Признаки живой материи. Основные свойства живой материи

ЭМБРИОЛОГИЯ

Биология развития (эмбриология) - наука о закономерностях онтогенеза многоклеточных

организмов, начиная с гаметогенеза и включая послезародышевое развитие. Биология развития изучает строение и функции зародышей на последовательных стадиях развития вплоть до становления взрослых форм и последующего старения организма. Развитие находится под контролем генетических факторов и факторов окружающей среды, оно регулируется на уровне целого организма, зачатков органов и тканей, на клеточном, субклеточном, а также молекулярном уровнях.

Биология развития опирается на достижения смежных наук - цитологии, генетики, молекулярной биологии, эволюционной теории и экологии. Поэтому изложение курса "Эмбриология" дополняется необходимыми сведениями из перечисленных выше дисциплин.

Предмет и история эмбриологии

Предмет эмбриологии, ее связь с другими биологическими дисциплинами. Краткий обзор истории эмбриологии. Воззрения Гиппократа и Аристотеля. Эмбриология XVII-XVIII вв.

Преформисты и эпигенетики. Работы К.Ф.Вольфа. Развитие эмбриологии в XIX веке. Значение работ К. Бэра. Влияние дарвинизма на эмбриологию. Сравнительно-эволюционное направление (А.О. Ковалевский, Э. Геккель, И.И. Мечников). Исторические корни экспериментальной эмбриологии, ее современные задачи. Каузально-аналитический метод, его сильные и слабые стороны. Дискуссия неопреформистов и неоэпигенетиков (В. Гис, В. Ру, Г.Дриш). Основные направления и задачи современной описательной, экспериментальной, сравнительной и теоретической эмбриологии. Ее связь с цитологией, генетикой и молекулярной биологией.

Прикладное значение эмбриологии.

Эмбриология - наука, изучающая индивидуальное развитие многоклеточного организма, а также закономерности изменений его морфофункционального состояния на протяжении всего онтогенеза.

Она включает в себя определенные разделы цитологии, гистологии, генетики и молекулярной биологии. Одним из начал эмбриологии, по-видимому, была акушерская практика (как одна из первых форм медицинской помощи). Второе начало – мировоззренческое (эмпирическое – движение от факта к факту и теоретическое – общее представление о появлении жизни, зарождении, развитии организма).

Первые теории, послужившие в дальнейшем основой для развития науки, появились во времена античности.

Эмпедокл (444 до н.э.) утверждал, что человек формируется с 31 дня по 50. Он полагал, что кости есть земля и вода, сухожилия – земля и воздух и т.п. Также считал, что рождение близнецов или уродов есть результат работы воображения матери. Считал, что зародыш начинает дышать с момента рождения.

Диоген утверждал, что плацента – орган питания зародыша. И высказал идею о последовательном развитии структур.

Гиппократ – первые регулярные знания в области эмбриологии. (460-370 гг. до н.э.) В основном связаны с акушерством и гинекологией. Труды «О диете», «О семени», «О природе ребенка». Он говорит о трёх неотъемлемых свойствах каждого тела – сухость, влажность, тепло. Они никогда не встречаются раздельно. Все процессы в организме Гиппократ сравнивает с процессами в неорганических телах и с трудовой деятельностью.

Он высказал идею о преформации: «Все части зародыша образуются в одно и то же время. Все члены отделяются друг от друга одновременно и таким же образом растут. Ни один не возникает раньше или позже другого, но те, которые по природе своей толще появляются прежде тонких, не будучи сформированы раньше» (Преформизм – всё определено изначально)

Аристотель (384-322 гг. до н.э.) Положил начало общей и сравнительной эмбриологии. Труд «О возникновении животных». Он вскрывал куриные яйца, анатомировал и изучал всевозможных зародышей хладнокровных животных и млекопитающих и даже, возможно, абортивных зародышей человека. (Эпигенез - всё возникает заново)

Аристотель:

1) Предложил классификацию животных по эмбриологическим признакам.

2) Ввел сравнительный метод изучения и заложил представления о различных путях эмбрионального развития; ему было известно яйцерождение и живорождение.

3) Установил различия между первичными и вторичными половыми признаками.

4) Отнес определение пола к ранним стадиям эмбрионального развития.

5) Выдвинул концепцию неоплодотворенного яйца как сложной машины, части которой придут в движение и станут выполнять свои функции, как только будет поднят главный рычаг.

6) Правильно истолковал функции плаценты и пуповины.

7) Связал явление регенерации с явлением эмбриогенеза.

8) Предвосхитил теорию рекапитуляции своим суждением о том, что в процессе эмбрионального развития общие признаки появляются раньше частных.

9) Предложил теорию градиентов формообразования своими наблюдениями о более быстром развитии головного конца зародыша.

10)Установил, что существующие предположения сводятся к антитезе преформация – эпигенез. Сам он настаивал на правильности второго варианта – эпигенеза.

Он также высказал идею 4х причин – материальной, действующей, формальной и финальной. В средние века превалировала четвертая, финальная причина, в силу её связи с идеей божественного начала.

Лишь Френсис Бэкон (1561-1626) доказал. Что с научной точки зрения конечная причина – ненужная концепция. До этого момента со смерти Аристотеля в эмбриологии ничего не менялось.

В 17 веке Антони Ван Левенгук изобрёл микроскоп. Описывал проникновение в матку и трубы сперматозоидов у различных живых организмов.

Полемика между К. Вольфом (Питерская академия наук) и А. Галлером.

Галлер стоял на стороне преформизма, а Вольф показал на примере развития кровеносной, а позже и пищеварительной систем, что сначала системы эти выглядят как листки, затем как желобки, и в конце концов превращаются в трубки. В 1776 составил труд «О формировании кишечника». Авторитет Галлера воспрепятствовал признанию правоты Вольфа, но, со временем, она была признана.

Работы эмбриологов 19 века К. Бэра и Х.Г. Пандера строились именно на признании правоты Вольфа.

