Уран атомная бомба. Водородная против атомной

Интегральный быстрый реактор (ИБР) не просто новый тип реактора, это новый топливный цикл. Интегральный быстрый реактор − реактор на быстрых нейтронах без замедлителя. В нем есть только активная зона и отсутствует бланкет.
В ИБР используется металлическое топливо − сплав урана и плутония.
В его топливном цикле используется восстановление топлива непосредственно в самом реакторе с помощью пиропроцессинга . В пиропроцессинге на ИБР практически чистый уран собирается на твердом катоде, а смесьплутония , америция , нептуния , кюрия , урана и некоторые продукты деления собираются нажидкий кадмиевый катод, плавающий в соли электролита.Остальные продукты деления собираются в соли электролита и в слое кадмия.
Интегральный быстрый реактор охлаждается жидким натрием или свинцом. Производство металлического топлива проще и дешевле, чем керамического. Металлическое топливо делает выбор пиропроцесса естественным. У металлического топлива лучшая теплопроводность теплоемкость, чем у оксидного Топливом служит сплав урана и плутония.
Первоначальная закладка в интегральный быстрый реактор должна содержать больше делящихся под действием тепловых нейтронов изотопов (> 20%), чем в реактор на тепловых нейтронах. Это могут быть сильно обогащенные уран или плутоний, списанное ядерное оружие и т.п. За время работы реактор преобразует неделящиеся под действием тепловых нейтронов материалы(фертильные) в делящиеся. Фертильными материалами быстром реакторе могут быть обедненный уран (в основном U-238) природный уран, торий или уран переработанный из облученного топлива обычного водяного реактора.
Топливо содержится в стальной оболочке с жидким натрием, расположенным между топливом и оболочкой. Свободное пространство над топливом позволяет гелию и радиоактивному ксенону свободно собираться без существенного увеличения давления внутри топливного элемента и позволяет топливу расширятся не повреждая оболочки реактора.
Преимущество свинца по сравнению с натрием заключается в его химической инертности, в особенности по отношению в воде или воздуху. С другой стороны, свинец гораздо более вязок, что затрудняет его перекачку. Кроме того, в нем содержатся активируемые нейтронами изотопы, которых практически отсутствуют в натрии.
Контуры охлаждения сконструированы таким образом, что позволяют передачу тепла конвекцией. Так что при потере питания насосами или неожиданной остановки реактор, тепло вокруг активной зоны будет достаточно для циркуляции охладителя.
В ИБР делящиеся изотопы не разделяются с изотопами плутония, а также с продуктами деления и поэтому использование такого процесса для производства оружия практически невозможно. Кроме того плутоний не извлекается из реактора, что делает его несанкционированное использование нереальным. После того, как актиниды (уран, плутоний и минорные актиниды) переработаны, остаются отходы − продукты деления Sm-151 с периодом полураспада 90 л или долгоживущие как Tc-99 с периодом полураспада 211000 л и более.
Отходы ИБР либо имеют малые периоды полураспада, либо очень большие, что означает, что они слабо радиоактивны. Общее количество отходов ИБР составляет 1/20 от переработанного топлива (которое обычно считается отходами) реакторов на тепловых нейтронах с той же мощностью. 70% продуктов деления либо стабильны, либо имеют периоды полураспада около года. Технеций-99 и иод-129, которых 6% в в продуктах деления имеют очень большие периоды полураспада, но могут быть трансмутированы в реакторе в изотопы с малыми периодами полураспада (15.46 с и 12.36 ч) поглощением нейтронов в реакторе. Цирконий-93 (5% в отходах) может быть переработаны в оболочки для топлива, где радиоактивность не имеет значения. Остальные компоненты отходов менее радиоактивны, чем естественный уран.
В ИБР используется топливный цикл на два порядка более эффективный, в части использования топлива, по сравнению с традиционными циклами в реакторах на медленных нейтронах, препятствующий распространению ядерного оружия, минимизирующий высокоактивные отходы, более того, использующий некоторые отходы как топливо.
В ИБР топливо и оболочка сконструирована так, что при повышении температуры и их расширении все больше нейтронов покидают активную зону, уменьшая интенсивность цепной реакции. То есть работает отрицательный коэффициент реактивности. В ИБР этот эффект настолько силен, что способен остановить цепную реакцию без вмешательства операторов

Пиропрцессинг высокотемпературный метод электролитической переработки ОЯТ . По сравнению с гидрометаллургическим методом (например PUREX), пиропроцессинг используется непосредственно на реакторе. Растворителями являются расплавленные соли (например, LiCl + KCl или LiF + CaF 2) и расплавленные металлы (например, кадмий, висмут, магний), а не вода и органические соединения. В пиропроцессинге извлечение урана, а также плутония и минорных актинидов происходит одновременно и они могут тут же использоваться как топливо. Объем отходов при этом меньше и в них содержатся в основном продукты деления. Пиропрцессинг используется в ИБР и реакторах с расплавленными солями.

