ЕГЭ по физике, профильный уровень. Механика (качественная задача)

Темы кодификатора ЕГЭ: давление жидкости, закон Паскаля, закон Архимеда, условия плавания тел.

В гидро- и аэростатике рассматриваются два вопроса: 1) равновесие жидкостей и газов под действием приложенных к ним сил; 2) равновесие твёрдых тел в жидкостях и газах.

При сжатии среды в ней возникают силы упругости, называемые силами давления . Силы давления действуют между соприкасающимися слоями среды, на погружённые в среду твёрдые тела, а также на дно и стенки сосуда.

Сила давления среды обладает двумя характерными свойствами.

1. Сила давления действует перпендикулярно поверхности выделенного элемента среды или твёрдого тела. Это объясняется текучестью среды: силы упругости не возникают в ней при относительном сдвиге слоёв, поэтому отсутствуют силы упругости, касательные к поверхности.

2. Cила давления равномерно распределена по той поверхности, на которую она действует.

Естественной величиной, возникающей в процессе изучения сил давления среды, является давление.

Пусть на поверхность площади действует сила , которая перпендикулярна поверхности и равномерно распределена по ней. Давлением называется величина

Единицей измерения давления служит паскаль (Па). 1 Па - это давление, производимое силой 1 Н на поверхность площадью 1 м .

Полезно помнить приближённое значение нормального атмосферного давления: Па.

Гидростатическое давление.

Гидростатическим называется давление неподвижной жидкости, вызванное силой тяжести. Найдём формулу для гидростатического давления столба жидкости.

Предположим, что в сосуд с площадью дна налита жидкость до высоты (рис. 1 ). Плотность жидкости равна

Объём жидкости равен , поэтому масса жидкости . Сила давления жидкости на дно сосуда - это вес жидкости. Так как жидкость неподвижна, её вес равен силе тяжести:

Разделив силу на площадь , получим давление жидкости:

Это и есть формула гидростатического давления.

Так, на глубине 10 м вода оказывает давление Па, примерно равное атмосферному. Можно сказать, что атмосферное давление приблизительно равно 10 м водного столба.

Для практики столь большая высота столба жидкости неудобна, и реальные жидкостные манометры - ртутные. Посмотрим, какую высоту должен иметь столб ртути ( кг/м), чтобы создать аналогичное давление:

Вот почему для измерения атмосферного давления широко используется миллиметр ртутного столба (мм рт. ст.).

Закон Паскаля.

Если поставить гвоздь вертикально и ударить по нему молотком, то гвоздь передаст действие молотка по вертикали, но не вбок. Твёрдые тела из-за наличия кристаллической решётки передают производимое на них давление только в направлении действия силы.

Жидкости и газы (напомним, что мы называем их средами) ведут себя иначе. В средах справедлив закон Паскаля.

Закон Паскаля. Давление, оказываемое на жидкость или газ, передаётся в любую точку этой среды без изменения по всем направлениям.

(В частности, на площадку, помещённую внутри жидкости на фиксированной глубине, действует одна и та же сила давления, как эту площадку ни поворачивай.)

Например, ныряльщик на глубине испытывает давление . Почему? Согласно закону Паскаля вода передаёт давление атмосферы без изменения на глубину , где оно прибавляется к гидростатическому давлению водяного столба .

Отличной иллюстрацией закона Паскаля служит опыт с шаром Паскаля. Это шар с множеством отверстий, соединённый с цилиндрическим сосудом (рис. 2 )

Если налить в сосуд воду и двинуть поршень, то вода брызнет из всех отверстий. Это как раз и означает, что вода передаёт внешнее давление по всем направлениям.

То же самое наблюдается и для газа: если сосуд наполнить дымом, то при движении поршня струйки дыма пойдут опять-таки из всех отверстий сразу. Стало быть, газ также передаёт давление по всем направлениям.

Вы ежедневно пользуетесь законом Паскаля, когда выдавливаете зубную пасту из тюбика. А именно, вы сжимаете тюбик в поперечном направлении, а паста двигается перпендикулярно вашему усилию - в продольном направлении. Почему? Ваше давление передаётся внутри тюбика по всем направлениям, в частности - в сторону отверстия тюбика. Туда-то паста и выходит.

Гидравлический пресс.

