суммарную погрешность не входит погрешность меры величины.

7. Равноточные измерения – ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой точностью. Примечание: прежде чем обрабатывать ряд измерений, необходимо убедиться в том, что все измерения этого ряда являются равноточными . Методика обработки равноточных и неравноточных измерений различна, она более простая в первом случае.

Неравноточные измерения – ряд измерений какой-либо величины, выполненных различающимися по точности средствами измерений и (или) в разных условиях. Примечание – Ряд неравноточных измерений обрабатывают с учетом веса отдельных измерений, входящих в ряд.

8. Однократное измерение – измерение, выполненное один раз. Примечание Во многих случаях на практике выполняются именно однократные измерения. Например, измерение конкретного момента времени по часам обычно производится один раз. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями. Для исключения грубой ошибки – промаха следует проводить два - три однократных измерения и находить конечный результат как среднее арифметическое значение из двух или трёх измерений.

Многократное измерение – измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, то есть состоящее из ряда однократных измерений, чаще всего более четырех. Преимущество многократных измерений – в значительном снижении влияний случайных факторов на погрешность измерения.

Прежде чем разбираться в сущности каких-либо явлений, удобно их сначала упорядочить, т.е. классифицировать.

Измерения подразделяются на виды измерений - часть области измерений,

имеющая свои особенности и отличающаяся однородностью измеряемых величин, и методы измерений - часть области измерений, состоящая в различии приемов использования принципов и средств измерений.

    • Классификация видов измерений

Классификацию видов измерений можно проводить по различным классификационным признакам, к которым можно отнести следующие: способ нахождения численного значения физической величины, число наблюдений, характер зависимости измеряемой величины от времени, число измеряемых мгновенных значений в заданном интервале времени, условия, определяющие точность результатов, способ выражения результатов измерения (рис. 2.1) .
По способу нахождения численного значения физической величины измерения подразделяются на следующие виды: прямые, косвенные, совокупные и совместные.
Прямым измерением называют измерение, при котором значение измеряемой физической величины находят непосредственно из опытных данных. Прямые измерения характеризуются тем, что эксперимент как процесс измерения производится над самой измеряемом величиной, имея в виду то или
иное её проявление. Прямые измерения выполняются при помощи средств, предназначенных для измерения данных величин. Числовое значение измеряемой величины отсчитывается непосредственно по показанию измерительного прибора. средств, величин. Примеры прямых измерений: измерение тока амперметром; напряжения - компенсатором; массы - на рычажных весах и др.
Зависимость между измеряемой величиной X и результатом измерения Y при прямом измерении характеризуется уравнением X = Y, т.е. значение измеряемой величины принимается равным полученному результату.
К сожалению, прямое измерение не всегда можно провести. Иногда нет под рукой соответствующего измерительного прибора, или он неудовлетворяет.

по точности, или даже вообще ещё не создан. В этом случае приходится прибегать к косвенному измерению.
Косвенными измерениями называют такие измерения, при которых значение искомой величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При косвенных измерениях измеряют не собственно определяемую величину, а другие величины, функционально с ней связанные. Значение измеряемой косвенным путем величины X находят вычислением по формуле
X = F (Y 1 , Y 2 , … , Yn ),
где Y1 , Y2 , … Yn - значения величин, полученных путем прямых измерений.
Примером косвенного измерения является определение электрического сопротивления с помощью амперметра и вольтметра. Здесь путем прямых измерений находят значения падения напряжения U на сопротивлении R и ток I через него, а искомое сопротивление R находят по формуле
R = U / I .
Операцию вычисления измеряемой величины может производить вручную или с помощью вычислительного устройства, помещенного в прибор.
Прямые и косвенные измерения в настоящее время широко используются на практике и являются наиболее распространенными видами измерений.
Совокупные измерения - это производимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин находят решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин.
Например, для определения значений сопротивлений резисторов, соединенных треугольником (рис. 2.2), измеряют сопротивления на каждой
паре вершин треугольника и получают систему уравнений
;
;
.
Из решения этой системы уравнений получают значения сопротивлений