60 лет назад — 29 августа 1949 года — на Семипалатинском полигоне произошло успешное испытание первой советской атомной бомбы РДС-1 с заявленной мощностью 20 кт. Благодаря этому событию в мире, как утверждалось, был установлен стратегический военный паритет между СССР и США . И гипотетическая война с катастрофическими для Советского Союза последствиями реализовалась в своем холодном агрегатном состоянии.

По стопам проекта «Манхэттен»

У Советского Союза (как, впрочем, и у Германии) были все основания стать лидером в ядерной гонке . Этого не случилось из-за той большой роли, которую наука играла в идеологии новой власти. Руководство коммунистической партии, следуя заветам бессмертного труда «Материализм и эмпириокритицизм» , с тревогой следило за расцветом «физического идеализма». В 30-е годы Сталин был склонен доверять не тем физикам, кто утверждал, что при помощи некой цепной реакции в изотопах тяжелых элементов можно выделять громадную энергию, а тем, кто отстаивал в науки материалистические принципы.

Правда, о возможностях военного применения энергии атомного ядра советские физики заговорили только в 1941 году. Георгий Николаевич Флеров (1913-1990), который перед войной в лаборатории Игоря Васильевича Курчатова (1903-1960) работал над проблемой цепной реакции деления ядер урана, а затем служил лейтенантом в ВВС, дважды посылал Сталину письма, в которых сожалел о «большой ошибке» и о «добровольной сдаче завоеванных до войны позициях в исследованиях по ядерной физике». Но — тщетно.

Лишь в сентябре 1942 года, когда из разведданных стало известно о развертывании возглавляемого Робертом Оппенгеймером (Julius Robert Oppenheimer , 1904-1967) американского проекта «Манхэттен», выросшего из деятельности англо-американской Урановой комиссии, Сталин подписал постановление «Об организации работ по урану». Оно предписывало АН СССР «возобновить работы по исследованию осуществимости использования атомной энергии путем расщепления урана и предоставить ГКО к 1 апреля 1943 г. доклад о возможности создания урановой бомбы или уранового топлива».

Новости партнёров

У многих наших читателей водородная бомба ассоциируется с атомной, только гораздо более мощной. На самом деле это принципиально новое оружие, потребовавшее для своего создания несоизмеримо больших интеллектуальных усилий и работающее на принципиально других физических принципах.

Единственно, что роднит атомную и водородную бомбу, так это то, что обе высвобождают колоссальную энергию, скрытую в атомном ядре. Сделать это можно двумя путями: разделить тяжелые ядра, например, урана или плутония, на более легкие (реакция деления) или заставить слиться легчайшие изотопы водорода (реакция синтеза). В результате обеих реакций масса получившегося материала всегда меньше массы исходных атомов. Но масса не может исчезнуть бесследно - она переходит в энергию по знаменитой формуле Эйнштейна E=mc 2 .

Для создания атомной бомбы необходимым и достаточным условием является получение делящегося материала в достаточном количестве. Работа довольно трудоемкая, но малоинтеллектуальная, лежащая ближе к горнорудной промышленности, чем к высокой науке. Основные ресурсы при создании такого оружия уходят на строительство гигантских урановых рудников и обогатительных комбинатов. Свидетельством простоты устройства является тот факт, что между получением необходимого для первой бомбы плутония и первым советским ядерным взрывом не прошло и месяца.

Напомним вкратце принцип работы такой бомбы, известный из курса школьной физики. В ее основе лежит свойство урана и некоторых трансурановых элементов, например, плутония, при распаде выделять более одного нейтрона. Эти элементы могут распадаться как самопроизвольно, так и под воздействием других нейтронов.

Высвободившийся нейтрон может покинуть радиоактивный материал, а может и столкнуться с другим атомом, вызвав очередную реакцию деления. При превышении определенной концентрации вещества (критической массе) количество новорожденных нейтронов, вызывающих дальнейшее деление атомного ядра, начинает превышать количество распадающихся ядер. Количество распадающихся атомов начинает расти лавинообразно, рождая новые нейтроны, то есть происходит цепная реакция. Для урана-235 критическая масса составляет около 50 кг, для плутония-239 - 5,6 кг. То есть шарик плутония массой чуть меньше 5,6 кг представляет собой просто теплый кусок металла, а массой чуть больше существует всего несколько наносекунд.

Собственно схема работы бомбы простая: берем две полусферы урана или плутония, каждая чуть меньше критической массы, располагаем их на расстоянии 45 см, обкладываем взрывчаткой и взрываем. Уран или плутоний спекается в кусок надкритической массы, и начинается ядерная реакция. Все. Существует другой способ запустить ядерную реакцию - обжать мощным взрывом кусок плутония: расстояние между атомами уменьшится, и реакция начнется при меньшей критической массе. На этом принципе работают все современные атомные детонаторы.

Проблемы атомной бомбы начинаются с того момента, когда мы хотим нарастить мощность взрыва. Простым увеличением делящегося материала не обойтись - как только его масса достигает критической, он детонирует. Придумывались разные хитроумные схемы, например, делать бомбу не из двух частей, а из множества, отчего бомба начинала напоминать распотрошенный апельсин, а потом одним взрывом собирать ее в один кусок, но все равно при мощности свыше 100 килотонн проблемы становились непреодолимыми.