К. Бэр. Один из крупнейших естествоиспытателей своего времени. Он развил учение Пндера о зародышевых листках, выделил анимальный (дающий покровы и НС) и вегетативный (дающий сосуды, мышцы, пищеварит. тракт) полюса, зародышевую хорду.

Он сделал выдающееся обобщение, определившее эмбриологию как самомстоятельную науку – сходство в развитии эмбрионов высших и низших животных. Закономерность заключалась в том, что сначала развиваются признаки, характерные для типа, затем класса и т.д.) – Закон Бэра. Он заметил, что онтогенез есть преформированный эпигенез. (Возникает заново, но в предопределенной форме)

Бишоф дал названия зародышевым листкам, сохранившиеся и сегодня (мезо-, энто- и эктодерма) Поставив в основу учение Т.Шванна о клетке. Он показал, что одноименные листки разных животных сходны по гистологическому строению.

Ч.Дарвин подогрел интерес к эмбриологии. Многие эволюционисты пытались использовать эмбриологические данные для подтверждения теории эволюции.

Эрнст Геккель сформулировал основной биогенетический закон «Развитие зародыша есть сжатое и сокращенное повторение эволюционного развития данной группы организмов. Оно тем полнее, чем более сохраняется палингенез (палингенез – признак или процесс в эмбриогенезе, повторяющий соответствующий признак или процесс филогенеза данного вида)

Вейсман (1834-1914) использовал цитогенетический подход, в то время как до этого пользовались лишь сравнительно эволюционным и описательным. Он предложил концепцию о неравномерном делении, о выделении зародышевого пути и о неравно наследственном митозе. Основана на опытах Бовери с аскаридами. Он описывал явление деминуции хроматина (потеря части хромосом в соматических клетках).

Опыты Ру с прижиганием половины 4х клеточного зародыша. (Из половины развивалась только пол орг-ма) Однако при изоляции половинок развивались полноценные орг-мы. Опыты Ганса Дриша с гребневиками (и прижигание, и изоляция давали уменьшение числа гребней.) Также выяснилось, что дефект, нанесенный цитоплазме незрелого яйца исправляется, а зрелого – ведет к нарушениям у зародыша. Выяснилось, что при удалении бластомеров у кольчатых червей, моллюсков развивается личинка с невосполнимыми дефектами, а у иглокожих, кишечнополостных, асцидий – нормальный зародыш. Это как бы сочетания преформизма у первых и эпигенеза у вторых.

Казуально - аналитический метод пришел на смену описательному и сравнительному. Стала формироваться экспериментальная и аналитическая эмбриология.

Сильные стороны – возможность получать принципиально новую информацию, данные.

Слабые стороны – (что будет если.. Метод основан на эксперименте, теория подгоняется под результат эксперимента. Этот метод не даёт возможности понять механизм, мы видим лишь результат действия.)

Дриш относился к неоэпигенетикам, Ру к неопреформистам.

Именно Дришу удалось установить эквипотенциальность ядер бластомеров некоторых развивающихся яиц. Он установил, что отличаются они цитоплазмой. В то же время яйца морских ежей давали абсолютно идентичные бластомеры. Дриш заключил, чот судьба бластомеров есть функция их положения в целом. (предвосхищение современных убеждений о позиционной информации). Дриш также сделала вывод, чот проспективная потенция бластомера всегда шире его проспективного значения (может развиться больше всего разного, чем получается при нормальном развитии).

Сегодня эмбриология во многом сопряжена с генетикой, молекулярной биологией и цитологией. Использование методов этих наук позволяет глубже вникать в существующие вопросы и устанавливать ранее недоступные детали. Сегодня эмбриология во многом перешла на микроуровень. Экспериментальная эмбриология в наше время во многом урезана в своих возможностях в связи с ограничениями, накладываемыми биоэтикой.

Гаметогенез

Формирование первичных половых клеток (гоноцитов) у различных групп животных (губки, кишечнополостные, круглые черви, ракообразные, позвоночные).

Гоноцит, или первичная половая клетка - это эмбриональная клетка, из которой впоследствии могут образовываться половые клетки.

У всех животных, имеющих морфологически выраженные гонады, половые клетки закладываются независимо от половой железы (экстрагонадно). С момента обособления и до вселения в гонаду эти клетки и называются гоноцитами.

У некоторых животных половые клетки способны образоваваться из соматических клеток на протяжении всего онтогенеза. К таким животным относятся губки, кишечнополостные и плоские черви. У губок половые клетки образуются из амебоцитов и хоаноцитов. У кишечнополостных половые клетки образуются из интерстициальных (I-) клеток, у плоских и кольчатых червей - из необластов.

Поэтому половые клетки у них могут возникать и в случае регенерации из небольших участков тела взрослых животных при полном удалении половых желез.

У продолжительно голодающих планарий половые клетки могут дедифференцироваться и превращаться в стволовые клетки, используемые для регенерации соматических тканей.

У кольчатых червей происходит раннее обособление зачатка половых клеток, которые образуются из соматических. Таким образом, у них существуют два источника гоноцитов: раннеэмбриональный и соматический.

Согласно современным представлениям, у остальных животных зачаток гоноцитов обособляется на стадии гаструлы или нейрулы. У большинства круглых червей, членистоногих и бесхвостых амфибий половые клетки обособляются уже в процессе дробления.

Так, у двукрылых насекомых еще до начала дробления в заднем полюсе яйцеклетки находятся базофильные гранулы, состоящие из РНК и белка. Впоследствии, половые клетки обособляются именно из этого участка цитоплазмы. У дрозофилы окончательное обособление половых клеток происходит на 13-м делении дробления.

В яйцеклетке веслоногого рака циклопа присутствуют аналогичные гранулы (эктосомы). В результате делений дробления эктосомы распределяются между двумя клетками, которые и дают начало половым. Обособление половых клеток происходит на 5-м делении дробления. Еще раньше (на 4-м делении дробления) половые клетки выделяются у ветвистоусых раков, а также у некоторых выдов круглых червей.