Гидравлический пресс - это устройство, дающее выигрыш в силе. То есть, прикладывая сравнительно небольшую силу в одном месте устройства, оказывается возможным получить значительно большее усилие в другом его месте.

Гидравлический пресс изображён на рис. 3 . Он состоит из двух сообщающихся сосудов, имеющих разную площадь поперечного сечения и закрытых поршнями. В сосудах между поршнями находится жидкость.

Принцип действия гидравлического пресса очень прост и основан на законе Паскаля.

Пусть - площадь малого поршня, - площадь большого поршня. Надавим на малый
поршень с силой . Тогда под малым поршнем в жидкости возникнет давление:

Согласно закону Паскаля это давление будет передано без изменения по всем направлениям в любую точку жидкости, в частности - под большой поршень. Следовательно, на большой поршень со стороны жидкости будет действовать сила:

Полученное соотношение можно переписать и так:

Мы видим, что больше во столько раз, во сколько больше . Например, если площадь большого поршня в 100 раз превышает площадь малого поршня, то усилие на большом поршне окажется в 100 раз больше усилия на малом поршне. Вот каким образом гидравлический пресс даёт выигрыш в силе.

Закон Архимеда.

Мы знаем, что дерево в воде не тонет. Следовательно, сила тяжести уравновешивается какой-то другой силой, действующей на кусок дерева со стороны воды вертикально вверх. Эта сила называется
выталкивающей или архимедовой силой. Она действует на всякое тело, погружённое в жидкость или газ.

Выясним причину возникновения архимедовой силы. Рассмотрим цилиндр площадью поперечного сечения и высотой , погружённый в жидкость плотности . Основания цилиндра горизонтальны. Верхнее основание находится на глубине , нижнее - на глубине (рис. 4 ).

Рис. 4.

На боковую поверхность цилиндра действуют силы давления, которые приводят лишь к сжатию цилиндра. Эти силы можно не принимать во внимание.

На уровне верхнего основания цилиндра давление жидкости равно . На верхнее основание действует сила давления , направленная вертикально вниз.

На уровне нижнего основания цилиндра давление жидкости равно . На нижнее основание действует сила давления , направленная вертикально вверх (закон Паскаля!).

Так как , то , и поэтому возникает равнодействующая сил давления, направленная вверх. Это и есть архимедова сила . Имеем:

Но произведение равно объёму цилиндра . Получаем окончательно:

. (1)

Это и есть формула для архимедовой силы. Возникает архимедова сила вследствие того, что давление жидкости на нижнее основание цилиндра больше, чем на верхнее.

Формулу (1) можно интерпретировать следующим образом. Произведение - это масса
жидкости , объём которой равен . Но тогда , где - вес жидкости, взятой в объёме . Поэтому наряду с (1) имеем:

. (2)

Иными словами, архимедова сила, действующая на цилиндр, равна весу жидкости, объём которой совпадает с объёмом цилиндра.

Формулы (1) и (2) справедливы и в общем случае, когда погружённое в жидкость или газ тело объёма имеет любую форму, а не только форму цилиндра (конечно, в случае газа - это плотность газа). Поясним, почему так получается.

Выделим мысленно в среде некоторый объём произвольной формы. Этот объём находится в равновесии: не тонет и не всплывает. Следовательно, сила тяжести, действующая на среду, находящуюся внутри выделенного нами объёма, уравновешена силами давления на поверхность нашего объёма со стороны остальной среды - ведь на нижние элементы поверхности приходится большее давление, чем на верхние.

Иными словами, равнодействующая сил гидростатического давления на поверхность выделенного объёма - архимедова сила - направлена вертикально вверх и равна весу среды в этом объёме.

Сила тяжести, действующая на наш объём, приложена к его центру тяжести. Значит, и архимедова сила должна быть приложена к центру тяжести выделенного объёма. В противном случае сила тяжести и архимедова сила образуют пару сил, которая вызовет вращение нашего объёма (а он находится в равновесии).

А теперь заменим выделенный объём среды твёрдым телом того же объёма и той же самой формы. Ясно, что силы давления среды на поверхность тела не изменятся, так как неизменной осталась конфигурация среды, окружающей тело. Поэтому архимедова сила попрежнему будет направлена вертикально вверх и равна весу среды, взятой в объёме . Точкой приложения архимедовой силы будет центр тяжести тела.

