Интерференция волн. Стоячие волны

Рассмотрим результат интерференции двух синусоидальных плоских волн одинаковой амплитуды и частоты, распространяющихся в противоположных направлениях. Для простоты рассуждений допустим, что уравнения этих волн имеют вид:

Это означает, что в начале координат обе волны вызывают колебания в одинаковой фазе. В точке А с координатой х суммарное значение колеблющейся величины, согласно принципу суперпозиции (см. § 19), равно

Данное уравнение показывает, что в результате интерференции прямой и обратной волн в каждой точке среды (с фиксированной координатой происходит гармоническое колебание с той же частотой , но с амплитудой

зависящей от значения координаты х. В точках среды, в которых колебания отсутствуют вовсе: эти точки называются узлами колебаний.

В точках, где амплитуда колебаний имеет наибольшее значение, равное Эти точки называются пучностями колебаний. Легко показать, что расстояние между соседними узлами или соседними пучностями равно расстояние между пучностью и ближайшим узлом равно При изменении х на косинус в формуле (5.16) меняет знак на обратный (его аргумент изменяется на поэтому если в пределах одной полуволны - от одного узла до другого - частицы среды отклонились в одну сторону, то в пределах соседней полуволны частицы среды будут отклонены в противоположную сторону.

Волновой процесс в среде, описываемый формулой (5.16), называется стоячей волной. Графически стоячая волна может быть изображена так, как это показано на рис. 1.61. Допустим, что у есть смещение точек среды от состояния равновесия; тогда формула (5.16) описывает «стоячую волну смещения». В некоторый момент времени, когда все точки среды имеют максимальные смещения, направление которых в зависимости от величины координаты х определяется знаком Эти смещения показаны на рис. 1.61 сплошными стрелками. Спустя четверть периода, когда смещения всех точек среды равны нулю; частицы среды проходят через линию с различными скоростями. Спустя еще четверть периода, когда частицы среды опять будут иметь максимальные смещения, но противоположного направления; эти смещения показаны на

рис. 1.61 пунктирными стрелками. Точки суть пучности стоячей волны смещения; точки узлы этой волны.

Характерные особенности стоячей волны в отличие от обычной распространяющейся, или бегущей, волны следующие (имеются в виду плоские волны при отсутствии затухания):

1) в стоячей волне амплитуды колебаний различны в различных местах системы; в системе имеются узлы и пучности колебаний. В «бегущей» волне эти амплитуды везде одинаковы;

2) в пределах участка системы от одного узла до соседнего все точки среды колеблются в одинаковой фазе; при переходе к соседнему участку фазы колебаний меняются на обратные. В бегущей волне фазы колебаний, согласно формуле (5.2), зависят от координат точек;

3) в стоячей волне нет одностороннего переноса энергии, как это имеет место в бегущей волне.

При описании колебательных процессов в упругих системах за колеблющуюся величину у можно принять не только смещение или скорости частиц системы, но и величину относительной деформации или величину напряжения на сжатие, растяжение или сдвиг и т. д. При этом в стоячей волне, в местах, где образуются пучности скоростей частиц, располагаются узлы деформаций и, наоборот, узлы скоростей совпадают с пучностями деформаций. Преобразование энергии из кинетической формы в потенциальную и обратно происходит в пределах участка системы от пучности до соседнего узла. Можно считать, что каждый такой участок не обменивается энергией с соседними участками. Заметим, что превращение кинетической энергии движущихся частиц в потенциальную энергию деформированных участков среды за один период происходит дважды.

Выше, рассматривая интерференцию прямой и обратной волн (см. выражения (5.16)), мы не интересовались происхождением этих волн. Допустим теперь, что среда, в которой происходит распространение колебаний, имеет ограниченные размеры, например колебания вызываются в каком-нибудь сплошном теле - в стержне или струне, в столбе жидкости или газа и т. д. Волна, распространяющаяся в такой среде (теле), отражается от границ, поэтому в пределах объема этого тела непрерывно происходит интерференция волн, вызванных внешним источником и отраженных от границ.

Рассмотрим простейший пример; допустим, в точке (рис. 1.62) стержня или струны при помощи внешнего синусоидального источника возбуждается колебательное движение с частотой ; начало отсчета времени выберем так, чтобы в этой точке смещение выражалось формулой

где амплитуда колебаний в точке Вызванная в стержне волна отразится от второго конца стержня 0% и пойдет в обратном

направлении. Найдем результат интерференции прямой и отраженной волн в некоторой точке стержня имеющей координату х. Для простоты рассуждений предположим, что в стержне нет поглощения энергии колебаний и поэтому амплитуды прямой и отраженной волн равны.

В некоторый момент времени когда смещение колеблющихся частиц в точке равно у, в другой точке стержня смещение вызванное прямой волной будет, согласно формуле волны, равно

Через эту же точку А проходит также и отраженная волна. Чтобы найти смещение вызванное в точке А отраженной волной (в тот же самый момент времени необходимо рассчитать время в течение которого волна пройдет путь от до и обратно до точки Так как то смещение, вызванное в точке отраженной волной, будет равно

При этом предполагается, что на отражающем конце стержня в процессе отражения не происходит скачкообразного изменения фазы колебания; в некоторых случаях такое изменение фазы (называемое потерей фазы) имеет место и должно быть учтено.

Сложейие колебаний, вызванных в различных точках стержня прямой и отраженной волнами, дает стоячую волну; действительно,

где некоторая постоянная фаза, не зависящая от координаты х, а величина

является амплитудой колебаний в точке она зависит от координаты х, т. е. различна в различных местах стержня.

Найдем координаты тех точек стержня, в которых образуются узлы и пучности стоячей волны. Обращение косинуса в нуль или единицу происходит при значениях аргумента, кратных

где целое число. При нечетном значении этого числа косинус обращается в нуль и формула (5.19) дает координаты узлов стоячей волны; при четных мы получим координаты пучностей.

Выше было произведено сложение только двух волн: прямой, идущей от и отраженной, распространяющейся от Однако следует учесть, что отраженная волна на границе стержня вновь отразится и пойдет в направлении прямой волны. Таких отражений

от концов стержня будет много, и поэтому необходимо найти результат интерференции не двух, а всех одновременно существующих в стержне волн.