А вот горючее для термоядерного синтеза критической массы не имеет. Вот Солнце, наполненное термоядерным топливом, висит над головой, внутри его уже миллиард лет идет термоядерная реакция, - и ничего, не взрывается. К тому же при реакции синтеза, например, дейтерия и трития (тяжелого и сверхтяжелого изотопа водорода) энергии выделяется в 4,2 раза больше, чем при сгорании такой же массы урана-235.

Изготовление атомной бомбы было скорее экспериментальным, чем теоретическим процессом. Создание же водородной бомбы потребовало появления совершенно новых физических дисциплин: физики высокотемпературной плазмы и сверхвысоких давлений. Прежде чем начинать конструировать бомбу, надо было досконально разобраться в природе явлений, происходящих только в ядре звезд. Никакие эксперименты тут помочь не могли - инструментами исследователей были только теоретическая физика и высшая математика. Не случайно гигантская роль в разработке термоядерного оружия принадлежит именно математикам: Уламу, Тихонову, Самарскому и т.д.

Классический супер

К концу 1945 года Эдвард Теллер предложил первую конструкцию водородной бомбы, получившую название «классический супер». Для создания чудовищного давления и температуры, необходимых для начала реакции синтеза, предполагалось использовать обычную атомную бомбу. Сам «классический супер» представлял собой длинный цилиндр, наполненный дейтерием. Предусматривалась также промежуточная «запальная» камера с дейтериевотритиевой смесью - реакция синтеза дейтерия и трития начинается при более низком давлении. По аналогии с костром, дейтерий должен был играть роль дров, смесь дейтерия с тритием - стакана бензина, а атомная бомба - спички. Такая схема получила название «труба» - своеобразная сигара с атомной зажигалкой с одного конца. По такой же схеме начали разрабатывать водородную бомбу и советские физики.

Однако математик Станислав Улам на обыкновенной логарифмической линейке доказал Теллеру, что возникновение реакции синтеза чистого дейтерия в «супере» вряд ли возможно, а для смеси потребовалось бы такое количество трития, что для его наработки нужно было бы практически заморозить производство оружейного плутония в США.

Слойка с сахаром

В середине 1946 года Теллер предложил очередную схему водородной бомбы - «будильник». Она состояла из чередующихся сферических слоев урана, дейтерия и трития. При ядерном взрыве центрального заряда плутония создавалось необходимое давление и температура для начала термоядерной реакции в других слоях бомбы. Однако для «будильника» требовался атомный инициатор большой мощности, а США (как, впрочем, и СССР) испытывали проблемы с наработкой оружейного урана и плутония.

Осенью 1948 года к аналогичной схеме пришел и Андрей Сахаров. В Советском Союзе конструкция получила название «слойка». Для СССР, который не успевал в достаточном количестве нарабатывать оружейный уран-235 и плутоний-239, сахаровская слойка была панацеей. И вот почему.

В обычной атомной бомбе природный уран-238 не только бесполезен (энергии нейтронов при распаде не хватает для инициации деления), но и вреден, поскольку жадно поглощает вторичные нейтроны, замедляя цепную реакцию. Поэтому оружейный уран на 90% состоит из изотопа уран-235. Однако нейтроны, появляющиеся в результате термоядерного синтеза, в 10 раз более энергетичные, чем нейтроны деления, и облученный такими нейтронами природный уран-238 начинает превосходно делиться. Новая бомба позволяла использовать в качестве взрывчатки уран-238, который прежде рассматривался как отходы производства.

Изюминкой сахаровской «слойки» было также применение вместо остродефицитного трития белого легкого кристаллического вещества - дейтрида лития 6 LiD.

Как упоминалось выше, смесь дейтерия и трития поджигается гораздо легче, чем чистый дейтерий. Однако на этом достоинства трития заканчиваются, а остаются одни недостатки: в нормальном состоянии тритий - газ, из-за чего возникают трудности с хранением; тритий радиоактивен и, распадаясь, превращается в стабильный гелий-3, активно пожирающий столь необходимые быстрые нейтроны, что ограничивает срок годности бомбы несколькими месяцами.

Нерадиоактивный дейтрид лития же при облучении его медленными нейтронами деления - последствиями взрыва атомного запала - превращается в тритий. Таким образом, излучение первичного атомного взрыва за мгновение вырабатывает достаточное для дальнейшей термоядерной реакции количество трития, а дейтерий в дейтриде лития присутствует изначально.

Именно такая бомба, РДС-6с, и была успешно испытана 12 августа 1953 на башне Семипалатинского полигона. Мощность взрыва составила 400 килотонн, и до сих пор не прекратились споры, был ли это настоящий термоядерный взрыв или сверхмощный атомный. Ведь на реакцию термоядерного синтеза в сахаровской слойке пришлось не более 20% суммарной мощности заряда. Основной вклад во взрыв внесла реакция распада облученного быстрыми нейтронами урана-238, благодаря которому РДС-6с и открыла эру так называемых «грязных» бомб.