Закон Архимеда. На погружённое в жидкость или газ тело действует выталкивающая сила, направленная вертикально вверх и равная весу среды, объём которой равен объёму тела.

Таким образом, архимедова сила всегда находится по формуле (1) . Заметим, что в эту формулу не входят ни плотность тела, ни какие-либо его геометрические характеристики - при фиксированном объёме величина архимедовой силы не зависит от вещества и формы тела.

До сих пор мы рассматривали случай полного погружения тела. Чему равна архимедова сила при частичном погружении? На ту часть тела, которая находится над поверхностью жидкости, никакая выталкивающая сила не действует. Если эту часть мысленно срезать, то величина архимедовой силы не изменится. Но тогда мы получим целиком погружённое тело, объём которого равен объёму погружённой части исходного тела.

Значит, на частично погружённое в жидкость тело действует выталкивающая сила, равная весу жидкости, объём которой равен объёму погружённой части тела. Формула (1) справедлива и в этом случае, только объём всего тела нужно заменить на объём погружённой части погр:

Архимед обнаружил, что целиком погружённое в воду тело вытесняет объём воды, равный собственному объёму. Тот же факт имеет место для других жидкостей и газов. Поэтому можно сказать, что на всякое тело, погружённое в жидкость или газ, действует выталкивающая сила, равная весу вытесненной телом среды.

Плавание тел.

Рассмотрим тело плотности и жидкость плотности . Допустим, что тело полностью погрузили в жидкость и отпустили.

С этого момента на тело действуют лишь сила тяжести и архимедова сила . Если объём тела равен , то

Имеются три возможности дальнейшего движения тела.

1. Сила тяжести больше архимедовой силы: , или . В этом случае тело тонет.

2. Сила тяжести равна архимедовой силе: , или . В этом случае тело остаётся неподвижным в состоянии безразличного равновесия.

3. Сила тяжести меньше архимедовой силы: , или . В этом случае тело всплывает, достигая поверхности жидкости. При дальнейшем всплытии начнёт уменьшаться объём погружённой части тела, а вместе с ним и архимедова сила. В какой-то момент архимедова сила сравняется с силой тяжести (положение равновесия). Тело по инерции всплывёт дальше, остановится, снова начнёт погружаться. . . Возникнут затухающие колебания, после которых тело останется плавать в положении равновесия (), частично погрузившись в жидкость.

Таким образом, условие плавания тела можно записать в виде неравенства: .

Что нужно, чтобы сдать ЕГЭ по физике на высокий балл? Решать больше задач и слушать советы опытного преподавателя. Мы поможем вам и с первым, и со вторым. Андрей Алексеевич рассматриваем задачу по механике.

Задание №28

Условие задачи:

Деревянный брусок плавает на поверхности воды в некоторой емкости. Емкость покоится на поверхности Земли. Что произойдет с глубиной погружения бруска в воду, если миска будет стоять на полу лифта, который движется с ускорением, направленным вертикально вверх? Ответ поясните, используя физические закономерности.

Решение:

Рассмотрим несколько аспектов этой задачи.

1) Если брусок плавает на поверхности воды, значит, на него действует сила, которую называют силой Архимеда . В нашем случае брусок именно плавает, а не тонет, значит, в нашем случае сила Архимеда настолько велика, что поддерживает брусок на поверхности воды. Численно эта сила по модулю будет равна весу вытесненной бруском воды. Это следует из определения Архимедовой силы.

2) По условию задачи, вначале брусок, вода и емкость покоятся относительно Земли. Это означает, что сила Архимеда уравновешивает силу тяжести, действующей на плавающий брусок. При этом масса бруска и масса вытесненной им воды равны.

3) Далее, по условию, брусок, вода и емкость покоятся относительно друг друга и вместе движутся в лифте вверх с ускорением относительно Земли. Получается, одна и та же сила Архимеда вместе с силой тяжести сообщает одно и то же ускорение как плавающему бруску, так и воде в объеме, вытесненном бруском, что приводит к соотношению:

Получается, что суммирующее ускорение одинаково как для бруска, так и для вытесненной им воды. Отсюда делаем вывод, что и при движении относительно Земли с ускорением масса бруска и масса вытесненной им воды одинаковы. Поскольку масса бруска при первом условии (состояние покоя относительно Земли) и при втором условии (ускоренное движение вверх) одна и та же, то масса вытесненной им воды в обоих случаях будет одинакова.