Предположим, что внешний источник колебаний вызывал в стержне волны в течение некоторого времени после чего поступление энергии колебаний извне прекратилось. За это время в стержне произошло отражений, где время, в течение которого волна прошла от одного конца стержня к другому. Следовательно, в стержне будет одновременно существовать волн, идущих в прямом, и волн, идущих в обратном направлениях.

Допустим, что в результате интерференции одной пары волн (прямой и отраженной) смещение в точйе А оказалось равным у. Найдем условие, при котором все смещения у, вызываемые каждой парой волн, имеют в точке А стержня одинаковые направления и поэтому складываются. Для этого фазы колебаний, вызванных каждой парой волн в точке должны отличаться на от фазы колебаний, вызванных следующей парой волн. Но каждая волна вновь возвращается в точку А с тем же направлением распространения лишь спустя время т. е. отстает по фазе на со приравнивая это отставание где целое число, получаем

т. е. вдоль длины стержня должно уместиться целое число полуволн. Заметим, что этом условии фазы всех волн, идущих от в прямом направлении, отличаются друг от друга на где целое число; точно так же фазы всех волн, идущих от в обратном направлении, отличаются друг от друга на Поэтому, если одна пара волн (прямая и обратная) дает вдоль стержня распределение смещений, определяемое формулой (5.17), то при интерференции пар таких волн распределение смещений не изменится; увеличатся только амплитуды колебаний. Если максимальная амплитуда колебаний при интерференции двух волн, согласно формуле (5.18), равна то при интерференции многих волн она будет больше. Обозначим ее через тогда распределение амплитуды колебаний вдоль стержня вместо выражения (5.18) определится по формуле

Из выражений (5.19) и (5.20) определяются точки, в которых косинус имеет значения или 1:

где целое число Координаты узлов стоячей волны получатся из этой формулы при нечетных значениях тогда в зависимости от длины стержня, т. е. величины

координаты пучностей получатся при четных значениях

На рис. 1.63 схематически показана стоячая волна в стержне, длина которого ; точки суть пучности, точки узлы этой стоячей волны.

В гл. было показано, что при отсутствии периодических внешних воздействий характер кодебательных движений в системе и прежде всего основная величина - частота колебаний - определяются размерами и физическими свойствами системы. Каждая колебательная система обладает собственным, ей присущим колебательным движением; это колебание можно наблюдать, если вывести систему из состояния равновесия и затем устранить внешние воздействия.

В гл. 4 ч. I рассматривались преимущественно колебательные системы с сосредоточенными параметрами, в которых инертной массой обладали одни тела (точечные), а упругими свойствами - другие тела (пружины). В отличие от них колебательные системы, в которых масса и упругость присущи каждому элементарному объему, называются системами с распределенными параметрами. К ним относятся рассмотренные выше стержни, струны, а также столбы жидкости или газа (в духовых музыкальных инструментах) и т. д. Для таких систем собственными колебаниями являются стоячие волны; основная характеристика этих волн - длина волны или распределение узлов и пучностей, а также частота колебаний - определяется только размерами и свойствами системы. Стоячие волны могут существовать и при отсутствии внешнего (периодического) воздействия на систему; это воздействие необходимо только для того, чтобы вызвать или поддержать в системе стоячие волны или же изменить амплитуды колебаний. В частности, если внешнее воздействие на систему с распределенными параметрами происходит с частотой, равной частоте ее собственных колебаний, т. е. частоте стоячей волны, то имеет место явление резонанса, рассмотренное в гл. 5. для различных частот одинакова.

Таким образом, у систем с распределенными параметрами собственные колебания - стоячие волны - характеризуются целым спектром частот, кратных между собой. Наименьшая из этих частот, соответствующая наибольшей длине волны называется основной частотой; остальные ) - обертонами или гармониками.

Каждая система характеризуется не только наличием такого спектра колебаний, но и определенным распределением энергии между колебаниями различных частот. Для музыкальных инструментов это распределение придает звуку своеобразную особенность, так называемый тембр звука, различный для различных инструментов.

Изложенные выше расчеты относятся к свободному колеблющемуся" стержню длиной Однако обычно мы имеем стержни, закрепленные на одном или обоих концах (например, колеблющиеся струны), или же вдоль стержня имеется одна или несколько точек закрепления. Места закрепления, где частицы системы не могут совершать колебательного движения, являются вынужденными узлами смещения. Например,

если в стержне необходимо получить стоячие волны при одной, двух, трех точках закрепления и т. д., то эти точки не могут быть выбраны произвольно, а должны располагаться вдоль стержня так, чтобы они оказались в узлах образовавшейся стоячей волны. Это показано, например, на рис. 1.64. На этом же рисунке пунктиром показаны смещения точек стержня при колебаниях; на свободных концах всегда образуются пучности смещения, на закрепленных - узлы смещения. Для колеблющихся воздушных столбов в трубах узлы смещения (и скорости) получаются у отражающих твердых стенок; на открытых концах трубок образуются пучности смещений и скоростей.

колеблющиеся тело, помещенное в упругую среду, является источником колебаний, распространяющихся от него во все стороны. Процесс распространения колебаний в среде называется волной .

При распространении волны, частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице, передается лишь состояние колебательного движения и его энергии. Поэтому, основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества.

Волны бывают поперечными (колебания происходят в плоскости, перпендикулярной направлению распространения), и продольными (сгущение и разряжение частиц среды происходят в направлении распространения).

Когда две одинаковые волны с равными амплитудами и периодами распространяются навстречу друг другу, то при их наложении возникают стоячие волны. Стоячие волны могут быть получены при отражении от препятствий. Допустим, излучатель посылает волну к препятствию (падающая волна). Отраженная от него волна наложится на падающую волну. Уравнение стоячей волны можно получить сложением уравнения падающей волны

(Очень важный случай интерференции наблюдается при наложении двух встречных плоских волн с одинаковой амплитудой. Возникающий в результате колебательный процесс называется стоячей волной. Практически стоячие волны возникают при отражении от преград.)