У лошадиной аскариды, в самом начале развития, при делении соматических клеток происходит диминуция хроматина (отторжение в цитоплазму и последующая деградация части хроматина). При образовании гоноцитов диминуции не происходит. Таким образом, половые клетки обособляются от соматических, сохраняя свою тотипотентность.

У рыб гоноциты обособляются в конце гаструляции. Их источником служит первичная энтомезодерма. Возможно, в гонадах взрослых рыб присутствуют первичные половые клетки.

В яйцеклетках амфибий еще в начале периода роста ооцита на вегетативном полюсе обнаруживаются РНК-содержащие структуры, которые следует отнести к половой цитоплазме (безжетлковая цитоплазма, "зародышевая (половая) плазма"). Гоноциты у бесхвостых амфибий выделяются на стадии бластулы, среди бластомеров будущей энтодермы. На стадии поздней гаструлы клетки, содержащие половую плазму, обнаруживаются во внутренней части энтодермы и в области желточной пробки. На стадии хвостовой почки эти клетки располагаются в области дорсальной энтодермы. У молодых личинок они еще некоторое время остаются в составе энтодермы, прежде чем попадут в гонаду.

Формирование гоноцитов у хвостатых амфибий, в отличие от бесхвостых, происходит не автономно, а под влиянием соседних эмбриональных тканей. Гоноциты возникают на стадии гаструлы или нейрулы. Они обособляются из мезодермы под воздействием энтодермы (такое воздействие осуществляется еще на стадии бластулы).

У рептилий первичные половые клетки обнаруживаются во внезародышевой энтодерме.

У птиц первичные половые клетки возникают рядом с задним концом зародыша. Затем они перемещаются вперед, в область головного серпа, все время находясь во внезародышевой области. Когда возникает внезародышевая система кровообращения, гоноциты с током крови перемещаются внутрь тела зародыша.

Половые клетки млекопитающих являются потомками эмбриональных тотипотентных клеток, присутствующих в бластодерме зародыша в период формирования первичной полоски. Затем они попадают в заднюю внезародышевую энтодерму, мигрируют в стенку кишки и в окружающую ее мезенхиму. Далее они перемещаются в дорзальный мезентерий к закладке гонады.

Итак, единственный источник половых клеток у позвоночных, членистоногих и круглых червей - это первичные гоноциты, которые обособляются на ранних стадиях развития. Однако далеко не у всех групп животных гоноциты не могут пополняться за счет соматических клеток на более поздних стадиях развития. У губок, кишечнополостных, некоторых кольчатых червей и полухордовых имеются тотипотентные стволовые клетки, которые в течение всей жизни пополняют запас половых клеток.

Возникновение половых клеток в процессе эволюции - это первая дифференцировка клеток организма. При этом половые клетки сохраняют свою тотипотентность. Такое разделение было важнейшим эволюционным событием, которое позволило перейти от одноклеточности к многоклеточности.

Миграции гоноцитов в гонаду.

Прежде всего гоноциты должны добраться до закладки гонады. Как первичные гоноциты, так и резервные клетки, типа интерстициальных способны двигаться самостоятельно, но значительную часть пусти они проходят пассивно, с током крови. Поблизости от зачатка половой железы гоноциты движутся активно.

На стадии первичных гоноцитов мужские и женские половые клетки, как правило, неотличимы. Различия появляются лишь после их проникновения в половые железы. При этом женские гоноциты заселяют кортикальную часть гонады, а мужские гоноциты - медуллярную.

Половые клетки, попавшие в зачатки гонаду и приступившие к размножению, называются гониями (сперматогонии и оогонии).

У многих животных существуют особые стволовые клетки, продуцирующие гонии в течение долгого периода времени (или даже всей жизни). Известны два типа стволовых клеток. Одни из них делятся ассиметрично, вследствие чего одна из дочерних клеток остается стволовой, а другая вступает на путь дальнейшего развития. Так, например, происходит у дрозофилы.

В других случаях (например, у круглых червей) стволовые половые клетки делятся симметрично, и судьба каждой из них определяется тем, какое положение они случайно займут в гонаде.

Оогенез, его основные периоды: размножение, рост, созревание яйцеклеток.Типы питания яйцеклеток: фагоцитарный, нутриментарный, фолликулярный. Связь яйцеклетки с питательными клетками при разных типах питания; поступающие в яйцеклетку вещества. Превителлогенез и вителлогенез. Профаза мейоза, протекающие в ней цитологические и биохимические перестройки. Амплификация генов. Синтез рРНК и мРНК. Поляризация яйцеклетки. Особенности делений созревания яйцеклетки.

Как уже было сказано, попав в гонаду, гоноциты приступают к размножению путем обычных митотических делений. На этой стадии женские половые клетки называются оогониями . Оогонии прекращают размножаться еще в эмбриональном периоде, задолго до наступления половозрелости самки. У пятимесечного плода человека имеется 6-7млн. женских половых клеток. Потом наступает их массовая гибель путем апоптоза. В результате, к моменту рождения остается около 1 млн. клеток, а к моменту половой зрелости - менее 400 000 клеток. К 50 годам у женщины остается всего около 1 000 половых клеток.

Женская половая клетка, прекратившая размножение, называется ооцит I порядка . Начинается своеобразный, свойственный только этой клетке, период роста. Он связан с поступлением в яйцеклетку питательных веществ извне и с рядом синтетических процессов в самой яйцеклетке. Увеличение яйцеклетки в период роста может быть колоссальным. Так ооциты дрозофилы за 3 дня увеличиваются в 90 000 раз. У млекопитающих ооциты увеличиваются в объеме более чем в 40 раз. Рост яйцеклетки млекопитающего может длиться десятки лет. Например у человека - до 30 лет.

Рост ооцитов принято разделять на два периода. Период малого роста (превителлогенез или цитоплазматический рост) и большого роста (вителлогенез, трофоплазматический рост).

