Профиль матем задания 14. ЕГЭ по Математике (базовый)

Среднее общее образование

Линия УМК Г. К. Муравина. Алгебра и начала математического анализа (10-11) (углуб.)

Линия УМК Мерзляка. Алгебра и начала анализа (10-11) (У)

Математика

Подготовка к ЕГЭ по математике (профильный уровень): задания, решения и объяснения

Разбираем задания и решаем примеры с учителем

Экзаменационная работа профильного уровня длится 3 часа 55 минут (235 минут).

Минимальный порог - 27 баллов.

Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и числу заданий.

Определяющим признаком каждой части работы является форма заданий:

  • часть 1 содержит 8 заданий (задания 1-8) с кратким ответом в виде целого числа или конечной десятичной дроби;
  • часть 2 содержит 4 задания (задания 9-12) с кратким ответом в виде целого числа или конечной десятичной дроби и 7 заданий (задания 13–19) с развернутым ответом (полная запись решения с обоснованием выполненных действий).

Панова Светлана Анатольевна , учитель математики высшей категории школы, стаж работы 20 лет:

«Для того чтобы получить школьный аттестат, выпускнику необходимо сдать два обязательных экзамена в форме ЕГЭ, один из которых математика. В соответствии с Концепцией развития математического образования в Российской Федерации ЕГЭ по математике разделен на два уровня: базовый и профильный. Сегодня мы рассмотрим варианты профильного уровня».

Задание № 1 - проверяет у участников ЕГЭ умение применять навыки, полученные в курсе 5 - 9 классов по элементарной математике, в практической деятельности. Участник должен владеть вычислительными навыками, уметь работать с рациональными числами, уметь округлять десятичные дроби, уметь переводить одни единицы измерения в другие.

Пример 1. В квартире, где проживает Петр, установили прибор учета расхода холодной воды (счетчик). Первого мая счетчик показывал расход 172 куб. м воды, а первого июня - 177 куб. м. Какую сумму должен заплатить Петр за холодную воду за май, если цена 1 куб. м холодной воды составляет 34 руб 17 коп? Ответ дайте в рублях.

Решение:

1) Найдем количество потраченной воды за месяц:

177 - 172 = 5 (куб м)

2) Найдем сколько денег заплатят за потраченную воду:

34,17 · 5 = 170,85 (руб)

Ответ: 170,85.


Задание № 2 -является одним из простейших заданий экзамена. С ней успешно справляется большинство выпускников, что свидетельствует о владении определением понятия функции. Тип задания № 2 по кодификатору требований - это задание на использования приобретённых знаний и умений в практической деятельности и повседневной жизни. Задание № 2 состоит из описания с помощью функций различных реальных зависимостей между величинами и интерпретация их графиков. Задание № 2 проверяет умение извлекать информацию, представленную в таблицах, на диаграммах, графиках. Выпускникам нужно уметь определять значение функции по значению аргумента при различных способах задания функции и описывать поведение и свойства функции по её графику. Также необходимо уметь находить по графику функции наибольшее или наименьшее значение и строить графики изученных функций. Допускаемые ошибки носят случайный характер в чтении условия задачи, чтении диаграммы.

#ADVERTISING_INSERT#

Пример 2. На рисунке показано изменение биржевой стоимости одной акции добывающей компании в первой половине апреля 2017 года. 7 апреля бизнесмен приобрёл 1000 акций этой компании. 10 апреля он продал три четверти купленных акций, а 13 апреля продал все оставшиеся. Сколько потерял бизнесмен в результате этих операций?


Решение:

2) 1000 · 3/4 = 750 (акций) - составляют 3/4 от всех купленных акций.

6) 247500 + 77500 = 325000 (руб) - бизнесмен получил после продажи 1000 акций.

7) 340000 – 325000 = 15000 (руб) - потерял бизнесмен в результате всех операций.

Ответ: 15000.

Задание № 3 - является заданием базового уровня первой части, проверяет умения выполнять действия с геометрическими фигурами по содержанию курса «Планиметрия». В задании 3 проверяется умение вычислять площадь фигуры на клетчатой бумаге, умение вычислять градусные меры углов, вычислять периметры и т.п.

Пример 3. Найдите площадь прямоугольника, изображенного на клетчатой бумаге с размером клетки 1 см на 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

Решение: Для вычисления площади данной фигуры можно воспользоваться формулой Пика:

Для вычисления площади данного прямоугольника воспользуемся формулой Пика:

S = В +

Г
2
где В = 10, Г = 6, поэтому

S = 18 +

6
2
Ответ: 20.