Это уравнение носит название волнового уравнения. Всякая функция, удовлетворяющая этому уравнению описывает некоторую волну.
Уравнением волны называется выражение, которое дает смещение колеблющейся точки как функцию ее координат (x , y , z ) и времени t .

Эта функция должна быть периодической как относительно времени, так и координат (волна – это распространяющееся колебание, следовательно периодически повторяющееся движение). Кроме того, точки, отстоящие друг от друга на расстоянии l, колеблются одинаковым образом.

– это уравнение плоской волны.
Такой же вид уравнение (5.2.3) будет иметь, если колебания распространяются вдоль оси y или z
В общем виде уравнение плоской волны записывается так:

Выражения (5.2.3) и (5.2.4) есть уравнения бегущей волны .

Уравнение (5.2.3) описывает волну, распространяющуюся в сторону увеличения x . Волна, распространяющаяся в противоположном направлении, имеет вид:

Введем волновое число , или в векторной форме:

где – волновой вектор, – нормаль к волновой поверхности.

Так как , то . Отсюда . Тогда уравнение плоской волны запишется так:

уравнение сферической волны :

где А равна амплитуде на расстоянии от источника равном единице.

ВОЛНОВОЙ ВЕКТОР - вектор k , определяющий направление распространения и пространственный период плоской монохроматич. волны

где - постоянные амплитуда и фаза волны, - круговая частота, r - радиус-вектор. Модуль В. в. наз. волновым числом k= , где - пространственный период или длина волны. В направлении В. в. происходит наибыстрейшее изменение фазы волны , поэтому оно и принимается за направление распространения. Скорость перемещения фазы в этом направлении, или фазовая скорость , определяется через волновое число .. в.

Очень важный случай интерференции наблюдается при наложении плоских волн с одинаковой амплитудой. Возникающий в результате этого колебательный процесс называется стоячей волной .

Практически стоячие волны возникают при отражении волн от преград. Падающая на преграду волна и бегущая ей навстречу отраженная волна, налагаясь друг на друга, дают стоячую волну.

Рассмотрим результат интерференции двух синусоидальных плоских волн одинаковой амплитуды, распространяющихся в противоположных направлениях.

Для простоты рассуждений допустим, что обе волны вызывают в начале координат колебания в одинаковой фазе.

Уравнения этих колебаний имеют вид:

Складывая оба уравнения и преобразовывая результат, по формуле для суммы синусов получим:

- уравнение стоячей волны .

Сравнивая это уравнение с уравнением гармонических колебаний, мы видим, что амплитуда результирующих колебаний равна:

Так как , а , то .

В точках среды, где , колебания отсутствуют, т.е. . Эти точки называются узлами стоячей волны .

В точках, где , амплитуда колебаний имеет наибольшее значение, равное . Эти точки называются пучностями стоячей волны . Координаты пучностей находятся из условия , т.к. , то .

Отсюда :

Аналогично координаты узлов находятся из условия:

Откуда :

Из формул координат узлов и пучностей следует, что расстояние между соседними пучностями, также как и расстояния между соседними узлами, равно . Пучности и узлы сдвинуты друг относительно друга на четверть длины волны.

Сравним характер колебаний в стоячей и бегущей волне. В бегущей волне каждая точка совершает колебания, амплитуда которых не отличается от амплитуды других точек. Но колебания различных точек происходят с различными фазами .

В стоячей волне все частицы среды, находящиеся между двумя соседними узлами колеблются в одной и той же фазе, но с разными амплитудами. При переходе через узел фаза колебаний скачкообразно изменяется на , т.к. изменяется знак .

Графически стоячая волна может быть изображена следующим образом:

В момент времени, когда , все точки среды имеют максимальные смещения, на-правление которых определяется знаком . Эти смещения показаны на рисунке сплошными стрелками.

Спустя четверть периода, когда , смещения всех точек равны нулю. Частицы проходят через линию с различными скоростями.

Спустя еще четверть периода, когда , частицы опять будут иметь максимальные смещения, но противоположного направления (пунктирные стрелки).

При описании колебательных процессов в упругих системах за колеблющуюся величину можно принять не только смещение, но и скорость частиц, а также и величину относительной деформации среды.


Для нахождения закона изменения скорости стоячей волны продифференцируем по уравнение смещения стоячей волны и для нахождения закона изменения деформации продифференцируем по уравнение стоячей волны.

Анализируя эти уравнения, мы видим, что узлы и пучности скорости совпадают с узлами и пучностями смещения; узлы и пучности деформации совпадают соответственно с пучностями и узлами скорости и смещения.

Колебания струны

В закрепленной с обоих концов натянутой струне при возбуждении поперечных колебаний устанавливаются стоячие волны, причем в местах закрепления струны должны располагаться узлы. Поэтому в струне возбуждаются только такие колебания, половина длины которых укладывается на длине струны целое число раз.

Отсюда вытекает условие:

где - длина струны.

Или иначе . Этим длинам волн соответствуют частоты , где - фазовая скорость волны. Величина ее определяется силой натяжения струны и ее массой.

При - основная частота.

При - собственные частоты колебаний струны или обертоны .

Эффект Допплера

Рассмотрим простейшие случаи, когда источник волн и наблюдатель движутся относительно среды вдоль одной прямой:

1. Источник звука движется относительно среды со скоростью , приемник звука покоится.

В этом случае за период колебаний звуковая волна отойдет от источ-ника на расстояние , а сам источник сместится на расстояние равное .

Если источник удалять от приемника, т.е. двигать в направлении обратном направлению распространения волны, то длина волны .

Если источник звука приближать к приемнику, т.е. двигать в направлении распространения волны, то .

Частота звука воспринимаемая приемником равна:

Подставим вместо их значения для обоих случаев:

С учетом того, что , где - частота колебаний источника, равенство примет вид :

Разделим и числитель и знаменатель этой дроби на , тогда:

2. Источник звука неподвижен, а приемник движется относительно среды со скоростью .