, , ,
где .
Совместные измерения - это производимые одновременно измерения двух или нескольких неодноименных величин X1, X2,…,Xn , значения которых находят решением системы уравнений:
Fi(X1, X2, … ,Xn; Yi1, Yi2, … ,Yim) = 0,
где i = 1, 2, …, m > n; Yi1, Yi2, … ,Yim - результаты прямых или косвенных измерений; X1, X2, … ,Xn - значения искомых величин.
Например, индуктивность катушки L = L0 × (1 + w 2 × C × L0), где L0 - индуктивность при частоте w = 2 × p × f , стремящейся к нулю; С - межвитковая емкость. Значения L0 и С нельзя найти прямыми или косвенными измерениями. Поэтому в простейшем случае измеряют L1 при w 1 , а затем L2 при w 2 и составляют систему уравнений:
L1 = L0 × (1 + w 1 2 × C × L0);
L2 = L0 × (1 + w 2 2 × C × L0),
решая которую, находят искомые значения индуктивности L0 и емкости С:
; .
Совокупные и совместные измерения есть обобщение косвенных измерений на случай нескольких величин.
Для повышения точности совокупных и совместных измерений обеспечивают условие m ³ n, т.е. число уравнений должно быть больше или равно числу искомых величин. Получающуюся при этом несовместную систему уравнений решают методом наименьших квадратов.
По числу наблюдений измерения подразделяются на (рис.2.1):
- обыкновенные измерения - измерения, выполняемые с однократным наблюдением;
- статистические измерения - измерения с многократными наблюдениями.
Наблюдение при измерении - экспериментальная операция, выполняемая в процессе измерений, в результате которой получают одно значение из группы значений величин, подлежащих совместной обработке для получения результатов измерений.
Результат наблюдения - результат величины, получаемый при отдельном наблюдении.
По характеру зависимости измеряемой величины от времени измерения разделяются:
- на статические, при которых измеряемая величина остается постоянной во времени в процессе измерения;
- динамические, при которых измеряемая величина изменяется в процессе измерения и является непостоянной во времени.
При динамических измерениях для получения результата измерения необходимо учитывать это изменение. А для оценки точности результатов динамических измерений необходимо знание динамических свойств средств измерений .
По числу измеряемых мгновенных значений в заданном интервале времени измерения подразделяются на дискретные и непрерывные (аналоговые).
Дискретные измерения - измерения, при которых на заданном интервале времени число измеряемых мгновенных значений конечно.
Непрерывные (аналоговые) измерения - измерения, при которых на заданном интервале времени число измеряемых мгновенных значений бесконечно.
По условиям, определяющим точность результатов , измерения бывают:

  • максимально возможной точности, достигаемой при существующем уровне техники;
  • контрольно-поверочные, погрешность которых не должна превышать

некоторое заданное значение;
- технические, в которых погрешность результата определяется характеристиками средств измерений .
По способу выражения результатов измерения различают абсолютные и относительные измерения.
Абсолютные измерения - измерения, основанные на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.
Относительные измерения - измерения отношения величины к одноименной величине, играющей роль единицы, или измерения величины по отношению к одноименной величине, принимаемой за исходную .

2.2. Методы измерений и их классификация

Все измерения могут производиться различными методами. Различают следующие основные методы измерений: метод непосредственной оценки и методы сравнения c мерой .
2.2.1. Метод непосредственной оценки характеризуется тем, что значение измеряемой величины определяется непосредственно по отсчетному устройству измерительного прибора, заранее градуированного в единицах измеряемой величины. Этот метод является наиболее простым и поэтому широко применяется при измерении различных величин, например: измерение веса тела на пружинных весах, силы электрического тока стрелочным амперметром, разности фаз цифровым фазометром и т.д.

Функциональная схема измерения методом непосредственной оценки приведена на рис. 2.3.