4) Еще одно дополнение. Вода в нормальных условиях практически несжимаема, поэтому плотность воды в обоих случаях мы принимаем одинаковой.

На основании своих рассуждений делаем вывод, что при движении вверх, объем вытесненной воды не изменяется, а глубина погружения бруска в воду в лифте останется неизменной.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

В четвертом задании ЕГЭ по физике у нас проверяют знания сообщающихся сосудов, силы Архимеда, закона Паскаля, моментов сил.

Теория к заданию №4 ЕГЭ по физике

Момент силы

Моментом силы называется величина, которая характеризует вращательное действие силы на твёрдое тело. Момент силы равен произведению силы F на расстояние h от оси (или центра) до точки приложения этой силы и является одним из главных понятий динамики: M 0 = Fh.

Расстояние h принято называть плечом силы.

Во многих задачах данного раздела механики применяется правило моментов сил, которые приложены к телу, условно считаемому рычагом. Условием равновесия рычага F 1 /F 2 = l 2 /l 1 можно пользоваться и в том случае, если к рычагу приложены не только две силы. В этом случае определяется сумма всех моментов сил.

Закон сообщающихся сосудов

По закону сообщающихся сосудов в открытых сообщающихся сосудах любого типа давление жидкости на каждом уровне одинаково.

Сравнивают при этом давления столбов над уровнем жидкости в каждом сосуде. Давление определяется формулой: p=ρgh. Если приравнять давления столбов жидкостей, получится равенство: ρ 1 gh 1 = ρ 2 gh 2 . Отсюда вытекает соотношение: ρ 1 h 1 = ρ 2 h 2 , или ρ 1 /ρ 2 = h 2 / h 1 . Это означает, что высоты столбов жидкостей обратно пропорциональны плотности веществ.

Сила Архимеда

Архимедова сила или сила выталкивания возникает, когда какое-то твердое тело погружается в жидкость или газ. Жидкость или газ стремятся занять «отобранное» у них место, потому выталкивают его. Сила Архимеда действует только в тех случаях, когда на тело действует сила тяжести mg

Силу Архимеда традиционно обозначают как F A .

Разбор типовых вариантов заданий №4 ЕГЭ по физике

Демонстрационный вариант 2018

Алгоритм решения:
  1. Вспоминаем правило моментов.
  2. Находим момент силы, создаваемый грузом 1.
  3. Находим плечо силы, которое будет создавать груз 2, когда его подвесят. Находим его момент силы.
  4. Приравниваем моменты сил и определяем искомую величину массы.
  5. Записываем ответ.
Решение:

Первый вариант задания (Демидова, №1)

Момент силы, действующей на рычаг слева, равен 75 Н∙м. Какую силу необходимо приложить к рычагу справа, чтобы он находился в равновесии, если её плечо равно 0,5 м?

Алгоритм решения:
  1. Вводим обозначения для величин, которые даны в условии.
  2. Выписываем правило моментов силы.
  3. Выражаем силу через момент и плечо. Вычисляем.
  4. Записываем ответ.
Решение:
  1. Для приведения в равновесие рычага к нему прикладывают моменты сил М 1 и М 2 , приложенные слева и справа. Момент силы слева по условию равен M 1 = 75 Н∙м. Плечо силы справа равно l= 0,5 м.
  2. Поскольку требуется, чтобы рычаг оказался в равновесии, то по правилу моментов М 1 = М 2 . Поскольку M 1 =F · l , то имеем: М 2 = F l .
  3. Из полученного равенства выражаем силу: F = М 2 / l = 75/0,5=150 Н.

Второй вариант задания (Демидова, №4)

Архимедова сила или сила выталкивания возникает, когда какое-то твердое тело погружается в жидкость или газ. Жидкость или газ стремятся занять «отобранное» у них место, потому выталкивают его. Сила Архимеда действует только, когда на тело действует сила тяжести mg . В невесомости эта сила не возникает.

Сила натяжения нити Т возникает, когда нить пытаются растянуть. Она не зависит от того, присутствует ли сила тяжести.

Если на тело действует несколько сил, то при изучении его движения или состояния равновесия рассматривается равнодействующая этих сил.