Читайте также: ЕГЭ по физике: решение задач о колебаниях

Задание № 4 - задача курса «Теория вероятностей и статистика». Проверяется умение вычислять вероятность события в простейшей ситуации.

Пример 4. На окружности отмечены 5 красных и 1 синяя точка. Определите, каких многоугольников больше: тех, у которых все вершины красные, или тех, у которых одна из вершин синяя. В ответе укажите, на сколько одних больше, чем других.

Решение: 1) Воспользуемся формулой числа сочетаний из n элементов по k :

у которых все вершины красные.

3) Один пятиугольник, у которого все вершины красные.

4) 10 + 5 + 1 = 16 многоугольников, у которых все вершины красные.

у которых вершины красные или с одной синей вершиной.

у которых вершины красные или с одной синей вершиной.

8) Один шестиуголник, у которого вершины красные с одной синей вершиной.

9) 20 + 15 + 6 + 1 = 42 многоуголника, у которых все вершины красные или с одной синей вершиной.

10) 42 – 16 = 26 многоугольников, в которых используется синяя точка.

11) 26 – 16 = 10 многоугольников – на сколько многоугольников, у которых одна из вершин - синяя точка, больше, чем многоугольников, у которых все вершины только красные.

Ответ: 10.

Задание № 5 - базового уровня первой части проверяет умения решать простейшие уравнения (иррациональные, показательные, тригонометрические, логарифмические).

Пример 5. Решите уравнение 2 3 + x = 0,4 · 5 3 + x .

Решение. Разделим обе части данного уравнения на 5 3 + х ≠ 0, получим

2 3 + x = 0,4 или 2 3 + х = 2 ,
5 3 + х 5 5

откуда следует, что 3 + x = 1, x = –2.

Ответ: –2.

Задание № 6 по планиметрии на нахождение геометрических величин (длин, углов, площадей), моделирование реальных ситуаций на языке геометрии. Исследование построенных моделей с использованием геометрических понятий и теорем. Источником трудностей является, как правило, незнание или неверное применение необходимых теорем планиметрии.

Площадь треугольника ABC равна 129. DE – средняя линия, параллельная стороне AB . Найдите площадь трапеции ABED .


Решение. Треугольник CDE подобен треугольнику CAB по двум углам, так как угол при вершине C общий, угол СDE равен углу CAB как соответственные углы при DE || AB секущей AC . Так как DE – средняя линия треугольника по условию, то по свойству средней линии | DE = (1/2)AB . Значит, коэффициент подобия равен 0,5. Площади подобных фигур относятся как квадрат коэффициента подобия, поэтому

Следовательно, S ABED = S ΔABC S ΔCDE = 129 – 32,25 = 96,75.

Задание № 7 - проверяет применение производной к исследованию функции. Для успешного выполнения необходимо содержательное, не формальное владение понятием производной.

Пример 7. К графику функции y = f (x ) в точке с абсциссой x 0 проведена касательная, которая перпендикулярна прямой, проходящей через точки (4; 3) и (3; –1) этого графика. Найдите f ′(x 0).

Решение. 1) Воспользуемся уравнением прямой, проходящей через две заданные точки и найдём уравнение прямой, проходящей через точки (4; 3) и (3; –1).

(y y 1)(x 2 – x 1) = (x x 1)(y 2 – y 1)

(y – 3)(3 – 4) = (x – 4)(–1 – 3)

(y – 3)(–1) = (x – 4)(–4)

y + 3 = –4x + 16| · (–1)

y – 3 = 4x – 16

y = 4x – 13, где k 1 = 4.

2) Найдём угловой коэффициент касательной k 2 , которая перпендикулярна прямой y = 4x – 13, где k 1 = 4, по формуле:

3) Угловой коэффициент касательной – производная функции в точке касания. Значит, f ′(x 0) = k 2 = –0,25.

Ответ: –0,25.

Задание № 8 - проверяет у участников экзамена знания по элементарной стереометрии, умение применять формулы нахождения площадей поверхностей и объемов фигур, двугранных углов, сравнивать объемы подобных фигур, уметь выполнять действия с геометрическими фигурами, координатами и векторами и т.п.

Объём куба, описанного около сферы, равен 216. Найдите радиус сферы.


Решение. 1) V куба = a 3 (где а – длина ребра куба), поэтому

а 3 = 216

а = 3 √216

2) Так как сфера вписана в куб, значит, длина диаметра сферы равна длине ребра куба, поэтому d = a , d = 6, d = 2R , R = 6: 2 = 3.