Приборы непосредственной оценки всегда содержат измерительный преобразователь, который преобразует измеряемую величину в другую, доступную для сравнения наблюдателем или автоматическим устройством. Так, в стрелочных приборах происходит преобразование измеряемой величины в угол поворота подвижной части, который отмечается стрелкой. По положению стрелки, т.е. сравнением угла поворота с делениями на шкале находится значение измеряемой величины. Мерой в приборах непосредственной оценки служат деления шкалы отсчетного устройства. Они поставлены не произвольно, а на основании градуировки прибора. Градуировка прибора непосредственной оценки состоит в том, что на его вход от меры подается величина заданного размера и отмечается показание прибора. Этому показанию затем присваивается значение известной величины. Таким образом, деления шкалы отсчетного устройства являются как бы заменителем («отпечатком») значения реальной физической величины и поэтому могут быть использованы непосредственно для нахождения значений измеряемых прибором величин. Следовательно, все приборы непосредственной оценки фактически реализуют принцип сравнения с физическими величинами. Но это сравнение разновременное и осуществляется опосредованно , с помощью промежуточного средства - делений шкалы отсчетного устройства.
2.2.2. Методы сравнения с мерой - методы измерений, в которых известную величину сравнивают с величиной, воспроизводимой мерой. Эти методы по сравнению с методом непосредственной оценки более точны, но несколько сложны. Группа методов сравнения с мерой включает в себя следующие методы: противопоставления, нулевой, дифференциальный, совпадения и замещения.
Определяющим признаком методов сравнения является то, что в процессе каждого измерительного эксперимента происходит сравнение двух однородных независимых друг от друга величин - известной (воспроизводимой мерой) и измеряемой. При измерениях методами сравнения используются реальные физические меры, а не их «отпечатки».
Сравнение может быть одновременным, когда мера и измеряемая величина воздействуют на измерительный прибор одновременно, и разновременным , когда воздействие измеряемой величины и меры на измерительный прибор разнесено во времени. Кроме того, сравнение может быть непосредственным и опосредованным . В первом случае измеряемая величина и мера непосредственно воздействуют на устройство сравнения, а во втором - через другие величины, однозначно связанные с известной и измеряемой величинами.
Одновременное сравнение осуществляется обычно методами противопоставления , нулевым, дифференциальным и совпадения , а разновременное - методом замещения .
Метод противопоставления - метод сравнения с мерой в котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения, с помощью которого устанавливается соотношение между этими величинами . Функциональная схема метода противоставления приведена на рис. 2.4.
В этом методе измеряемая величина Х и мера Х0 воздействуют на два входа прибора сравнения. Результирующий эффект воздействия определяется разностью этих величин, т.е. e = Х - Х0 и снимается с отсчетного устройства прибора сравнения. Результат измерения находят как
Y = X0 + e .
Этот метод удобен, если имеются точная многозначная мера и несложные

устройства сравнения. Примером этого метода является взвешивание груза на равноплечих весах с помещением измеряемой массы и уравновешивающих её гирь на двух чашках весов и с полным уравновешиванием весов. При этом измеряемая масса определяется как сумма массы гирь, её уравновешивающих, и показания по шкале весов. Метод противопоставления позволяет значительно уменьшить воздействие на результат измерений влияющих величин, поскольку последние более или менее одинаково искажают сигналы как в цепи преобразования измеряемой величины, так и в цепи преобразования величины, воспроизводимой мерой. Отсчетное устройство прибора сравнения реагирует на разность сигналов, вследствие чего эти искажения в некоторой степени компенсируют друг друга. Этот метод также применяют при измерении ЭДС, напряжения, тока и сопротивления .
Нулевой метод является разновидностью метода противопоставления, в котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля. Функциональная схема нулевого метода измерения приведена на рис. 2.5.
Здесь измеряемая величина X и мера X0 воздействуют на два входа измерительного прибора сравнения. Результирующий эффект воздействия определяется разностью этих величин, т.е. e = X - X0 . Изменяя величину, воспроизводимую мерой (это схематически указано на рисунке стрелкой), можно довести величину e до 0. Это обстоятельство отмечается индикатором нуля. Если e = 0, то Х = Хо, результат измерения Y есть полученное значение
меры, т.е. Y = X0 .

Поскольку на индикатор нуля воздействует разность величин, то его предел измерения может быть выбран меньшим, а чувствительность большей, чем у прибора для измерения X методом непосредственной оценки. Точность индикации равенства двух величин может быть весьма большой. А это ведет к повышению точности измерения. Погрешность измерения нулевым методом определяется погрешностью меры и погрешностью индикации нуля. Вторая составляющая обычно много меньше первой, практически точность измерения нулевым методом равна точности меры.
Примерами нулевых методов измерений являются: измерение массы на равноплечих весах с помещением измеряемой массы и уравновешивающих её гирь на двух чашках весов и полным уравновешиванием весов или измерение напряжения путем компенсации его напряжением образцового источника (в обоих случаях осуществляется непосредственное сравнение); а также измерение электрического сопротивления мостом с полным его уравновешиванием (опосредованное сравнение).
Нулевой метод измерения требует обязательного применения многозначных мер. Точность таких мер всегда хуже однозначных мер, кроме того, мы можем не иметь меры переменной величины. В таком случае нулевой метод не применим.
Дифференциальный метод представляет собой метод сравнения с мерой, в котором на измерительный прибор (обязательно прибор сравнения) воздействует разность измеряемой величины и известной величины, воспроизводимой мерой, причем эта разность не доводится до нуля, а измеряется измерительным прибором прямого действия.
На рис. 2.6 показана функциональная схема дифференциального метода.
Здесь мера имеет постоянное значение Х0, разность измеряемой величины Х и меры Х0, т.е. e = Х - Х0, не равна нулю и измеряется измерительным прибором. Результат измерения находятся как
Y = X0 + e .