В этом случае длина волны в среде не изменяется и по-прежнему равна . Вместе с тем две последовательные амплитуды, отличающиеся по времени на один период колебаний , дойдя до движущегося приемника, будут отличаться по времени в моменты встречи волны с приемником на отрезок времени , величина которого больше или меньше в зависимости от того, удаляется или приближается приемник к источнику звука. За время звук распространяется на расстояние , а приемник сместится на расстояние . Сумма этих величин и дает нам длину волны :

Период колебаний, воспринимаемых приемником , связан с частотой этих колебаний соотношением:

Подставив вместо его выражение из равенства (1), получим:

Т.к. , где - частота колебаний источника, а , то:

3. Источник и приемник звука движутся относительно среды. Соединяя результаты, полученные в двух предыдущих случаях, получим:

Звуковые волны

Если упругие волны, распространяющиеся в воздухе, имеют частоту в пределах от 20 до 20000 Гц, то, достигнув человеческого уха, они вызывают ощущение звука. Поэтому волны лежащие в этом диапазоне частот называются звуковыми. Упругие волны с частотой менее 20 Гц называются инфразвуком . Волны с частотой более 20000 Гц называются ультразвуком . Ультразвуки и инфразвуки человеческое ухо не слышит.

Звуковые ощущения характеризуются высотой звука, тембром и громкостью. Высота звука определяется частотой колебаний. Однако источник звука испускает не одну, а целый спектр частот. Набор частот колебаний, присутствующих в данном звуке, называется его акустическим спектром . Энергия колебания распределяется между всеми частотами акустического спектра. Высота звука определяется по одной - основной частоте, если на долю этой частоты приходится значительно большее количество энергии, чем на долю других частот.

Если спектр состоит из множества частот, находящихся в интервале частот от до , то такой спектр называется сплошным (пример - шум).

Если спектр состоит из набора колебаний дискретных частот, то такой спектр называется линейчатым (пример - музыкальные звуки).

Акустический спектр звука в зависимости от своего характера и от распределения энергии между частотами определяет своеобразие звукового ощущения, называемое тембром звука. Различные музыкальные инструменты имеют различный акустический спектр, т.е. отличаются тембром звука.

Интенсивность звука характеризуется раз-личными величинами: колебаниями частиц среды, их скоростями, силами давления, напряжениями в них и др.

Она характеризует амплитуду колебаний каждой из этих величин. Однако, поскольку эти величины взаимосвязаны, целесообразно ввести единую энергетическую характеристику. Такая характеристика для волн любого типа была предложена в 1877 году. Н.А. Умовым.

Вырежем мысленно из фронта бегущей волны площадку . За время эта площадка переместится на расстояние , где - скорость волны.

Обозначим через энергию единицы объема колеблющейся среды. Тогда энергия всего объема будет равна .

Эта энергия была перенесена за время волной, распространяющейся через площадку .

Разделив это выражение на и , получим энергию, переносимую волной через единицу площади в единицу времени. Эта величина обозначается буквой и носит название вектора Умова

Для звукового поля вектор Умова носит название силы звука.

Сила звука является физической характеристикой интенсивности звука. Мы оцениваем ее субъективно, как громкость звука. Человеческое ухо воспринимает звуки, сила которых превышает некоторое минимальное значение, различное для различных частот. Это значение называется порогом слышимости звука. Для средних частот порядка Гц порог слышимости порядка .

При очень большой силе звука порядка звук воспринимается кроме уха органами осязания, а в ушах вызывает болевое ощущение.

Значение интенсивности, при котором это происходит, называется порогом болевого ощущения . Порог болевого ощущения, также как и порог слышимости, зависит от частоты.

Человек обладает довольно сложным аппаратом для восприятия звуков. Звуковые колебания собираются ушной раковиной и через слуховой канал воздействуют на барабанную перепонку. Колебания ее передаются в небольшую полость, называемую улиткой. Внутри улитки расположено большое количество волокон, имеющих различную длину и натяжение и, следовательно, различные собственные частоты колебаний. При действии звука каждое из волокон резонирует на тот тон, частота которого совпадает с собственной частотой волокна. Набор резонансных частот в слуховом аппарате и определяет область воспринимаемых нами звуковых колебаний.

Субъективно оцениваемая нашим ухом громкость возрастает гораздо медленнее, чем интенсивность звуковых волн. В то время, как интенсивность возрастает в геометрической прогрессии - громкость возрастает в арифметической прогрессии. На этом основании уровень громкости определяется как логарифм отношения интенсивности данного звука к интенсивности, принятой за исходную

Единица уровня громкости называется белом . Используют и более мелкие единицы - децибелы (в 10 раз меньше бела).

где - коэффициент поглощения звука.

Величина коэффициента поглощения звука возрастает пропорционально квадрату частоты звука, поэтому низкие звуки распространяются дальше высоких.

В архитектурной акустике для больших помещений существенную роль играет реверберация или гулкость помещений. Звуки, испытывая многократные отражения от ограждающих поверхностей, воспринимаются слушателем в течении некоторого довольно большого промежутка времени. Это увеличивает силу доходящего до нас звука, однако, при слишком длительной реверберации отдельные звуки накладываются друг на друга и речь перестает восприниматься членораздельно. Поэтому стены залов покрывают специальными звукопоглощающими материалами для уменьшения реверберации.

Источником звуковых колебаний может служить любое колеблющееся тело: язычок звонка, камертон, струна скрипки, столб воздуха в духовых инструментах и т.д. эти же тела могут служить и приемниками звука, когда они приходят в движение под действием колебаний окружающей среды.

Ультразвук

Чтобы получить направленную, т.е. близко к плоской, волну размеры излучателя должны быть во много раз больше длины волны. Звуковые волны в воздухе имеют длину до 15 м, в жидких и твердых телах длина волны еще больше. Поэтому построить излучатель, который создавал бы направленную волну подобной длины, практически не представляется возможным.

Ультразвуковые колебания имеют частоту свыше 20000 Гц, поэтому длина волны их очень мала. С уменьшением длины волны уменьшается также роль дифракции в процессе распространения волн. Поэтому ультразвуковые волны могут быть получены в виде направленных пучков, подобных пучкам света.

Для возбуждения ультразвуковых волн используют два явления: обратный пьезоэлектрический эффект и магнитострикцию .