Дело в том, что основное радиоактивное загрязнение дают как раз продукты распада (в частности, стронций-90 и цезий-137). По существу, сахаровская «слойка» была гигантской атомной бомбой, лишь незначительно усиленной термоядерной реакцией. Не случайно всего один взрыв «слойки» дал 82% стронция-90 и 75% цезия-137, которые попали в атмосферу за всю историю существования Семипалатинского полигона.

Американ бомб

Тем не менее, первыми водородную бомбу взорвали именно американцы. 1 ноября 1952 года на атолле Элугелаб в Тихом океане было успешно испытано термоядерное устройство «Майк» мощностью 10 мегатонн. Назвать бомбой 74-тонное американское устройство можно с большим трудом. «Майк» представлял собой громоздкое устройство размером с двухэтажный дом, заполненное жидким дейтерием при температуре, близкой к абсолютному нулю (сахаровская «слойка» была вполне транспортабельным изделием). Однако изюминкой «Майка» были не размеры, а гениальный принцип обжатия термоядерной взрывчатки.

Напомним, что основная идея водородной бомбы состоит в создании условий для синтеза (сверхвысокого давления и температуры) посредством ядерного взрыва. В схеме «слойка» ядерный заряд расположен в центре, и поэтому он не столько сжимает дейтерий, сколько разбрасывает его наружу - увеличение количества термоядерной взрывчатки не приводит к увеличению мощности - она просто не успевает детонировать. Именно этим и ограничена предельная мощность данной схемы - самая мощная в мире «слойка» Orange Herald, взорванная англичанами 31 мая 1957 года, дала только 720 килотонн.

Идеально было бы, если бы заставить взрываться атомный запал внутрь, сжимая термоядерную взрывчатку. Но как это сделать? Эдвард Теллер выдвинул гениальную идею: сжимать термоядерное горючее не механической энергией и нейтронным потоком, а излучением первичного атомного запала.

В новой конструкции Теллера инициирующий атомный узел был разнесен с термоядерным блоком. Рентгеновское излучение при срабатывании атомного заряда опережало ударную волну и распространялось вдоль стенок цилиндрического корпуса, испаряя и превращая в плазму полиэтиленовую внутреннюю облицовку корпуса бомбы. Плазма, в свою очередь, переизлучала более мягкое рентгеновское излучение, которое поглощалось внешними слоями внутреннего цилиндра из урана-238 - «пушера». Слои начинали взрывообразно испаряться (это явление называют абляция). Раскаленную урановую плазму можно сравнить со струями сверхмощного ракетного двигателя, тяга которого направлена внутрь цилиндра с дейтерием. Урановый цилиндр схлопывался, давление и температура дейтерия достигала критического уровня. Это же давление обжимало центральную плутониевую трубку до критической массы, и она детонировала. Взрыв плутониевого запала давил на дейтерий изнутри, дополнительно сжимая и нагревая термоядерную взрывчатку, которая детонировала. Интенсивный поток нейтронов расщепляет ядра урана-238 в «пушере», вызывая вторичную реакцию распада. Все это успевало произойти до того момента, когда взрывная волна от первичного ядерного взрыва достигала термоядерного блока. Расчет всех этих событий, происходящих за миллиардные доли секунды, и потребовал напряжения ума сильнейших математиков планеты. Создатели «Майка» испытывали от 10-мегатонного взрыва не ужас, а неописуемый восторг - им удалось не только разобраться в процессах, которые в реальном мире идут только в ядрах звезд, но и экспериментально проверить свои теории, устроив свою небольшую звезду на Земле.

Браво

Обойдя русских по красоте конструкции, американцы не смогли сделать свое устройство компактным: они использовали жидкий переохлажденный дейтерий вместо порошкообразного дейтрида лития у Сахарова. В Лос-Аламосе на сахаровскую «слойку» реагировали с долей зависти: «вместо огромной коровы с ведром сырого молока русские используют пакет молока сухого». Однако утаить секреты друг от друга обеим сторонам не удалось. Первого марта 1954 года у атолла Бикини американцы испытали 15-мегатонную бомбу «Браво» на дейтриде лития, а 22 ноября 1955 года над семипалатинским полигоном рванула первая советская двухступенчатая термоядерная бомба РДС-37 мощностью 1,7 мегатонн, снеся чуть ли не полполигона. С тех пор конструкция термоядерной бомбы претерпела незначительные изменения (например, появился урановый экран между инициирующей бомбой и основным зарядом) и стала канонической. А в мире не осталось больше столь масштабных загадок природы, разгадать которые можно было бы столь эффектным экспериментом. Разве что рождение сверхновой звезды.

Немного теории

В термоядерной бомбе идут 4 реакции, и они протекают очень быстро. Первые две реакции служат источником материала для третьей и четвертой, которые при температурах термоядерного взрыва протекают в 30-100 раз быстрее и дают больший энергетический выход. Поэтому получившиеся гелий-3 и тритий сразу же расходуются.