Алгоритм решения:
  1. Переводим данные из условия в СИ. Вводим необходимое для решения табличное значение плотности воды.
  2. Анализируем условие задачи, определяем давление жидкостей в каждом сосуде.
  3. Записываем уравнение закона сообщающихся сосудов.
  4. Записываем ответ.
Решение:

Третий вариант задания (Демидова, №20)

Алгоритм решения:
  1. Анализируем условие задачи, определяем давления жидкостей в каждом сосуде.
  2. Записываем равенство закона сообщающихся сосудов.
  3. Подставляем числовые значения величин и вычисляем искомую плотность.
  4. Записываем ответ.

Среднее общее образование

ЕГЭ-2018 по физике: задание 29

Предлагаем вашему вниманию разбор 29 задания ЕГЭ-2018 по физике. Мы подготовили пояснения и подробный алгоритм решения, а также рекомендации по использованию справочников и пособий, которые могут понадобиться при подготовке к ЕГЭ.

Задание 29

Деревянный шар привязан нитью ко дну цилиндрического сосуда с площадью дна S = 100 см 2 . В сосуд наливают воду так, что шар полностью погружается в жидкость, при этом нить натягивается и действует на шар с силой T . Если нить перерезать, то шар всплывёт, а уровень воды изменится на h = 5 см. Найдите силу натяжения нити T .

Решение

Рис. 1

Рис. 2

Первоначально деревянный шар привязан нитью ко дну цилиндрического сосуда площадью дна S = 100 см 2 = 0,01 м 2 и полностью погружен в воду. На шар действуют три силы: сила тяжести со стороны Земли, – сила Архимеда со стороны жидкости, – сила натяжения нити, результат взаимодействия шара и нити. По условию равновесия шара в первом случае геометрическая сумма всех действующих на шарик сил, должна быть равна нулю:

В книге содержатся материалы для успешной сдачи ЕГЭ по физике: краткие теоретические сведения по всем темам, задания разных типов и уровней сложности, решение задач повышенного уровня сложности, ответы и критерии оценивания. Учащимся не придется искать дополнительную информацию в интернете и покупать другие пособия. В данной книге они найдут все необходимое для самостоятельной и эффективной подготовки к экзамену. Издание содержит задания разных типов по всем темам, проверяемым на ЕГЭ по физике, а также решение задач повышенного уровня сложности.

Выберем координатную ось OY и направим ее вверх. Тогда с учетом проекции уравнение (1) запишем:

F a 1 = T + mg (2).

Распишем силу Архимеда:

F a 1 = ρ · V 1 g (3),

где V 1 – объем части шара погруженной в воду, в первом это объем всего шара, m – масса шара, ρ – плотность воды. Условие равновесия во втором случае

F a 2 = mg (4)

Распишем силу Архимеда в этом случае:

F a 2 = ρ · V 2 g (5),

где V 2 – объем части шара, погруженной в жидкость во втором случае.

Поработаем с уравнениями (2) и (4) . Можно использовать метод подстановки или вычесть из (2) – (4), тогда F a 1 – F a 2 = T , используя формулы (3) и (5) получим ρ · V 1 g ρ · V 2 g = T ;

ρg (V 1 V 2) = T (6)

Учитывая, что

V 1 V 2 = S ·h (7),

где h = H 1 – H 2 ; получим

T = ρ · g · S · h (8)

Подставим числовые значения

В ходе этого урока экспериментальным путем устанавливается, от чего зависит, а от чего не зависит величина выталкивающей силы, возникающей при погружении тела в жидкость.

Древнегреческий ученый Архимед (рис. 1) прославился многочисленными открытиями.

Рис. 1. Архимед (287–212 гг. до н. э.)

Именно он первым обнаружил, объяснил и сумел рассчитать выталкивающую силу. На прошлом уроке мы выяснили, что эта сила действует на любое тело, погруженное в жидкость или газ (рис. 2).

Рис. 2. Сила Архимеда

В честь Архимеда эта сила называется также архимедовой силой. Расчетным путем мы получили формулу для вычисления этой силы. На данном уроке мы воспользуемся экспериментальным методом, чтобы выяснить, от каких факторов зависит выталкивающая сила, а от каких факторов она не зависит.

Для проведения эксперимента мы будем использовать тела различного объема, сосуд с жидкостью и динамометр.