То обстоятельство, что здесь измерительный прибор измеряет не всю величину Х, а только её часть e, позволяет уменьшить влияние на результат измерения погрешности измерительного прибора, причем влияние погрешности измерительного прибора тем меньше, чем меньше разность e .
Действительно, при измерении напряжения U = 97 В вольтметром непосредственной оценки с пределом измерения 100 В и допущенной относительной погрешности измерения этого напряжения 1 % (0,01) мы получаем абсолютную погрешность измерения D1 = 97×0,01 = 0,97 » 1 В. Если же будем измерять это напряжение дифференциальным методом с использованием образцового источника напряжения U0 = 100 В, то разность напряжений U - U0 = (97 - 100)В = - 3 В мы можем измерить вольтметром с пределом измерения всего 3 В. Пусть относительная погрешность измерения этого напряжения будет также равна 1 % . Это даёт абсолютную погрешность измерения напряжения 3 В: D2 = 3×0,01 = 0,03 В. Если эту погрешность привести к измеряемому напряжению U , мы получим относительную погрешность измерения напряжения: D2/U = 0,03/97 » 0,0003 (0,03 %), т.е. приблизительно в 30 раз меньше, чем при измерении напряжения U методом непосредственной оценки. Это увеличение точности измерения произошло потому, что в первом случае прибором была измерена почти вся величина с относительной погрешностью в 1 % , а во втором случае измеряется не вся величина, а только её 1/30 часть.
В этих расчетах не учитывалась погрешность меры, которая полностью входит в результат измерения. Следовательно, при малых разностных величинах e точность измерения дифференциальным методом приближается к точности измерения нулевым методом и определяется лишь погрешностью меры. Кроме того, дифференциальный метод не требует меры переменной величины.
В приведенном выше примере измерения напряжения дифференциальным методом использовалось непосредственное сравнение.
Другим примером дифференциального метода измерения может служить определение отклонения сопротивления резистора от номинала неуравновешенным (процентным) мостом (здесь реализуется опосредованное сравнение).
Метод совпадений (или метод «нониуса») представляет собой метод сравнения с мерой, в котором разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадение отметок шкал или периодических сигналов.
Этот метод применяется в тех случаях, когда измеряемая величина меньше цены деления заданной меры. При этом применяются две меры с разными ценами деления, которые отличаются на размер оцениваемого разряда отсчетов.
Пусть имеем одну калиброванную меру с ценой деления D xk1 и измеряемую величину D x, которая меньше цены деления. В этом случае используют вторую меру с ценой деления D xk2 . Таким образом, если чувствительность необходимо увеличить в п раз, то соотношение между ними будет иметь вид
D xk2 = D xk1 ×(1 - 1/ n).
В частности, при n = 10 D xk2 =0,9 × D xk1 .
Измеряемую величину D x устанавливают между нулевыми отметками мер и находят число N x , равное номеру совпавших делений мер (рис. 2.7). В этом случае справедливо соотношение Nx × D xk1 = D x + Nx × D xk2 , откуда
Dx = Nx×(Dxk1 - Dxk2) = Nx×(Dxk1 - 0,9×Dxk1) = Nx×0,1×Dxk1 .
Примером измерения методом совпадения может служить измерение длины детали с помощью штангенциркуля с нониусом, другим примером - измерение частоты вращения детали с помощью мигающей лампы стробоскопа: наблюдая положение метки на вращающейся детали в моменты вспышек лампы, по частоте вспышек и смещению метки определяют частоту вращения детали. Метод "нониуса" находит также широкое применение при измерении временных интервалов двух близких частот (биений) и в других случаях .