Ядра атомов заряжены положительно, и поэтому отталкиваются друг от друга. Чтобы они смогли прореагировать, их нужно столкнуть «лоб в лоб», преодолев электрическое отталкивание. Это возможно, только если они будут двигаться с большой скоростью. Скорость атомов напрямую связана с температурой, которая должна достигать 50 миллионов градусов! Но нагреть дейтерий до такой температуры мало, надо еще удержать его от разлета чудовищным давлением около миллиарда атмосфер! В природе такие температуры при такой плотности встречаются только в ядре звезд.


Актуальность важнейшей задачи, поставленной перед специальной лабораторией атомного ядра (с марта 1943 г. - Лабораторией № 2), - проведение необходимых исследований и представление в ГКО доклада "о возможности создания урановой бомбы или уранового топлива ", - усиливалась тем, что разведывательная информация 1941 г., что отмечал, как уже говорилось выше, И.В. Курчатов в своём письме от 27 ноября 1942 г. на имя В.М. Молотова, не содержала исчерпывающего ответа на вопрос о возможности создания урановой бомбы.

В то же время экспериментальная и теоретическая базы, которыми располагала Лаборатория № 2 в первой половине 1943 г., да и в относительно длительный последующий период, были недостаточными для того, чтобы дать определённый ответ на вопрос о реальности атомной бомбы только на основании собственных экспериментальных и теоретических данных.

Однако продолжавшие поступать разведывательные материалы, в том числе материалы, которыми И.В. Курчатов располагал уже к весне 1943 г., по существу не оставляли у него сомнений в осуществимости бомбы из урана-235. Из уже упоминавшегося выше отзыва И.В. Курчатова от 4 июля 1943 г. на поступивший по каналам разведки перечень американских работ по проблеме урана следует, что его беспокоила уже не сама возможность создания бомбы из урана-235, а озабоченность вызывали противоречия в данных различных работ по сечениям деленияурана-235 в области средних энергий нейтронов. И.В. Курчатов отмечал: "Вопрос этот имеет кардинальное значение, так как от величины сечения деления в этой области крайне резко зависят размеры бомбы из урана-235 и самая возможность осуществления котла из металлического урана " .

Весной 1943 г. И.В. Курчатову стала принципиально ясной и новая возможность конструирования атомной бомбы. В записке на имя М.Г. Первухина от 22 марта 1943 г. И.В. Курчатов писал: "В материалах, рассмотрением которых занимался в последнее время… указано, что, может быть, продукты сгорания ядерного топлива в "урановом котле" могут быть использованы вместо урана-235 в качестве материала для бомбы. Имея в виду эти замечания, я внимательно рассмотрел последние из опубликованных американцами в "Physical Review" работ по трансурановым элементам (эка-рению-239 и эка-осьмию-239) и смог установить новое направление в решении всей проблемы урана… ". Речь шла об использовании в атомной бомбе плутония-239, который И.В. Курчатов называл в своём письме эка-осьмием-239. Он писал, что "перспективы этого направления необычайно увлекательны ". "По всем существующим сейчас теоретическим представлениям попадание нейтрона в ядро эка-осьмия должно сопровождаться большим выделением энергии и испусканием вторичных нейтронов, так что в этом отношении он должен быть эквивалентен урану-235". "Если в действительности эка-осьмий обладает такими же свойствами, каки уран-235, его можно будет выделить из "уранового котла" и употребить в качестве материала для эка-осьмиевой бомбы. Бомба будет сделана, следовательно, из "неземного" материала, исчезнувшего на нашей планете .

Как видно, при таком решении всей проблемы отпадает необходимость разделения изотопов урана, который используется и как топливо, и как взрывчатое вещество ".

"Разобранные необычайные возможности, конечно, во многом ещё не обоснованы. Их реализация мыслима лишь в том случае, еслиэка-осьмий-239 действительно аналогичен урану-235 и если, кроме того, так или иначе может быть пущен в ход "урановый котёл". Кроме того, развитая схема нуждается в проведении количественного учёта всех деталей процесса. Эта последняя работа в ближайшее время будет мной поручена проф. Я.Б. Зельдовичу ".

С сообщением о пуске в США первого уранового котла, открывающего перспективы крупномасштабного использования атомной энергии и получения нового делящегося материала с атомным весом 239, пригодного для изготовления атомной бомбы (имелся в виду ядерный реактор Э. Ферми, пущенный 2 декабря 1942 г. в г. Чикаго), И.В. Курчатов был ознакомлен в июле 1943 г. вскоре после получения по каналам разведки этого сообщения.

Он дал чрезвычайно высокую оценку факту пуска в США первого в мире ядерного реактора. В своём отзыве на указанный материал разведки он писал: "Рассмотренный материал содержит исключительной важности сообщение о пуске в Америке первого уран-графитового котла - сообщение о событии, которое нельзя оценить иначе, как крупнейшее явление в мировой науке и технике "

Отметим, что в уже упоминавшемся докладе английского "Комитета MAUD", который поступил в СССР по каналам разведки в 1941 г. и с которым в конце 1942 г. был ознакомлен И.В. Курчатов, говорилось о том, что элемент с массой 239 весьма вероятно будет иметь делительные свойства, подобные свойствам урана-235, и может быть использован как взрывчатое вещество в атомной бомбе(см. ).