Для периода малого роста характерно относительно малое и пропорциональное увеличение ядра и цитоплазмы, при котором ядерно-цитоплазматическое отношение не изменяется. Весь период превителлогенеза проходит на фоне подготовки клетки к последующим делениям созревания. На этой стадии ооцит I порядка вступает в S-фазу, то есть в фазу удвоения ДНК. После этого наступает профаза 1-го деления мейоза. На этой стадии происходят коньюгация хромосом, образование синаптонемального комплекса, кроссинговер. В ядре ооцита последовательно проходят этапы лептотены, зиготены, пахитены и диплотены. На стадии диакинеза наступает стационарная фаза, при этом дальнейшее течение мейоза сильно замедляется или прекращается полностью. Этот блок мейоза продолжается до достижения особью половозрелости. Однако на этой стадии ДНК ооцита является активной. Она выполняет роль матрицы для синтеза всех видов РНК. Эти молекулы РНК, в основном, синтезируются для использования их яйцеклеткой уже после оплодотворения.

Синтез рРНК связан (28S и 18S) с явлением амплификации генов, кодирующих данные виды РНК. Амплифицированные участи обособляются в виде ядрышек, которых может быть несколько тысяч. Амплификация идет, в основном, на стадии пахитены. После созревания ооцита ядрышки входят в цитоплазму клетки и там лизируются.

Синтез 5S-рРНК и тРНК происходит без амплификации, за счет того, что кодирующие их гены многократно повторены.

Синтез мРНК связан с приобретением хромосомами ооцита структуры "ламповых щеток". При этом период "ламповых щеток" наблюдается у ооцитов с солитарным и фолликулярным типами питания. В других случаях этот период сокращен или отсутсвтует. Молекулы мРНК, запасенные для развития оплодотворенной яйцеклетки, присутствуют в цитоплазме ооцита в виде информосом - комплекса мРНК с белками.

Период большого роста характеризуется сильным ростом цитоплазматических компонентов. Ядерно-цитоплазматическое отношение при этом уменьшается. В течение данного периода в ооците I порядка откладывается желток (лат. вителлус) в виде гранул, а также другие питательные вещества: жиры и гликоген.

По количеству откладываемого желтка яйцеклетки делят на:

ñ полилецитальные (многожелтковые), встречаются у большинства членистоногих, рыб и птиц;

ñ мезолецитальные (со средним количеством желтка), встречаются у амфибий и осетровых;

ñ олиголецитальные (маложелтковые), встречаются у большинства червей, у моллюсков и иглокожих;

ñ алицетальные (безжелтковые), встречаются у млекопитающих и некоторых форм беспозвоночных.

Количество жедтка в клетке строго определено генетически и почти не зависит от условий питания самки.

По характеру расположения желтка яйцеклетки классифицируют на:

ñ изолецитальные (олиго- и мезолецитальные)

ñ телолецитальные (полилецитальные - костистые рыбы, мезолецитальные - амфибии)

ñ центролецитальные (полилецитальные - насекомые)

По способу образования желток делят на:

ñ экзогенный желток, строится на основе белка-предшественника - вителлогенина, поступающего в ооцит извне (у позвоночных он синтезируется в печени матери и находится под гормональным контролем: гипоталамус выделяет гормон люлиберин, под влиянием которого гипофиз выделяет ФСГ и ЛГ в кровь, в ответ на это клетки фолликула синтезируют эстроген, который регулирует синтез вителлогенина клетками печени как на уровне транскрипции, так и на уровне трансляции) . Желточные гранулы формируются уже внитри самого ооцита. При формировании гранул желтка вителлогенин расщепляется на сильно фосфорилированный белок фосвитин, содержащий 8% фосфата, и белок липовителлин, содержащий до 20% липидов. Структурная единица желточной пластины образована одной молекулой липовителлина и двумя молекулами фосфитина.

ñ эндогенный желток, который синтезируется из низкомолекулярных предшественников внутри самого ооцита. Лишь немногие типы яйцеклеток развиваются исключительно за счет эндогенного желтка.

В ходе эволюции наблюдается переход от факультатиыной гипертрофии клетки-родоночальника будущего организма - к обязательной гипертрофии.

Выделяют следующие способы питания яйцеклеток:

ñ диффузный (фагоцитарный) описан у губок и пресноводной гидры. Растущий ооцит поглощает более мелкие клетки путем фагоцитоза. Некоторое время ядро фагоцитированных клеток может сохранять синтетическую активность, снабжая ооцит копиями мРНК. Затем поглощенные клетки гибнут путем апоптоза. Основной биохимический процесс в цитоплазме такого ооцита - синтез гидролитических ферментов для переваривания фагоцитированного материала, который откладывается в фаголизосомах. При таком типе питания не образуется настоящих желтковых гранул.

ñ солитарный (одиночный) типа питания встречается в том случае, когда ооцит не связан непосредственно с какими-либо другими клетками и получает все необходимые вещества из окружающей среды в низкомолекулярной форме. Данный тип питания встречается у колониальных гидроидных полипов, морских звезд, ланцетника и других видов. В данном случае, желток и все типы РНК синтезируются самим ооцитом, то есть, желток является эндогенным.

ñ алиментарный , то есть, осуществляемый с помощью вспомогательных клеток. Подразделяется на:

u нутриментарный тип питания появляется в различных группах червей и достигает наивысшего развития у членистоногих. В данном случае ооцит окружен специальными питающими клетками - трофоцитами, связанными с ооцитом цитоплазматическими мостиками. Трофоциты и ооциты возникают от одного и того же гнезда размножающихся оогониев. Судьба оогониальных клеток определяется количеством связей (цитоплазматических мостиков) с другими клетками. Основная функция трофоцитов - синтез рРНК, поступающей в ооцит. К синтезу желтка трофоциты отношения не имеют. Основная часть желточных белков при нутриментарном способе питания синтезируется в соматических клетках и поступает в ооцит посредством пиноцитоза.