Задание № 9 - требует от выпускника навыков преобразования и упрощения алгебраических выражений. Задание № 9 повышенного уровня сложности с кратким ответом. Задания из раздела «Вычисления и преобразования» в ЕГЭ подразделяются на несколько видов:

    преобразования числовых рациональных выражений;

    преобразования алгебраических выражений и дробей;

    преобразования числовых/буквенных иррациональных выражений;

    действия со степенями;

    преобразование логарифмических выражений;

  1. преобразования числовых/буквенных тригонометрических выражений.

Пример 9. Вычислите tgα, если известно, что cos2α = 0,6 и

< α < π.
4

Решение. 1) Воспользуемся формулой двойного аргумента: cos2α = 2 cos 2 α – 1 и найдём

tg 2 α = 1 – 1 = 1 – 1 = 10 – 1 = 5 – 1 = 1 1 – 1 = 1 = 0,25.
cos 2 α 0,8 8 4 4 4

Значит, tg 2 α = ± 0,5.

3) По условию

< α < π,
4

значит, α – угол II четверти и tgα < 0, поэтому tgα = –0,5.

Ответ: –0,5.

#ADVERTISING_INSERT# Задание № 10 - проверяет у учащихся умение использовать приобретенные раннее знания и умения в практической деятельности и повседневной жизни. Можно сказать, что это задачи по физике, а не по математике, но все необходимые формулы и величины даны в условии. Задачи сводятся к решению линейного или квадратного уравнения, либо линейного или квадратного неравенства. Поэтому необходимо уметь решать такие уравнения и неравенства, и определять ответ. Ответ должен получиться в виде целого числа или конечной десятичной дроби.

Два тела массой m = 2 кг каждое, движутся с одинаковой скоростью v = 10 м/с под углом 2α друг к другу. Энергия (в джоулях), выделяющаяся при их абсолютно неупругом соударении определяется выражением Q = mv 2 sin 2 α. Под каким наименьшим углом 2α (в градусах) должны двигаться тела, чтобы в результате соударения выделилось не менее 50 джоулей?
Решение. Для решения задачи нам необходимо решить неравенство Q ≥ 50, на интервале 2α ∈ (0°; 180°).

mv 2 sin 2 α ≥ 50

2· 10 2 sin 2 α ≥ 50

200 · sin 2 α ≥ 50

Так как α ∈ (0°; 90°), то будем решать только

Изобразим решение неравенства графически:


Так как по условию α ∈ (0°; 90°), значит 30° ≤ α < 90°. Получили, что наименьший угол α равен 30°, тогда наименьший угол 2α = 60°.

Задание № 11 - является типовым, но оказывается непростым для учащихся. Главным источником затруднений является построение математической модели (составление уравнения). Задание № 11 проверяет умение решать текстовые задачи.

Пример 11. На весенних каникулах 11-классник Вася должен был решить 560 тренировочных задач для подготовки к ЕГЭ. 18 марта в последний учебный день Вася решил 5 задач. Далее ежедневно он решал на одно и то же количество задач больше по сравнению с предыдущим днём. Определите, сколько задач Вася решил 2 апреля в последний день каникул.

Решение: Обозначим a 1 = 5 – количество задач, которые Вася решил 18 марта, d – ежедневное количество задач, решаемых Васей, n = 16 – количество дней с 18 марта по 2 апреля включительно, S 16 = 560 – общее количество задач, a 16 – количество задач, которые Вася решил 2 апреля. Зная, что ежедневно Вася решал на одно и то же количество задач больше по сравнению с предыдущим днём, то можно использовать формулы нахождения суммы арифметической прогрессии:

560 = (5 + a 16) · 8,

5 + a 16 = 560: 8,

5 + a 16 = 70,

a 16 = 70 – 5

a 16 = 65.

Ответ: 65.

Задание № 12 - проверяют у учащихся умение выполнять действия с функциями, уметь применять производную к исследованию функции.

Найти точку максимума функции y = 10ln(x + 9) – 10x + 1.

Решение: 1) Найдем область определения функции: x + 9 > 0, x > –9, то есть x ∈ (–9; ∞).

2) Найдем производную функции:

4) Найденная точка принадлежит промежутку (–9; ∞). Определим знаки производной функции и изобразим на рисунке поведение функции:


Искомая точка максимума x = –8.

Скачать бесплатно рабочую программу по математике к линии УМК Г.К. Муравина, К.С. Муравина, О.В. Муравиной 10-11 Скачать бесплатно методические пособия по алгебре

Задание № 13 -повышенного уровня сложности с развернутым ответом, проверяющее умение решать уравнения, наиболее успешно решаемое среди заданий с развернутым ответом повышенного уровня сложности.