Обратный пьезоэлектрический эффект состоит в том, что пластинка некоторых кристаллов (сегнетовой соли, кварца, титаната бария и др.) под действием электрического поля слегка деформируется. Поместив ее между металлическими обкладками, на которые подается переменное напряжение, можно вызвать вынужденные колебания пластинки. Эти колебания передаются окружающей среде и порождают в ней ультразвуковую волну.

Магнитострикция заключается в том, что ферромагнитные вещества (железо, никель, их сплавы и т.д.) под действием магнитного поля деформируются. Поэтому, поместив ферромагнитный стержень в переменное магнитное поле, можно возбудить механические колебания.

Высокие значения акустических скоростей и ускорений, а также хорошо разработанные методы изучения и приема ультразвуковых колебаний, позволили использовать их для решения многих технических задач. Перечислим некоторые из них.

В 1928 г. советский ученый С.Я. Соколов предложил использовать ультразвук для целей дефектоскопии, т.е. для обнаружения скрытых внутренних дефектов типа раковин, трещин, рыхлот, шлаковых включений и др. в металлических изделиях. Если размеры дефекта превышают длину волны ультразвука, то ультразвуковой импульс отражается от дефекта и возвращается обратно. Посылая в изделие ультразвуковые импульсы, и регистрируя отраженные эхосигналы, можно не только обнаруживать наличие дефектов в изделиях, но и судить о размерах и месте расположения этих дефектов. В настоящее время этот метод широко используется в промышленности.

Направленные ультразвуковые пучки нашли широкое применение для целей локации, т.е. для обнаружения в воде предметов и определения расстояния до них. Впервые идея ультразвуковой локации была выказана выдающимся французским физиком П. Ланжевеном и разработана им во время первой мировой войны для обнаружения подводных лодок. В настоящее время принципы гидролокации используются для обнаружения айсбергов, косяков рыбы и т.д. этими методами может быть также определена глубина моря под днищем корабля (эхолот).

Ультразвуковые волны большой амплитуды широко применяются в настоящее время в технике для механической обработки твердых материалов, очистки мелких предметов (деталей часовых механизмов, трубопроводов и т.д.), помещенных в жидкость, обезгаживания и т.д.

Создавая при своем прохождении сильные пульсации давления в среде, ультразвуковые волны обуславливают целый ряд специфических явлений: измельчение (диспергирование) частиц, взвешенных в жидкости, образование эмульсий, ускорение процессов диффузии, активацию химических реакций, воздействие на биологические объекты и т.д.

Глава 7. Механические волны

Волны. Уравнение волны

Помимо уже рассмотренных нами движений, почти во всех областях физики встречается ещё один тип движения – волны . Отличительной особенностью этого движения, делающей его уникальным, является то, что в волне распространяются не сами частицы вещества, а изменения в их состоянии (возмущения).

Возмущения, распространяющиеся в пространстве с течением времени, называются волнами . Волны бывают механические и электромагнитные.

Упругие волны – это распространяющиеся возмущения упругой среды.

Возмущение упругой среды – это любое отклонение частиц этой среды от положения равновесия. Возмущения возникают в результате деформации среды в каком-либо её месте.

Совокупность всех точек, куда дошла волна в данный момент времени, образует поверхность, называемую фронтом волны .

По форме фронта волны делятся на сферические и плоские. Направление распространения фронта волны определяется перпендикуляром к фронту волны, называемым лучом . Для сферической волны лучи представляют собой радиально расходящийся пучок. Для плоской волны лучи- пучок параллельных прямых.

В любой механической волне одновременно существуют два вида движения: колебания частиц среды и распространения возмущения.

Волна, в которой колебания частиц среды и распространение возмущения происходят в одном направлении, называется продольной (рис.7.2 а ).

Волна, в которой частицы среды колеблются перпендикулярно направлению распространения возмущений, называется поперечной (рис. 7.2 б).

В продольной волне возмущения представляют собой сжатие (или разрежение) среды, а в поперечной - смещения (сдвига) одних слоев среды относительно других. Продольные волны могут распространяться во всех средах (и в жидких, и в твёрдых, и в газообразных), а поперечные - только в твёрдых.

Каждая волна распространяется с некоторой скоростью. Под скоростью волны υ понимают скорость распространения возмущения. Скорость волны определяется свойствами среды, в которой эта волна распространяется. В твёрдых телах скорость продольных волн больше скорости поперечных.

Длиной волны λ называется расстояние, на которое распространяется волна за время, равное периоду колебания в её источнике . Поскольку скорость волны – величина постоянная (для данной среды), то пройденной волной расстояние равно произведению скорости на время её распространения. Таким образом, длина волны

Из уравнения (7.1) следует, что частицы, отделённые друг от друга интервалом λ, колеблются в одинаковой фазе. Тогда можно дать следующее определение длины волны: длина волны есть расстояние между двумя ближайшими точками, колеблющимися в одинаковой фазе.

Выведем уравнение плоской волны, позволяющее определить смещение любой точки волны в любой момент времени. Пусть волна распространяется вдоль луча от источника с некоторой скоростью υ.

Источник возбуждает простые гармонические колебания, и смещение любой точки волны в любой момент времени определяетcz уравнением

S = Asinωt (7. 2)

Тогда точка среды, отстоящая от источника волны на расстоянии х, также будет совершать гармонические колебания, но с запаздыванием по времени на величину, т.е. на время, необходимое для распространения колебаний от источника до этой точки. Смещение колеблющейся точки относительно положения равновесия в любой момент времени будет описываться соотношением

Это и есть уравнение плоской волны. Эта волна, характеризуется следующими параметрами:

· S - смещение от положения равновесии точки упругой среды, до которой дошло колебание;

· ω - циклическая частота колебаний, генерируемых источником, с которой колеблются и точки среды;

· υ - скорость распространения волны (фазовая скорость);

· х – расстояние до той точки среды, куда дошло колебание и смещение которой равно S;

· t – время отсчитываемое от начала колебаний;

Вводя в выражение (7. 3) длину волны λ, уравнение плоской волны можно записать так:

(7. 4)

Рис. 7. 3
где называется волновым числом (число волн, приходящихся на единицу длины).

Интерференция волн. Стоячие волны. Уравнение стоячей волны

Стоячие волны образуются в результате интерференции двух встречных плоских волн одинаковой частоты ω и амплитуды А.