u фолликулярный тип питания является наиболее распространенным и совершенным и встречается у ряда беспозвоночных и большинства хордовых. Особенного развития он достигает у млекопитающих. Данный тип питания связан с образованием из соматических клеток гонады одного или нескольких слоев фолликулярного эпителия, окружающего ооцит. Ооцит вместе с фолликулярным эпителием, который отделен от ооцита периооцитным пространством, называется фолликулом. Фолликулярный тип питания может сочетаться с нутримернатным (например, у насекомых). Универсальной функцией фолликулярного эпителия является роль избирательно проницаемого барьера для белков, поступающих из кровеносных сосудов в периооцитное пространство. Благодаря этой функции вокруг оофита создается повышенная концентрация вителлогенинов, поглощаемых ооцитом путем пиноцитоза. Также, на поздних стадиях оогенеза, фолликулярные клетки могут выделять белки, идущие на построение вторичной оболочки яйцеклетки. Кроме этих функций, фолликулярные клетки могут выполнять и специфические функции: синтез рРНК (рептилии и птицы), синтез желточных белков (головоногие моллюски), синтез андрогенов и эстрогенов, находящийся под контролем гонадотропных гормонов гипофиза (позвоночные).

Фолликулярные клетки образуются из коркового слоя яичника и окружают ооцит. Образовавшиеся сферические структуры, содержащие плоские фолликулярные клетки, называются примордиальными фолликулами . Далее фолликулярные клетки становятся квадратными, и фолликул называется первичным однослойным . Однослойные фолликулы, в результате размножения фолликулярных клеток становятся многослойными. Затем фолликулярные клетки начинают выделять жидкость и постепенно резорбироваться. На их месте возникают полости (вторичный фолликул ), сливающиеся в конце концов в одну. В результате образуется зрелый третичный фолликул или Граафов пузырек . Затем стенка Граафова пузырька лопается, яйцеклетка освобождается и выходит из яичника в яйцевод, окруженная слоем фолликулярных клеток (лучистый венец - corona radiata). Данный процесс называется овуляцией . После овуляции ооцит приступает к делениям созревания.

Созревание ооцита - это процесс последовательного прохождения двух делений мейоза (делений созревания). Выход из фазы диакинеза и начало собственно делений созревания приурочены к достижению самкой половозрелости и определяются половыми гормонами: гонадотропные гормоны гипофиза воздействют на фолликулярный эпителий, который в ответ выделяет прогестерон и его аналоги. Гормоны фолликулярного эпителия поступают в ооцит и стимулируют его созревание.

Из двух делений созревания первое является редукционным, при этом каждая из образовавшихся клеток приобретает половинный набор хромосом. Поскольку 1-му делению созревания предшествовала S-фаза, каждая из разошедшихся хромосом состоит из двух идентичных хроматид. Эти хроматиды и расходятся по сестринским клеткам во втором делении созревания, которое является эквационным.

Основная особенности делений созревания в ооцитах состоит в том, что эти деления резко неравномерны. Перед первым делением созревания ядро ооцита мигрирует к его поверхности. Та точка поверхности ооцита, к которой ближе всего располагается ядро, названа анимальным полюсом. Противоположная точка - вегетативный полюс. В результате первого деления созревания половина хромосомного набора выталкивается в очень маленькую клетку, которая называется первым редукционным или полярным тельцем .

Яйцевая клетка после выделения I редукционного тельца называется ооцитом II порядка . Второе деление созревания осуществляется путем выделения II редукционного тельца таких же размеров, как и I. После его выделения ооцит II порядка превращается в зрелое яйцо.

Лишь у некоторых видов (некоторые кишечнополостные, морские ежи) мейоз доходит до конца бещ участия сперматозоида, внедряющегося в яйцеклетку. У большинства животных течение мейоза останавливается на некотором этапе созревания. Возникает блок мейоза , и для дальнейшего его протекания требуется активация яйцеклетки.

Различают три типа блока мейоза:

1. Мейоз останавливается на стадии диакинеза профазы 1-го деления, т.е. участие сперматозоида необходимо для протекания обоих мейотических делений. Этот тип мейоза наблюдается у губок, некоторых представителей плоских, круглых и кольчатых червей, моллюсков. Сюда же относятся собака, лиса и лошадь.

2. Мейоз останавливается на метафазе 1-го деления созревания. Такой блок отмечен у некоторых губок, немертин, кольчатых червей, моллюсков и почти у всех насекомых.

3. Мейоз останавливается на метафазе 2-го деления созревания. Сюда относятся почти все хордовые. У летучих мышей блок мейоза происходит на анафазе 2-го деления созревания. Именно на этих стадиях происходит овуляция яйцеклетки.

Как уже говорилось, у яйцеклетки выделяются анимальный и вегетативный полюса. Эта анимально-вегетативная поляризация решающим образом ориентирует последующие морфогенетические процессы: за редкими исключениями первые две борозды делений дробления проходят по взаимно перпендикулярным анимально-вегетативным мередианам, пересекаясь на анимальном и вегетативном полюсах. У взрослых животных передне-задняя ось тела либо совпадает с анимально-вегетативной осью яйцеклетки (позвоночные), либо перпендикулярна ей (членистоногие).

Первые морфологические проявления поляризации яйцеклетки приурочены к периоду вителлогенеза: у большинства яйцеклеток желток откладывается приемущественно в вегетативном полушарии, а ядро оттесняется в анимальное полушарие. Но только во время второго деления созревания поляризация становится устойчивой и необратимой.

Материальные носители полярности яйцеклетки до сих пор полностью не выявлены, но судя по всему, они локализованы в плазматической мембране, а не в цитоплазме яйцеклетки. В последнее время были получены данные о наличии электрических полей, ориентированных от одного полюса яйцеклетки - к другому. Такие поля связаны с неравномерным распределением ионных каналов по мембране. Утверждается, что расположение насосов и ионных каналов однозначно определяет полярность яйцеклетки.

Кроме плазматической мембраны яйцо может быть окружено еще несколькими оболочками. Различают следующие оболочки:

ñ Первичные (желтковые), представляющие собой производные мембраны яйцеклетки. Они присущи яйцеклеткам почти всех животных (кроме губок и большинства стрекающих), но особенно хорошо развиты у позвоночных. Первичная оболочка млекопитающих называется блестящей оболочкой (zona pellucida). Первичная оболочка образована гликопротеинами, обеспечивает видовую специфичность адгезии спермия при оплодотворении. Возможно, внешняя часть данной оболочки образована выделениями фолликулярных клеток.