Функциональная схема прибора, работающего по методу совпадений с масштабным преобразованием только величины, воспроизводимой мерой, показана на рис. 2.8. Здесь величина X0 однозначной меры подвергается масштабному преобразованию для выработки величин n1X0, n2X0, … njX0, … nkX0, Эти величина подаются на k- устройств сравнения, к ним же прикладывается и измеряемая величина Х. Логическое устройство указывает номер устройства сравнения, у которого Х - njX0 = min и определяет измеряемую величину на основе приближенного соотношения X = njX0. Такой метод измерения нашел применение также в цифровых приборах, измеряющих угловые и линейные перемещения. Метод совпадения требует наличия многозначных мер или масштабных преобразователей величины и величины, воспроизводимой мерой. Поэтому в измерительной технике он используется сравнительно редко.
Метод замещения есть метод сравнения с мерой, в котором измеряемую величину замещают известной величиной, воспроизводимой мерой .
Функциональная схема метода замещения изображена на рис. 2.9. В нем используется измерительный прибор непосредственной оценки.

Техника измерения состоит в следующем. Сначала на вход измерительного прибора подают измеряемую величину Х и отмечают показания прибора (отсчет) Y1 . После этого вместо измеряемой величины на тот же самый


вход (это очень существенно) прибора подают величину Х0, воспроизводимую мерой. В этом случае показание прибора становится равным Y2. Изменяя величину, воспроизводимую мерой, добиваются равенства показаний, т.е. Y1= Y2 . При этом можно утверждать, что Х = Х0 независимо от погрешности измерительного прибора. Действительно, в первом случае получаем Y1= X + D1,
где D1 - погрешность измерительного прибора при получении отсчета Y1 .
При воздействии на прибор меры Y2= X + D2. Здесь D2 - погрешность измерительного прибора при получении отсчета Y2.
Поскольку мы добиваемся одинаковых показаний (Y1 = Y2), а интервал времени между двумя измерениями невелик, то на одной и той же отметке шкалы прибора погрешность одинакова, т.е. D1 = D2 . Следовательно, из равенства Y1 = Y2 или X + D1 = X + D2 вытекает, что Х = Х0.
Исключение погрешности измерительного прибора из результата измерений является новым достоинством метода замещения. В нулевом методе измерения погрешность измерительного прибора проявляет себя тем, что нулевое показание может не соответствовать равенству измеряемой величины и меры, а в дифференциальном методе она представляет собой погрешность измерения разности меры и измеряемой величины. Для получения большой точности измерения нулевым и дифференциальным методом необходимо, чтобы погрешности измерительных приборов были невелики. А вот метод замещения не требует этого условия! Даже если погрешность измерительного прибора достаточно велика, это не скажется на результате измерения. Таким образом, методом замещения можно осуществить точное измерение, имея прибор с большой погрешностью. Нетрудно сообразить, что точность измерения методом замещения определяется погрешностью меры. Правда, при более строгом подходе к методу замещения следует учитывать два обстоятельства.
Во-первых, здесь сравнение разновременное, а за время между двумя измерениями погрешность измерительного прибора может несколько измениться, так что равенство D1 = D2 несколько нарушится. Теперь становится ясно, почему измеряемая величина и мера должны подаваться на один и тот же вход прибора. Это прежде всего связано с тем, что погрешность измерительного прибора на разных входах даже при одинаковых показаниях может быть разной!
Во-вторых, метод замещения сводится к получению одинаковых показаний прибора. Само равенство показаний может быть установлено с конечной точностью. А это также ведет к погрешности измерения. Точность установления равенства показаний будет больше в приборе, обладающем большей чувствительностью.
Следовательно, при измерении методом замещения следует использовать не точный, но чувствительный и быстродействующий прибор. Тогда остаточная погрешность, обусловленная измерительным прибором, будет невелика.
Метод замещения является самым точным из всех известных методов и обычно используется для проведения наиболее точных (прецизионных) измерений. Ярким примером метода замещения является взвешивание с поочередным помещением измеряемой массы и гирь на одну и ту же чашку весов (вспомните - на один и тот же вход прибора). Известно, что таким методом можно правильно измерить массу тела, имея неверные весы (погрешность прибора), но никак не гири! (погрешность меры).
Сравнивая между собой метод замещения и метод непосредственной оценки, мы обнаружим их разительное сходство. Действительно, метод непосредственной оценки по своей сути представляет метод замещения. Почему он выделен в отдельный метод? Все дело в том, что при измерении методом непосредственной оценки мы выполняем только первую операцию - определение показаний. Вторая операция - градуировка (сравнение с мерой) производится не при каждом измерении, а лишь в процессе производства прибора и его периодических поверках. Между применением прибора и его предыдущей поверкой может лежать большой интервал времени, а погрешность измерительного прибора за это время может значительно измениться. Это и приводит к тому, что метод непосредственной оценки дает обычно меньшую точность измерения, чем метод сравнения .
Рассмотренная классификация методов измерений изображена на рис. 2.10.