Представим себе, что в точке S находится вибратор, от которого вдоль луча SO распространяется плоская волна. Достигнув преграды в точке О, волна отразится и пойдёт в обратном направлении, т.е. вдоль луча распространяются две бегущие плоские волны: прямая и обратная. Эти две волны когерентны, так как рождены одним и тем же источником и, накладываясь друг на друга, будут интерферировать между собой.

Возникающее в результате интерференции колебательное состояние среды и называется стоячей волной.

Запишем уравнение прямой и обратной бегущей волны:

прямая - ; обратная -

где S 1 и S 2 – смещение произвольной точки на луче SO. С учётом формулы для синуса суммы результирующее смещение равно

Таким образом, уравнение стоячей волны имеет вид

Множитель cosωt показывает, что все точки среды на луче SО совершают простые гармонические колебания с частотой . Выражение называется амплитудой стоячей волны. Как видно, амплитуда определяется положением точки на луче SO (х).

Максимальное значение амплитуды будут иметь точки, для которых

Или (n = 0, 1, 2,….)

откуда , или (4.70)

пучностями стоячей волны .

Минимальное значение , равное нулю, будут иметь те точки для которых

Или (n = 0, 1, 2,….)

откуда или (4.71)

Точки, имеющие такие координаты, называют узлами стоячей волны . Сопоставляя выражения (4.70) и (4.71), видим, что расстояние между соседними пучностями и соседними узлами равно λ/2.

На рисунке сплошной линией изображено смещение колеблющихся точек среды в некоторый момент времени, пунктирной кривой – положение этих же точек через Т/2. Каждая точка совершает колебания с амплитудой, определяемой её расстоянием от вибратора (х).

В отличие от бегущей волны в стоячей волне не происходит переноса энергии. Энергия просто переходит из потенциальной (при максимальном смещении точек среды от положения равновесия) в кинетическую (при прохождении точками положения равновесия)в пределах между узлами, остающимися неподвижными.

Все точки стоячей волны в пределах между узлами колеблются в одинаковой фазе, а по разные стороны от узла – в противофазе.

Стоячие волны возникают, например, в закреплённой с обоих концов натянутой струне при возбуждении в ней поперечных колебаний. Причём в местах закреплений располагаются узлы стоячей волны.

Если стоячая волна устанавливается в воздушном столбе, открытом с одного конца (звуковая волна), то на открытом конце образуется пучность, а на противоположном – узел.

Звук. Эффект Доплера

Продольные упругие волны, распространяющиеся в газе, жидкости и твёрдых телах, невидимы. Однако при определённых условиях их можно услышать. Так, если мы возбудим колебания длинной стальной линейки, зажатой в тисках, то порождаемые ею волны мы не услышим. Но если укоротить выступающую часть линейки и тем самым увеличить частоту её колебаний, то мы обнаружим, что линейка начнёт звучать.

Упругие волны, вызывающие у человека слуховые ощущения, называются звуковыми волнами или просто звуком .

Человеческое ухо способно воспринимать упругие механические волны с частотой ν от 16Гц до 20000Гц. Упругие волны с частотой ν<16Гц называют инфразвуком, а волны с частотой ν>20000Гц – ультразвуком.

Частоты в диапазоне от 16 Гц до 20000Гц называют звуковыми. Любое тело (твёрдое, жидкое или газообразное), колеблющееся со звуковой частотой, создаёт в окружающей среде звуковую волну.

В газах и жидкостях звуковые волны распространяются виде продольных волн сжатия и разряжения. Сжатия и разряжения среды, возникающее вследствие колебаний источника звука (струны, ножек камертона, голосовых связок и т.д.) , через некоторое время достигают человеческого уха и, заставляя барабанную перепонку уха совершать вынужденные колебания, вызывают у человека определённые слуховые ощущения.

В вакууме звуковые волны распространяться не могут, так как там нечему колебаться. В этом можно убедиться на простом опыте. Если поместить под стеклянный колпак воздушного насоса электрический звонок, то по мере выкачивания воздуха мы обнаружим, что звук будет становиться всё слабее, пока не прекратится совсем.

Звук в газах . Известно, что вовремя грозы мы сначала видим вспышку молнии и лишь, затем слышим раскаты грома. Это запаздывание возникает из-за того, что скорость звука в воздухе значительно меньше скорости света. Скорость звука в воздухе впервые измерил французский учёный Марен Мерсен в 1646 г. При температуре +20ºС она равна 343 м/с, т.е. 1235км/ч.

Скорость звука зависит от температуры среды. С увеличением температуры она возрастает, а с уменьшением убывает.

Скорость звука не зависит от плотности газа, в котором этот звук распространяется. Однако она зависит от массы его молекул. Чем больше масса молекул газа, тем меньше скорость звука в нём. Так, при температуре

0 ºС скорость звука в водороде 1284м/с, а в углекислом газе – 259 м/с.

Звук в жидкостях. Скорость звука в жидкостях, как правило, больше скорости звука в газах. Скорость звука в воде впервые была измерена в 1826г. Опыты проводились на Женевском озере в Швейцарии. На одной лодке поджигали порох и одновременно ударяли в колокол, опущенного в воду. Звук этого колокола с помощью специального рупора, также опущенного в воду, улавливался на другой лодке, которая находилась на расстоянии 14 км от первой. По разности времени между вспышкой света и приходом звукового сигнала определили скорость звука в воде. При температуре 8 ºС она оказалась равной 1435м/с.

В жидкостях скорость звука, как правило, уменьшается с ростом температуры. Вода является исключением из этого правила. В ней скорость звука увеличивается с ростом температуры и достигает максимума при температуре 74 ºС, а при дальнейшем увеличении температуры она уменьшается.

Нужно сказать, что человеческое ухо плохо «работает» под водой. Большая часть звука при этом отражается от барабанной перепонки и потому слуховых ощущений не вызывает. Именно это в своё время дало основание нашим предкам считать подводный мир «миром молчания». Отсюда же и выражение «нем как рыба». Однако ещё Леонардо да Винчи предлагал слушать подводные звуки, приложив ухо к веслу, опущенному в воду. Воспользовавшись таким способом, можно убедиться в том, что рыбы на самом деле довольно болтливы.