ñ Вторичные оболочки (хорион) образуются как продукт выделения фолликулярных клеток. Лучше всего выражены у насекомых. В хорионе имеется одно или несколько отверстий (микропиле), через которое сперматозоид проникает в ядро.

ñ Третичные оболочки выделяются железами яйцевода. Очень сильно они развиты у химеровых рыб, амфибий, рептилий и птиц. У птиц третичные оболочки представлены белком, двумя слоями подскорлуповой пергаментной оболочки и скорлупой.

При прохождении яйца по яйцеводу оно вращается. Интересно, что передне-задняя ось зародыша расположена всегда перпендикулярно направлению движения яйца по яйцеводу, а направление от хвоста зародыша к голове совпадает с направлением вращения яйца.

Характерные особенности сперматогенеза. Спермиогенез.

Мужские половые клетки, как и женские, возникают из первичных гоноцитов. При сперматогенезе непосредственными потомками гоноцитов являются стволовые сперматогенные клетки (у млекопитающих их называют сперматогониями типа А ). Они присутствуют не только у зародышей, но и у половозрелых самцов. В семенниках млекопитающих они располагаются в пристеночном слое семенных канальцев. Стволовые клетки нерегулярно делятся. Некоторые из них перемещаются ближе к центру канальца, их деления становятся более регулярными (сперматогониальные деления), а после каждого деления изменяется форма и величина клеток. Такие клетки называют сперматогониями (сперматогониями типа В ).

Сперматогониальные деления происходят постоянно у половозрелых самцов. Число делений сперматогония определено для каждого вида (4 для человека).

После определенного числа делений сперматогоний передвигается еще ближе к просвету канальца и вступает в профазу 1-го деления созревания. На этой стадии он называется сперматоцитом I порядка .

В результате первого деления созревания сперматоцит I порядка делится на два одинаковых сперматоцита II порядка , которые делятся на двесперматиды , в результате второго деления созревания.

Далее каждая сперматида преобразуется в сперматозоид . Этот сложный цитологический процесс, не сопровождающийся клеточными делениями, называется спермиогенезом . Процесс спермиогенеза продолжается несколько дней (у человека - 23 дня).

Как сперматогонии, так и сперматоциты и сперматиды всех исследованных видов животных связаны между собой цитоплазматическими мостиками, образуя синцитии. Этим объясняется высокая степерь синхронности делений сперматогониев и сперматоцитов. Между сперматидами по таким мостикам могут проходить мРНК.

Важное значение для сперматогенеза имеют соматические клетки, расположенные в стенках семенных канальцев - клетки Сертоли. Клетки Сертоли снабжают сперматогониальные клетки питательными веществами и гормонами, способствуют высвобождению сперматозоидов в просвет канальцев, фагоцитируют неполноценные сперматозоиды.

Клетки Сертоли не контактируют друг с другом на уровне базальной мембраны. Их контакт находится выше, над слоем сперматогоний. У плода и новорожденных между клетками Сертоли имеются лишь щелевые контакты. На протяжении пропубертатного периода происходит образование плотных контактов.

Как уже было сказано, после прохождения делений созревания образуется сперматида, которая является идентичной сперматозоиду генетически, но не цитологически. Основные процессы, происходящие во время спермиогенеза:

ñ ядро сперматиды сильно уплотняется, хроматин конденсируется и становится синтетически неактивным.

ñ происходят перемещения органелл: аппарат Гольджи смещается на апикальный конец сперматозоида (вперед от ядра) и формирует акросому, содержащую ферменты - спермолизины; центриоли смещаются на противоположный полюс ядра.

ñ из дистальной центриоли начинает расти жгутик. Вокруг основания жгутика располагаются спиралевидные митохондрии. Однако, у некоторых видов животных сперматозоиды лишены жгутика (круглые черви, ракообразные).

ñ почти вся цитоплазма отторгается.

Оплодотворение

Оплодотворение – вызываемое сперматозоидом побуждение яйца к развитию с одновременноц передачей яйцеклетке наследственного материала отца.

Дистантные взаимодействия гамет.

Дистантные взаимодействия – взаимодействия гамет при осеменении, осуществляющиеся до соприкосновения гамет. К ним относятся хемотаксис, стереотаксис и реотаксис.

Реотаксис – способность сперматозоидом передвигаться против тока жидкости в половых путях самки. Стереотаксис – способность двигаться по направлению к более крупному. чем сам сперматозоид, объекту – яйцеклетке.

К дистантным взаимодействиям можно также отнести реакцию капацитации сперматозоида, происходящую в половых путях самки. (1. Альбумины в половых путях самки связывают холестерин из мембраны сперматозоида, в результате чего уменьшается соотношение холестерин: фосфолипиды. Это приводит к дестабилизации акросомного пузырька. 2. Освобождение активных центров галактозилтрансфераз, ферментов, узнающих N-ацетилглюкозаминовые остатки в молекуле гликопротеина, расположенного на поверхности прозрачной оболочки яйцеклетки и представляющего, по сути, рецептор сперматозоида).

Механизмы, обеспечивающие соединение клеток и межклеточный обмен информацией, сформировались в процессе эволюционного перехода от одноклеточного организма к многоклеточному. Межклеточные взаимодействия необходимы для координации активности, дифференцировки, подвижности и роста клеток в составе тканей и органов. Клетки, входящие в состав ткани, контактируют не только друг с другом, но и с внеклеточным матриксом, состоящим из волокон, белка, коллагена и желатиноподобного вещества, представленного гликопротеинами и протеогликанами. Внеклеточный матрикс объединяет клетки, обеспечивает физическую опору и среду, в которой они перемещаются и взаимодействуют. Физиология и основы анатомии: учебник / Под ред. А.В. Котова, Т.Н. Лосевой. 2011. - 1056 с. (Серия "Учебная литература для студентов медицинских вузов")

Наряду с обновлением клеточной популяции, в самих клетках постоянно наблюдается обновление внутриклеточных структур (внутриклеточная физиологическая регенерация).