Загадочное устройство, способное выделить гигаджоули энергии в течение неописуемо малого промежутка времени, окружено зловещей романтикой. Что и говорить, во всем мире работы по ядерному оружию были глубоко засекречены, а сама бомба обросла массой легенд и мифов. Попробуем разобраться с ними по порядку.

Ничто не вызывает такого интереса, как атомная бомба

Строение заряда бомбы

Август 1945 года. Эрнест Орландо Лоуренс в лаборатории по разработке атомной бомбы

1954 год. Спустя восемь лет после взрыва у атолла Бикини японские ученые обнаружили высокий уровень радиации у рыбы, пойманной в местных водах

Критическая масса

Все слышали, что есть некая критическая масса, которую нужно набрать, чтобы началась цепная ядерная реакция. Вот только для того, чтобы произошел настоящий ядерный взрыв, одной критической массы недостаточно — реакция прекратится практически мгновенно, до того как успеет выделиться заметная энергия. Для полномасштабного взрыва в несколько килотонн или десятков килотонн нужно одномоментно собрать две-три, а лучше четыре-пять критических масс.

Кажется очевидным, что нужно сделать две или несколько деталей из урана или плутония и в требуемый момент соединить их. Справедливости ради надо сказать, что так же думали и физики, когда брались за конструирование ядерной бомбы. Но действительность внесла свои коррективы.

Дело в том, что если бы у нас был очень чистый уран-235 или плутоний-239, то можно было бы так и сделать, но ученым пришлось иметь дело с реальными металлами. Обогащая природный уран, можно сделать смесь, содержающую 90% урана-235 и 10% урана-238, попытки избавиться от остатка урана-238 ведут к очень быстрому удорожанию этого материала (его называют высокообогащенным ураном). Плутоний-239, который получают в атомном реакторе из урана238 при делении урана-235, обязательно содержит примесь плутония-240.

Изотопы уран235 и плутоний239 называются четно-нечетными, так как ядра их атомов содержат четное число протонов (92 для урана и 94 для плутония) и нечетное число нейтронов (143 и 145 соответственно). Все четно-нечетные ядра тяжелых элементов обладают общим свойством: они редко делятся самопроизвольно (ученые говорят: «спонтанно»), но легко делятся при попадании в ядро нейтрона.

Уран-238 и плутоний-240 — четно-четные. Они, наоборот, практически не делятся нейтронами малых и умеренных энергий, которые вылетают из делящихся ядер, но зато в сотни или десятки тысяч раз чаще делятся спонтанно, образуя нейтронный фон. Этот фон очень сильно затрудняет создание ядерных боеприпасов, потому что вызывает преждевременное начало реакции, до того как встретятся две детали заряда. Из-за этого в подготовленном к взрыву устройстве части критической массы должны быть расположены достаточно далеко друг от друга, а соединяться с большой скоростью.

Пушечная бомба

Тем не менее, бомба, сброшенная на Хиросиму 6 августа 1945 года, была сделана именно по вышеописанной схеме. Две ее детали, мишень и пуля, были изготовлены из высокообогащенного урана. Мишень была цилиндром диаметром 16 см и высотой тоже 16 см. В ее центре было отверстие диаметром 10 см. В соответствии с этим отверстием и была изготовлена пуля. Всего бомба содержала 64 кг урана.

Мишень была окружена оболочкой, внутренний слой которой был изготовлен из карбида вольфрама, наружный — из стали. Назначение у оболочки было двойным: удержать пулю, когда она воткнется в мишень, и отразить хотя бы часть вылетающих из урана нейтронов обратно. С учетом отражателя нейтронов 64 кг составляли 2,3 критических массы. Как же это выходило, ведь каждый из кусков был субкритическим? Дело в том, что, вынимая из цилиндра среднюю часть, мы уменьшаем его среднюю плотность и значение критической массы повышается. Таким образом, масса этой части может превышать критическую массу для сплошного куска металла. А вот увеличить массу пули таким образом невозможно, ведь она должна быть сплошной.

И мишень, и пуля были собраны из кусочков: мишень из нескольких колец малой высоты, а пуля из шести шайб. Причина проста — заготовки из урана должны были быть небольшими по размеру, ведь при изготовлении (отливке, прессовании) заготовки общее количество урана не должно приближаться к критической массе. Пуля была заключена в тонкостенную оболочку из нержавеющей стали, с крышкой из карбида вольфрама, как у оболочки мишени.

Для того чтобы направить пулю в центр мишени, решили использовать ствол обычной зенитной пушки калибра 76,2 мм. Вот почему бомбу такого типа называют иногда бомбой пушечной сборки. Ствол был расточен изнутри до 100 мм, чтобы в него вошел столь необычный снаряд. Длина ствола составляла 180 см. В его зарядную камеру загружался обычный бездымный порох, который выстреливал пулю со скоростью примерно в 300 м/с. А другой конец ствола запрессовали в отверстие в оболочке мишени.