Звук в твёрдых телах . Скорость звука в твёрдых телах ещё больше, чем в жидкостях. Только здесь следует учитывать, что в твёрдых телах могут распространяться как продольные, так и поперечные волны. Скорость этих волн, как мы знаем, различна. Например, в стали поперечные волны распространяются со скоростью 3300м/с, а продольные –со скоростью 6100 м/с. В том, что скорость звука в твёрдом теле больше, чем в воздухе, можно убедится следующим образом. Если ваш товарищ ударит по одному концу рельсы, а вы приложите ухо к другому концу, то будут слышны два удара. Сначала звук достигнет вашего уха по рельсу, а затем – по воздуху.

Хорошей проводимостью обладает земля. Поэтому в старые времена при осаде в крепостных стенах помещали «слухачей», которые по звуку, передаваемому землёй, могли определить, ведёт ли враг подкоп к стенам или нет. Прикладывание уха к земле также позволяло обнаружить приближение вражеской конницы.

Помимо слышимых звуков, в земной коре распространяются и инфразвуковые волны, которые человеческое ухо уже не воспринимает. Такие волны могут возникать при землетрясениях.

Мощные инфразвуковые волны, распространяющиеся как в земле, так и в воздухе, возникают при извержении вулканов и взрывах атомных бомб. Источниками инфразвука могут служить и вихри воздуха в атмосфере, грузовые разряды, орудийные выстрелы, ветер, обтекающие гребни морских волн, работающие двигатели реактивных самолётов и т.д.

Ультразвук тоже не воспринимается человеческим ухом. Однако его способны излучать и улавливать некоторые животные, например летучие мыши и дельфины. В технике для получения ультразвука используют специальные устройства.

6.1 Стоячие волны в упругой среде

Согласно принципу суперпозиции, при распростране-нии в упругой среде одновременно нескольких волн воз-никает их наложение, причем волны не возмущают друг друга: колебания частиц среды являются векторной сум-мой колебаний, которые совершали бы частицы при рас-пространении каждой из волн в отдельности.

Волны, создающие колебания среды, разности фаз меж-ду которыми в каждой точке пространства постоянны, на-зываются когерентными .

При сложении когерентных волн возникает явление интерференции , заключающееся в том, что в одних точ-ках пространства волны усиливают друг друга, а в других точках – ослабляют. Важный случай интерференции наб-людается при наложении двух встречных плоских волн с одинаковой частотой и амплитудой . Возникающие при этом колебания называют стоячей волной . Чаще все-го стоячие волны возникают при отражении бегущей вол-ны от преграды. При этом падающая волна и отраженная навстречу ей волна при сложении дают стоячую волну.

Получим уравнение стоячей волны. Возьмем две плос-кие гармонические волны, распространяющиеся навстечу друг другу вдоль оси X и имеющие одинаковую частоту и амплитуду :

где – фаза колебаний точек среды при про-хождении первой волны;

– фаза колебаний точек среды при про-хождении второй волны.

Разность фаз в каждой точке на оси X не будет зави-сеть от времени, т.е. будет постоянной:

Следовательно, обе волны будут когерентными.

Возникшее в результате сложения рассматриваемых волн колебание частиц среды будет следующим:

Преобразуем сумму косинусов углов по правилу (4.4) и получим:

Перегруппировав множители, получим:

Для упрощения выражения выберем начало отсчета так, чтобы разность фаз и начало отсчета времени , чтобы и сумма фаз была равна нулю: .

Тогда уравнение для суммы волн примет вид:

Уравнение (6.6) называется уравнением стоячей вол-ны . Из него видно, что частота стоячей волны равна частоте бегущей волны, а амплитуда, в отличие от бегу-щей волны, зависит от расстояния от начала отсчета :

. (6.7)

С учетом (6.7) уравнение стоячей волны принимает вид:

. (6.8)

Таким образом, точки среды колеблются с частотой , совпадающей с частотой бегущей волны, и амплитудой a , зависящей от положения точки на оси X . Соответственно, амплитуда изменяется по закону косинуса и имеет свои максимумы и минимумы (рис. 6.1).



Для того, чтобы наглядно представить расположение минимумов и максимумов амплитуды заменим, согласно (5.29), волновое число его значением:

Тогда выражение (6.7) для амплитуды примет вид

(6.10)

Отсюда становится видно, что амплитуда смещения мак-симальна при , т.е. в точках, координата кото-рых удовлетворяет условию:

, (6.11)

где

Отсюда получаем координаты точек, где амплитуда сме-щения максимальна:

; (6.12)

Точки, где амплитуда колебаний среды максимальна, называются пучностями волны .

Амплитуда волны равна нулю в точках, где . Координата таких точек, называемых узлами волны , удов-летворяет условию:

, (6.13)

где

Из (6.13) видно, что координаты узлов имеют зна-чения:

, (6.14)

На рис. 6.2 показан примерный вид стоячей волны, от-мечено расположение узлов и пучностей. Видно, что со-седние узлы и пучности смещения отстоят друг от друга на одно и то же расстояние.



Найдем расстояние между соседними пучностями и уз-лами. Из (6.12) получаем расстояние между пучностями:

(6.15)

Расстояние между узлами получаем из (6.14):

(6.16)

Из полученных соотношений (6.15) и (6.16) видно, что расстояние между соседними узлами, как и между сосед-ними пучностями, постоянно и равно ; узлы и пуч-ности сдвинуты относительно друг друга на (рис. 6.3).

Из определения длины волны можно записать выра-жение для длины стоячей волны: она равна половине дли-ны бегущей волны:

Запишем, с учетом (6.17), выражения для координат уз-лов и пучностей:

, (6.18)

, (6.19)

Множитель , определяющий амплитуду стоя-чей волны, меняет свой знак при переходе через нулевое значение, вследствие чего фаза колебаний по разные сто-роны от узла отличается на . Следовательно, все точки, лежащие по разные стороны от узла, колеблются в про-тивофазе. Все точки, находящиеся между соседними уз-лами, колеблются синфазно.



Узлы условно разделяют среду на автономные области, в которых гармонические колебания совершаются незави-симо. Никакой передачи движения между областями нет, и, значит, перетекания энергии между областями нет. То есть нет передачи возмущения вдоль оси . Поэтому волна называется стоячей.