Рост клеток проявляется в изменении их размеров и формы. Рост клетки не беспределен и определяется оптимальным ядерно - цитоплазматическим отношением.

Перемещения клеток . Миграция клеток наиболее характерна для периода гаструляции. Миграция осуществляется с помощью нескольких механизмов. Так, различают хемотаксис - движение клеток в направлении градиента концентрации какого-либо химического агента. Гаптотаксис - механизм перемещения клеток по градиенту концентрации адгезионной молекулы. Контактное ориентирование - когда в какой-либо преграде остается один канал для перемещения. Контактное ингибирование - этот способ перемещения наблюдается у к леток ровного гребня.

Миграция носит целенаправленный характер, клетки движутся не хаотически, а по определенным путям именно в те участки зародыша, где в последствии из них будут образовываться зрелые производные. Нарушения клеточной миграции, происходящие в период эмбриогенеза, приводят к формированию таких врожденных пороков развития, как гетеротопии и эктопии, т.е. к аномальной локализации органов или структур.

Механизмы межклеточного взаимодействия . Формирование и функционирование всех тканевых структур может происходить только на основе их взаимного узнавания и взаимной адгезии, т.е. способности клеток избирательно прикрепляться друг к другу или к компонентам внеклеточного матрикса. Клеточную адгезию реализуют специальные гликопротеины - молекулы адгезии - кадгерин, ламинин, коннексин и т.п. Физиология и основы анатомии: учебник / Под ред. А.В. Котова, Т.Н. Лосевой. 2011. - 1056 с. (Серия "Учебная литература для студентов медицинских вузов")

Механизмы взаимодействия клеток с субстратом . Они включают формирование рецепторов клетки к молекулам внеклеточного матрикса. К последним относят производные клеток. Среди которых наиболее изученными адгезионными молекулами являются коллаген, фибронектин, ламинин, тенасцин и т.п.

Для осуществления связи мигрирующих клеток с межклеточным матриксом клетки формируют специфические рецепторы. К ним относится, например, синдекан, который обеспечивает контакт эпителиоцита с базальной мембраной за счет сцепления с молекулами фибронектина и коллагена.

Дистантные межклеточные взаимодействия осуществляется путем секреции гормонов и факторов роста. Последние - это вещества, оказывающие стимулирующее влияние на пролиферацию и дифференцировку клеток и тканей.

Влияние положения бластомеров на их дифференцировку. На дифференцировку клетки влияет ее положение в определенном месте зародыша в определенное время. Наружные клетки формируют трофобласт, а внутренние - зародыш. Опыт по пересадке бластомеров показывает, что образование из бластомеров трофобласта или клеток зародыша определяется тем, где оказалась клетка - на поверхности или внутри группы клеток.

Гаструляция начинается в конце второй недели развития и характеризуется появлением у клеток способности к перемещениям. С началом гаструляции активируются первые тканеспецифические гены. Эмбриобласт расслаивается на эпибласт (слой цилиндрических клеток) и гипобласт (слой кубических клеток, обращённый к бластоцелю). Эпибласт и гипобласт вместе образуют двухслойный зародышевый диск (бластодиск). В дальнейшем на месте двухслойного зародышевого диска путём миграции и пролиферации клеток развиваются первичные зародышевые листки: эктодерма, мезодерма и энтодерма.

Гипобласт. Формирование гипобласта (первичной энтодермы) происходит по каудально-краниальному градиенту. Обращённые к бластоцелю клетки вентральной части внутренней клеточной массы обособляются в тонкий слой - гипобласт. Клетки гипобласта выселяются из внутренней клеточной массы вследствие слабого адгезионного взаимодействия между ними. Интенсивно пролиферирующие клетки гипобласта перемещаются по внутренней поверхности трофобласта и формируют внезародышевую энтодерму прилегающей к трофобласту стенки желточного мешка. Гистология, эмбриология, цитология: учебник для вузов / Под ред.Э.Г. Улумбекова, Ю.А. Челышева - 3-е изд., - М.: ГЭОТАР-Медиа, 2012.









Выделение , или экскреция , - это выведение из организма «шлаков» - ненужных продуктов обмена веществ. К шлакам, например, относится диоксид углерода (углекислый газ), который должен обязательно выводиться, поскольку, накапливаясь в избытке, он оказывает вредное действие. Животные получают с пищей много белков; эти вещества в организме не запасаются, поэтому они должны расщепляться и выводиться из организма. Таким образом, выделение у животных сводится в основном к экскреции азотистых веществ.

Размножение живой материи

Продолжительность жизни организмов ограничена, однако все они обладают способностью непрестанно «поддерживать жизнь», обеспечивая выживание вида. Вид выживает в результате того, что родители передают потомству свои основные признаки, независимо от того, возникло ли потомство в результате полового или бесполого размножения. В поисках причин, обусловливающих такую передачу признаков (наследование), «редукционисты» открыли нуклеиновые кислоты - ДНК (дезоксирибонуклеиновую кислоту) и РНК (рибонуклеиновую кислоту). В молекулах этих кислот содержится закодированная информация, передающаяся от одного поколения организмов другому, следующему за ним.

Рост живой материи

Объекты неживой природы (например, кристаллы или сталагмиты) растут путем наращивания вещества на своей наружной поверхности. Живые же существа растут изнутри, используя питательные вещества, поступающие в организм с пищей. В результате ассимиляции этих веществ образуется новая живая материя.