У этой конструкции была масса недостатков.

Она была чудовищно опасной: после того как порох был загружен в зарядную камеру, любая авария, которая могла его воспламенить, привела бы к взрыву бомбы на полную мощность. Из-за этого зарядка пироксилина происходила уже в воздухе, когда самолет подлетал к цели.

При аварии самолета урановые детали могли соединиться и без пороха, просто от сильного удара о землю. Чтобы избежать этого, диаметр пули был на долю миллиметра больше диаметра канала в стволе.

Если бы бомба упала в воду, то из-за замедления нейтронов в воде реакция могла бы начаться даже и без соединения частей. Правда, при этом ядерный взрыв маловероятен, но произошел бы тепловой взрыв, с распылением урана на большую территорию и радиоактивным заражением.

Длина бомбы такой конструкции превышала два метра, и это фактически непреодолимо. Ведь критическое состояние достигалось, и реакция начиналась, когда до остановки пули было еще добрых полметра!

Наконец, эта бомба была очень расточительной: прореагировать в ней успевало меньше 1% урана!

Достоинство же у пушечной бомбы было ровно одно: она не могла не сработать. Ее даже не собирались испытывать! А вот плутониевую бомбу американцы должны были испытать: уж слишком нова и сложна была ее конструкция.

Плутониевый футбольный мяч

Когда выяснилось, что даже крошечная (меньше 1%!) примесь плутония-240 делает невозможной пушечную сборку плутониевой бомбы, физики были вынуждены искать другие способы набрать критическую массу. И ключ к плутониевой взрывчатке нашел человек, который позже стал самым знаменитым «ядерным шпионом», — британский физик Клаус Фукс.

Его идея, получившая позже название «имплозия», заключалась в формировании сходящейся сферической ударной волны из расходящейся, с помощью так называемых взрывчатых линз. Эта ударная волна должна была сжать кусок плутония так, чтобы его плотность увеличилась вдвое.

Если уменьшение плотности вызывает увеличение критической массы, то увеличение плотности должно ее уменьшить! Для плутония это особенно актуально. Плутоний — материал очень специфический. При охлаждении куска плутония от температуры плавления до комнатной, он претерпевает четыре фазовых перехода. При последнем (около 122 градусов) его плотность скачком увеличивается на 10%. При этом любая отливка неизбежно растрескивается. Чтобы этого избежать, плутоний легируют каким-нибудь трехвалентным металлом, тогда стабильным становится неплотное состояние. Можно использовать алюминий, но в 1945 году опасались, что альфа-частицы, вылетающие из ядер плутония при их распаде, будут выбивать из ядер алюминия свободные нейтроны, увеличивая и без того заметный нейтронный фон, поэтому в первой атомной бомбе был использован галлий.

Из сплава, содержащего 98% плутония-239, 0,9% плутония-240 и 0,8% галлия, был изготовлен шарик диаметром всего 9 см и весом около 6,5 кг. В центре шарика была полость диаметром 2 см, и он состоял из трех деталей: двух половинок и цилиндрика диаметром 2 см. Этот цилиндрик служил пробкой, через которую во внутреннюю полость можно было вставить инициатор — источник нейтронов, который срабатывал при взрыве бомбы. Все три детали пришлось никелировать, потому что плутоний очень активно окисляется воздухом и водой и крайне опасен при попадании внутрь организма человека.

Шарик был окружен отражателем нейтронов из природного урана238 толщиной 7 см и весом 120 кг. Уран — хороший отражатель быстрых нейтронов, и в собранном виде система была лишь немного субкритической, поэтому вместо плутониевой пробки вставлялась кадмиевая, поглощавшая нейтроны. Отражатель служил еще и для удержания всех деталей критической сборки во время реакции, иначе большая часть плутония разлеталась, не успевая принять участия в ядерной реакции.

Дальше шел 11,5-сантиметровый слой алюминиевого сплава весом 120 кг. Назначение слоя такое же, как у просветления на линзах объективов: сделать так, чтобы взрывная волна проникла в ураново-плутониевую сборку, а не отразилась от нее. Это отражение происходит из-за большой разницы плотностей взрывчатки и урана (примерно 1:10). Кроме того, в ударной волне вслед за волной сжатия идет волна разрежения, так называемый эффект Тейлора. Слой алюминия ослаблял волну разрежения, которая уменьшала действие взрывчатки. Алюминий пришлось легировать бором, который поглощал нейтроны, вылетающие из ядер атомов алюминия под воздействием альфа-частиц, возникающих при распаде урана-238.

Наконец, снаружи находились те самые «взрывчатые линзы». Их было 32 (20 шестигранных и 12 пятигранных), они образовывали структуру, похожую на футбольный мяч. Каждая линза состояла из трех частей, причем средняя была изготовлена из специальной «медленной» взрывчатки, а наружная и внутренняя — из «быстрой». Внешняя часть была сферической снаружи, но внутри на ней была коническая впадина, как на кумулятивном заряде, вот только назначение ее было другое. Этот конус был заполнен медленной взрывчаткой, и на границе раздела происходило преломление взрывной волны подобно обычной световой волне. Но подобие здесь очень условное. В сущности, форма этого конуса и есть один из настоящих секретов ядерной бомбы.