Итак, стоячая волна образуется из двух противополож-но направленных бегущих волн равных частот и амп-литуд. Векторы Умова каждой из этих волн равны по мо-дулю и противоположны при направлению, и при сложе-нии дают ноль. Следовательно, стоячая волна энергии не переносит.

6.2 Примеры стоячих волн

6.2.1 Стоячая волна в струне

Расмотрим струну длиной L , закрепленную с обоих кон-цов (рис. 6.4).


Расположим вдоль струны ось X таким образом, чтобы левый конец струны имел координату x=0 , а правый – x=L . В струне возникают колебания, описываемые урав-нением:

Запишем граничные условия для рассматриваемой стру-ны. Поскольку её концы закреплены, то в точках с коор-динатами x=0 и x=L колебаний нет:

(6.22)

Найдем уравнение колебаний струны исходя из запи-санных граничных условий. Запишем уравнение (6.20) для левого конца струны с учетом (6.21):

Соотношение (6.23) выполняется для любого времени t в двух случаях:

1. . Это возможно в том случае, если коле-бания в струне отсутствуют (). Данный случай инте-реса не представляет, и мы его рассматривать не будем.

2. . Здесь фаза . Этот случай и позволит нам получить уравнение колебаний струны.

Подставим полученное значение фазы в граничное условие (6.22) для правого конца струны:

. (6.25)

Учитывая, что

, (6.26)

из (6.25) получим:

Снова возникают два случая, при которых выполняется соотношение (6.27). Случай, когда колебания в струне от-сутствуют (), мы рассматривать не будем.

Во втором случае должно выполняться равенство:

а это возможно, только когда аргумент синуса кратен це-лому числу :

Значение мы отбрасываем, т.к. при этом , а это означало бы или нулевую длину струны (L=0 ) или вол-новое число k=0 . Учитывая связь (6.9) между волновым числом и длиной волны видно, что для того, чтобы вол-новое число равнялось бы нулю, длина волны должна бы быть бесконечной, а это означало бы отсутствие колебаний.

Из (6.28) видно, что волновое число при колебаниях струны, закрепленной с обоих концов, может принимать только определенные дискретные значения:

Учитывая (6.9), запишем (6.30) в виде:

откуда волучаем выражение для возможных длин волн в струне:

Другими словами, на длине струны L должно уклады-ваться целое число n полуволн:

Соответствующие частоты колебаний можно опреде-лить из (5.7):

Здесь – фазовая скорость волны, зависящая, соглас-но (5.102), от линейной плотности струны и силы на-тяжения струны :

Подставив (6.34) в (6.33), получим выражение, описы-вающее возможные частоты колебаний струны:

, (6.36)

Частоты называют собственными частотами стру-ны. Частоту (при n = 1):

(6.37)

называют основной частотой (или основным тоном ) струны. Частоты, определяемые при n>1 называются обертонами или гармониками . Номер гармоники равен n-1 . Например, частота :

соответствует первой гармонике, а частота :

сответствует второй гармонике, и т.д. Поскольку струну можно представить в виде дискретной системы с беско-нечным числом степеней свободы, то каждая гармоника является модой колебаний струны. В общем случае коле-бания струны представляют собой суперпозицию мод.


Каждой гармонике соответствует своя длина волны. Для основного тона (при n= 1) длина волны:

соответственно для первой и второй гармоники (при n= 2 и n= 3) длины волн будут:

На рис.6.5 показан вид нескольких мод колебаний, осуществляемых струной.

Таким образом, струна с закрепленными концами реа-лизует в рамках классической физики исключительный случай – дискретный спектр частоты колебаний (или длин волн). Таким же образом ведет себя упругий стер-жень с одним или обоими зажатыми концами и колебания воздушного столба в трубах, что и будет рассмотрено в последующих разделах.

6.2.2 Влияние начальных условий на движение

непрерывной струны. Фурье-анализ

Колебания струны с зажатыми концами помимо дис-кретного спектра частот колебаний обладают еще одним важным свойством: конкретная форма колебаний струны зависит от способа возбуждения колебаний, т.е. от на-чальных условий. Рассмотрим подробней.

Уравнение (6.20), описывающее одну моду стоячей вол-ны в струне, является частным решением дифференциаль-ного волнового уравнения (5.61). Поскольку колебание стру-ны складывается из всех возможных мод (для струны – бес-конечное количество), то и общее решение волнового уравнения (5.61) складывается из бесконечного числа частных решений:

, (6.43)

где i – номер моды колебаний. Выражение (6.43) записа-но с учетом того, что концы струны закреплены:

а также с учетом связи частоты i -й моды и ее волнового числа:

(6.46)

Здесь – волновое число i -й моды;

– волновое число 1-й моды;

Найдем величину начальной фазы для каждой моды колебаний. Для этого в момент времени t=0 придадим струне форму, описываемую функцией f 0 (x) , выражение для которой получим из (6.43):

. (6.47)

На рис. 6.6 показан пример формы струны, описывае-мой функцией f 0 (x) .



В момент времени t=0 струна еще покоится, т.е. ско-рость всех ее точек равна нулю. Из (6.43) найдем выраже-ние для скорости точек струны:

и, подставив в него t=0 , получим выражение для скорос-ти точек струны в начальный момент времени:

. (6.49)

Поскольку в начальный момент времени скорость рав-на нулю, то выражение (6.49) будет равно нулю для всех точек струны, если . Из этого следует, что на-чальная фаза для всех мод тоже равна нулю (). С учетом этого выражение (6.43), описывающее движение струны, принимает вид:

, (6.50)

а выражение (6.47), описывающее начальную форму стру-ны, выглядит как:

. (6.51)

Стоячая волна в струне описывается функцией, перио-дичной на интервале , где равна двум длинам струны (рис. 6.7):

Это видно из того, что периодичность на интервале означает:

Следовательно,

что и приводит нас к выражению (6.52).


Из математического анализа известно, что любая пе-риодическая функция может быть разложена с высо-кой точностью в ряд Фурье:

, (6.57)

где , , – коэффициенты Фурье.