Перечисленные выше семь главных признаков живого в той или иной степени присущивсем организмам . Все эти - лишь наблюдаемые проявления главных свойств материи, т. е. ее способности извлекать, накапливать и использовать энергию извне. Но, кроме того, живая материя способна не только поддерживать, но и увеличивать свои энергетические запасы. В отличие от живой материи мертвое органическое вещество легко разрушается под действием механических и физических факторов среды. Живые существа обладают встроенной системой саморегуляции, которая поддерживает процессы жизнедеятельности и препятствует неуправляемому распаду структур и веществ и бесцельному выделению энергии. Такая регуляция направлена на поддержание гомеостаза на всех уровнях организации живых систем - от молекул до целых сообществ.

Все перечисленные здесь особенности живого рассматриваются более подробно в соответствующих разделах книги, причем во многих главах описаны химические и физические механизмы, лежащие в основе тех или иных явлений. Этим мы обязаны успешным исследованиям последних лет. Наши знания о том, что происходит в клетке или в организме, несомненно, обогатились после открытия и изучения ДН К, белкового синтеза, механизмов наследственности, ферментов, гормонов, иммунного ответа и многих других аспектов структуры и функции живых организмов.

В приложениях, помещенных в конце третьего тома, вы найдете некоторые сведения, необходимые любому биологу , и в том числе: сведения по химии, описания методов научного познания, экспериментальных подходов и многое другое. Приложения составлены так, чтобы снабдить необходимой информацией тех студентов, у которых есть существенные пробелы в той или иной области. Освоив эту информацию, можно попытаться выработать у себя способность к критической оценке и описанию наблюдаемых явлений. Ведь именно такой способ мышления лежит в основе любого научного поиска.

Если мы посмотрим вокруг себя, то увидим, что окружающий нас мир представляет собой совокупность самых разнообразных явлений, вещей и предметов. Все они характеризуются различными свойствами. Некоторые из них достаточно просты, другие наоборот сложны. Какие-то имеют микроскопические размеры, а какие-то огромны. Для того чтобы понять сущность этих вещей, предметов или явлений порой достаточно наших органов чувств. А постигнуть сущность других нам может помочь только абстрактное мышление.

Однако, не смотря на все свое многообразие все предметы, вещи и явления окружающего мира имеют и одну общую, саму главную черту – все они не зависят от сознания людей. В этом и заключается основное свойство материи. Таким образом, можно сказать, что материя – это объективная реальность.

Основные свойства материи

В настоящее время выделяют следующие уровни организации материи:

  1. Поля и элементарные частицы;
  2. Атомы и молекулы;
  3. Газы, жидкости и все макротела;
  4. Различные космические объекты (туманности, галактики и т.д.);
  5. Объекты живой природы (биологический уровень);
  6. Общество или социальный уровень.

Свойства материи, вне зависимости от того к какому уровню ее относят, имеют много общего. К таким свойствам относятся: время, пространство и движение. Именно эти свойства и обеспечивают бытие материи.

Материя бесконечна и вечна, т.к. во времени она всегда была, есть и будет. Таким образом, можно сформулировать еще одно всеобщее свойство материи: любой вид материи является несотворимым и неуничтожимым. Материя не берется из ниоткуда и не исчезает в никуда, она просто переходит из одного состояния в другое. Это свойство материи нашло свое полное подтверждение в таких хорошо известным всем нам законах как закон о сохранении массы или энергии. В соответствии с ними какой-то один вид материи может исчезнуть, но тут же, появятся ее другие виды, причем в точном количественном соотношении.

Еще одним общим свойством любой материи является отражение. Смысл этого понятия заключается в том, что различные виды материи взаимодействуют между собой, что приводит к возникновению их изменений. Наиболее простым примером этого является появление следов на снегу или изморози на оконном стекле.

Свойства живой материи

Одним из самых сложных уровней организации материи является биологический уровень. Отличительными свойствами живой материи от неживой являются:

  • Возможность самовоспроизведения. Любой вид биологической материи может производиться не один раз, благодаря наличию информации, закодированной в молекулах ДНК;
  • Саморегуляция процессов жизнедеятельности. Процесс синтеза и распада веществ внутри клеток регулируется ферментами, которые клетка самостоятельно вырабатывает;
  • Рост. Он осуществляется за счет увеличения числа и размеров клеток;
  • Иерархичность организации. Единицей биологического существа является клетки. В свою очередь клетки образуют ткани, ткани – органы, а органы – системы органов;
  • Обмен веществ и энергии;
  • Питание. Получение из внешней среды веществ и энергии, которые необходимы для поддержания жизнедеятельности;
  • Дыхание;
  • Раздражимость. Все живые существа способны реагировать на изменяющиеся условия внутренней и внешней среды, что обеспечивает стабильность их жизнедеятельности. Фактически раздражимость – это есть проявление еще одного общего свойства материи – отражения;
  • Гомеостаз. Все живые организмы обитают в среде, в которой постоянно происходят какие-либо изменения. Однако внутри клеток с помощью особых авторегулирующих механизмов поддерживается интенсивность протекания физиологических процессов и постоянство химического состава;
  • Движение. Всем живым существам свойственна способность к движению. Хотя оно может иметь различные механизмы и протекать с различной скоростью.

Свойства высокоорганизованной материи

К высокоорганизованной материи относят головной мозг человека. Одним из главных его свойств является способность отражать окружающий нас мир, т.е. сознание. Именно благодаря этому свойству у человека возникают мысли и эмоции, возникает способность к размышлению, познанию окружающей действительности, к преобразовательно-практической деятельности.

Еще одним свойством высокоорганизованной материи является память. По своей сути она есть еще одно проявление сознания.

Особым свойством организованной материи можно назвать психику человека. Благодаря этому свойству, люди наделены способностью, не просто получать информацию об окружающей действительности, но и на основании этого регулировать свою внутреннюю среду, особенности поведения. Все это позволяет человеку приспосабливаться проживанию в постоянно изменяющихся условиях. Если сказать проще, то свойства высокоорганизованной материи позволяют нам правильно реагировать на все изменения окружающей среды, вырабатывать новые дополнительные формы взаимодействия с тем, что нас окружает. При этом эти формы взаимодействия гораздо более выгодные, гибкие и обширные для развития и существования, чем у живых организмов, которые ограничены с внешней средой только физиологическими отношениями.