Прикрепим груз меньшего объема к динамометру и измерим вес этого груза сначала в воздухе: , а затем опустив груз в жидкость: . При этом можно заметить, что величина деформации пружины после опускания груза в жидкость практически не изменилась. Это говорит о том, что выталкивающая сила, действующая на груз, невелика.

Рис 3. Эксперимент с грузом малого объема

Теперь прикрепим к пружине динамометра груз большего объема и погрузим его в жидкость. Мы увидим, что деформация пружины уменьшилась значительнее.

Это произошло благодаря тому, что величина выталкивающей силы стала больше.

Рис 4. Эксперимент с грузом большего объема

По результату данного эксперимента можно сделать промежуточный вывод.

Чем больше объем погруженной в жидкость части тела, тем больше выталкивающая сила, действующая на тело.

Возьмем два тела одинакового объема, но изготовленные из разных материалов. Это значит, что у них различная плотность. Подвесим к динамометру сначала один груз и опустим его в жидкость. По изменению показаний динамометра найдем выталкивающую силу.

Рис. 5 Эксперимент с первым грузиком

Затем такую же операцию проведем со вторым грузом.

Рис. 6 Эксперимент со вторым грузиком

Хотя вес первого и второго груза разные, но при погружении в жидкость показания динамометра уменьшатся на одну и ту же величину.

Это означает, что в обоих случаях значение выталкивающей силы одно и то же, хотя грузы выполнены из разного материала.

Таким образом, можно сделать еще один промежуточный вывод.

Величина выталкивающей силы не зависит от плотности тел, погруженных в жидкость.

Прикрепим груз к пружине динамометра и опустим его в воду таким образом, чтобы он был полностью погружен в жидкость. Отметим показания динамометра . Теперь будем медленно подливать жидкость в сосуд. Мы заметим, что показания динамометра практически не изменяются . А значит, не меняется и выталкивающая сила.

Рис. 7 Эксперимент № 3

Третий промежуточный вывод.

Величина выталкивающей силы не зависит от высоты столба жидкости над погруженным в жидкость телом.

Прикрепим груз к пружине динамометра. Заметив показания динамометра, когда тело находится в воздухе: , погрузим тело сначала в воду: , а затем в масло: . По изменению показаний динамометра можно судить, что выталкивающая сила, действующая на тело в воде, больше, чем выталкивающая сила, действующая на то же самое тело в масле.

Рис. 8 Эксперимент № 4

Отметим, что плотность воды равна , а плотность масла меньше и составляет только . Это приводит к следующему выводу.

Чем больше плотность жидкости, в которую погружено тело, тем больше выталкивающая сила, действующая на тело со стороны данной жидкости.

Итак, обобщив результаты проделанных экспериментов, можно заключить, что величина выталкивающей силы

зависит:

1) от плотности жидкости ;

2) от объема погруженной части тела ;

не зависит:

1) от плотности тела;

2) от формы тела;

3) от высоты столба жидкости над телом;

Полученные результаты находятся в полном соответствии с формулой для величины выталкивающей силы, полученной на предыдущем уроке:

В эту формулу, кроме ускорения свободного падения, входят только две величины, описывающие условия проведенных экспериментов: плотность жидкости и объем погруженной части тела.

Список литературы

  1. Перышкин А.В. Физика. 7 кл. - 14-е изд., стереотип. - М.: Дрофа, 2010.
  2. А.В. Перышкин Физика 7 кл.: учеб. для общеобразоват. учреждений. - 2-е изд., стереотип. - М.: Дрофа, 2013. - 221 с.
  3. Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7-9 классов общеобразовательных учреждений. - 17-е изд. - М.: Просвещение, 2004.
  1. Интернет-портал «eduspb.com» ()
  2. Интернет-портал «class-fizika.narod.ru» ()
  3. Интернет-портал «krugosvet.ru» ()

Домашнее задание

  1. Что такое выталкивающая сила? Запишите формулу для нее.
  2. Куб определенного объема поместили в воду. Как изменится выталкивающая сила, которая действует на куб, если его объем уменьшить в 2 раза?
  3. Одинаковые тела поместили в разные жидкости: одно поместили в масло, а второе - в воду. В каком случае выталкивающая сила, действующая на тела, будет больше?