Рис. 2.10. Классификация методов измерений

Рассмотренные методы определяют принципы построения измерительных приборов. Их не следует путать с методикой измерения и алгоритмом измерения.
Методика измерений - детально намеченный порядок процесса измерений, регламентирующий методы, средства, алгоритмы выполнения измерений, которые в определенных (нормированных) условиях обеспечивают измерения с заданной точностью.
Измерения должны осуществляться в соответствии с аттестованными в установленном порядке методиками. Порядок разработки и аттестации методик выполнения измерений определяется Госстандартом России.
Алгоритм измерения - точное предписание о выполнении в определенном порядке совокупности операций, обеспечивающих измерение значения физической величины.
.

Измерение – нахождение истинного значения физической величины опытным путём с использованием специальных технологических устройств, имеющих нормированные характеристики.

Существует 4 основных вида измерений:

1)Прямое измерение – измерение, при котором искомое значение физической величины находят непосредственно из опытных данных или с помощью технического средства измерения непосредственно отсчитывающего значение измеряемой величины по шкале. В этом случае уравнение измерения имеет вид: Q=qU .

2)Косвенное измерение – измерение, при котором значение физической величины находят на основании известной функциональной зависимости между этой величиной и величинами, подлежащими прямым измерениям. В этом случае уравнение измерения имеет вид: Q=f(x1,x2,…,xn) , где x1 - xn – физические величины, полученные путём прямых измерений.

3)Совокупные измерения – производятся одновременно измерение нескольких одноименных величин, при котором искомое значение находят путём решения системы уравнений, полученных при прямых измерениях различных сочетаний этих величин.

4)Совместные измерения – производимые одновременно двух или нескольких неодноимённых физических величин для нахождения функциональной зависимости между ними. Как правило, эти измерения проводятся путём клонирования эксперимента и составления таблицы матрицы рангов.

Кроме того измерения классифицируется по: условиям проведения, характеристике точности, числу выполняемых измерений, характеру измерений во времени, выражению результата измерений.

9. Метод измерений. Классификация методов измерения.

Метод измерений – совокупность приёмов использования принципов и средств измерения. Все существующие методы измерений условно делятся на 2 основных вида:Метод непосредственной оценки – значения определяемой величины определяется непосредственно по отчетному устройству прибора или измерительного устройства прямого действия.Метод сравнения с мерой – измеряется величина, сравнивающаяся с величиной заданной мерой. При этом сравнение может быть переходное, равновремённое, разновремённое и другие. Метод сравнения с мерой делится на следующие два метода:- Нулевой метод - предусматривает одновременное сравнение измеряемой величины и меры, а результирующий эффект воздействия доводится с помощью прибора сравнения до нуля.- Дифференциальный - на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой, пример – схема неуравновешенного моста.

Оба эти метода делятся на следующие:

1) Метод противопоставления – измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения с помощью которого устанавливаются соотношения между этими величинами. (во сколько раз?)

2) Метод замещения – измеряемую величину замещают известной величиной, воспроизводимой мерой. Широко применяется при измерении неэлектрических величин, при этом методе одновременно или периодически сравнивается измеряемая величина с мерной величиной, а далее измеряют разницу между ними, используя совпадение отметок шкалы или совпадение периодических сигналов по времени.

3) Метод совпадений – разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадения отметок шкал или периодических сигналов.

Из всех методов измерения метод сравнения с мерой является более точным по сравнению с методом непосредственной оценки, причём дифференциальный метод измерения является более точным, чем нулевой метод измерения.

Недостатком нулевого метода измерения является необходимость иметь большой число мер, различных сочетаний для воспроизведения мерных величин кратных измеряемым. Разновидностью нулевого метода является компенсационный метод измерения, при котором происходит измерения физической величины без нарушения процесса в котором она участвует.