В середине 40-х годов в мире не существовало таких компьютеров, на которых можно было бы рассчитать форму таких линз, а главное — не было даже подходящей теории. Поэтому они делались исключительно методом проб и ошибок. Пришлось провести более тысячи взрывов — и не просто провести, а сфотографировать специальными высокоскоростными камерами, регистрируя параметры взрывной волны. Когда была отработана уменьшенная версия, выяснилось, что взрывчатка так просто не масштабируется, и потребовалось сильно корректировать старые результаты.

Точность формы нужно было соблюсти с ошибкой меньше миллиметра, а состав и однородность взрывчатки выдерживать предельно аккуратно. Изготавливать детали можно было только литьем, поэтому годились не все взрывчатые вещества. Быстрая взрывчатка была смесью гексогена и тротила, причем гексогена было в два раза больше. Медленная — тот же тротил, но с добавкой инертного нитрата бария. Скорость детонационной волны в первой взрывчатке составляет 7,9 км/с, а во второй — 4,9 км/с.

Детонаторы вмонтировали в центр наружной поверхности каждой линзы. Все 32 детонатора должны были сработать одновременно с неслыханной точностью — менее 10 наносекунд, то есть миллиардных долей секунды! Таким образом, фронт ударной волны не должен был исказиться больше чем на 0,1 мм. С такой же точностью нужно было совместить и сопряженные поверхности линз, а ведь ошибка их изготовления была в десять раз больше! Пришлось повозиться и потратить немало туалетной бумаги и скотча, чтобы скомпенсировать неточности. Но система стала мало похожа на теоретическую модель.

Пришлось изобрести новые детонаторы: старые не обеспечивали должной синхронности. Они были сделаны на базе взрывающихся под мощным импульсом электрического тока проволочек. Для их срабатывания понадобилась батарея из 32 высоковольтных конденсаторов и такого же количества быстродействующих разрядников — по одному на каждый детонатор. Вся система, вместе с батареями и зарядным устройством для конденсаторов, весила в первой бомбе почти 200 кг. Впрочем, по сравнению с весом взрывчатки, которой ушло 2,5 т, это было немного.

Наконец вся конструкция была заключена в дюралевый сферический корпус, состоявший из широкого пояса и двух крышек — верхней и нижней, все эти детали собирались на болтах. Конструкция бомбы позволяла собрать ее без плутониевого сердечника. Для того чтобы вставить на место плутоний вместе с куском уранового отражателя, отвинчивали верхнюю крышку корпуса и вынимали одну взрывчатую линзу.

Война с Японией шла к концу, и американцы очень торопились. Но имплозионную бомбу необходимо было испытать. Этой операции было присвоено кодовое имя «Тринити» («Троица»). Да уж, атомная бомба должна была продемонстрировать мощь, доступную раньше только богам.

Блестящий успех

Место для испытания было выбрано в штате Нью-Мексико, в местечке с живописным названием Джорнададель-Муэрто (Путь смерти) — территория входила в артиллерийский полигон Аламагордо. Бомбу начали собирать 11 июля 1945 года. Четырнадцатого июля ее подняли на верхушку специально построенной башни высотой 30 м, подключили провода к детонаторам и начались последние стадии подготовки, связанные с большим количеством измерительной аппаратуры. 16 июля 1945 года в полшестого утра устройство было взорвано.

Температура в центре взрыва достигает нескольких миллионов градусов, поэтому вспышка ядерного взрыва гораздо ярче Солнца. Огненный шар держится несколько секунд, потом начинает подниматься, темнеть, из белого становится оранжевым, затем багровым, и образуется ныне знаменитый ядерный гриб. Первое грибовидное облако поднялось на высоту в 11 км.

Энергия взрыва составила больше 20 кт тротилового эквивалента. Большая часть измерительной аппаратуры была уничтожена, поскольку физики рассчитывали на 510 т и поставили технику слишком близко. В остальном это был успех, блестящий успех!

Но американцы столкнулись с неожиданным радиоактивным заражением местности. Шлейф радиоактивных осадков протянулся на 160 км к северо-востоку. Из небольшого городка Бингэм пришлось эвакуировать часть населения, но как минимум пятеро местных жителей получили дозы до 5760 рентген.

Выяснилось, что, чтобы избежать заражения, бомбу надо взрывать на достаточно большой высоте, минимум километр-полтора, тогда продукты радиоактивного распада рассеиваются на площади в сотни тысяч или даже миллионы квадратных километров и растворяются в глобальном радиационном фоне.

Вторая бомба такой конструкции была сброшена на Нагасаки 9 августа, через 24 дня после этого испытания и через три дня после бомбардировки Хиросимы. С тех пор практически все атомные боеприпасы используют технологию имплозии. Первая советская бомба РДС-1, испытанная 29 августа 1949 года, была сделана по такой же схеме.