а) Решите уравнение 2log 3 2 (2cosx ) – 5log 3 (2cosx ) + 2 = 0

б) Найдите все корни этого уравнения, принадлежащие отрезку .

Решение: а) Пусть log 3 (2cosx ) = t , тогда 2t 2 – 5t + 2 = 0,


log 3 (2cosx ) = 2
2cosx = 9
cosx = 4,5 ⇔ т.к. |cosx | ≤ 1,
log 3 (2cosx ) = 1 2cosx = √3 cosx = √3
2 2
то cosx = √3
2

x = π + 2πk
6
x = – π + 2πk , k Z
6

б) Найдём корни, лежащие на отрезке .


Из рисунка видно, что заданному отрезку принадлежат корни

11π и 13π .
6 6
Ответ: а) π + 2πk ; – π + 2πk , k Z ; б) 11π ; 13π .
6 6 6 6
Задание № 14 -повышенного уровня относится к заданиям второй части с развернутым ответом. Задание проверяет умения выполнять действия с геометрическими фигурами. Задание содержит два пункта. В первом пункте задание нужно доказать, а во втором пункте вычислить.

Диаметр окружности основания цилиндра равен 20, образующая цилиндра равна 28. Плоскость пересекает его основания по хордам длины 12 и 16. Расстояние между хордами равно 2√197.

а) Докажите, что центры оснований цилиндра лежат по одну сторону от этой плоскости.

б) Найдите угол между этой плоскостью и плоскостью основания цилиндра.

Решение: а) Хорда длиной 12 находится на расстоянии = 8 от центра окружности основания, а хорда длиной 16, аналогично, – на расстоянии 6. Поэтому расстояние между их проекциями на плоскость, параллельную основаниям цилиндров, составляет либо 8 + 6 = 14, либо 8 − 6 = 2.

Тогда расстояние между хордами составляет либо

= = √980 = = 2√245

= = √788 = = 2√197.

По условию реализовался второй случай, в нем проекции хорд лежат по одну сторону от оси цилиндра. Значит, ось не пересекает данную плоскость в пределах цилиндра, то есть основания лежат по одну сторону от нее. Что требовалось доказать.

б) Обозначим центры оснований за О 1 и О 2 . Проведем из центра основания с хордой длины 12 серединный перпендикуляр к этой хорде (он имеет длину 8, как уже отмечалось) и из центра другого основания - к другой хорде. Они лежат в одной плоскости β, перпендикулярной этим хордам. Назовем середину меньшей хорды B, большей A и проекцию A на второе основание - H (H ∈ β). Тогда AB,AH ∈ β и значит, AB,AH перпендикулярны хорде, то есть прямой пересечения основания с данной плоскостью.

Значит, искомый угол равен

∠ABH = arctg AH = arctg 28 = arctg14.
BH 8 – 6

Задание № 15 - повышенного уровня сложности с развернутым ответом, проверяет умение решать неравенства, наиболее успешно решаемое среди заданий с развернутым ответом повышенного уровня сложности.

Пример 15. Решите неравенство |x 2 – 3x | · log 2 (x + 1) ≤ 3x x 2 .

Решение: Областью определения данного неравенства является интервал (–1; +∞). Рассмотри отдельно три случая:

1) Пусть x 2 – 3x = 0, т.е. х = 0 или х = 3. В этом случае данное неравенство превращается в верное, следовательно, эти значения входят в решение.

2) Пусть теперь x 2 – 3x > 0, т.е. x ∈ (–1; 0) ∪ (3; +∞). При этом данное неравенство можно переписать в виде (x 2 – 3x ) · log 2 (x + 1) ≤ 3x x 2 и разделить на положительное выражение x 2 – 3x . Получим log 2 (x + 1) ≤ –1, x + 1 ≤ 2 –1 , x ≤ 0,5 –1 или x ≤ –0,5. Учитывая область определения, имеем x ∈ (–1; –0,5].

3) Наконец, рассмотрим x 2 – 3x < 0, при этом x ∈ (0; 3). При этом исходное неравенство перепишется в виде (3x x 2) · log 2 (x + 1) ≤ 3x x 2 . После деления на положительное выражение 3x x 2 , получим log 2 (x + 1) ≤ 1, x + 1 ≤ 2, x ≤ 1. Учитывая область, имеем x ∈ (0; 1].

Объединяя полученные решения, получаем x ∈ (–1; –0.5] ∪ ∪ {3}.

Ответ: (–1; –0.5] ∪ ∪ {3}.

Задание № 16 - повышенного уровня относится к заданиям второй части с развернутым ответом. Задание проверяет умения выполнять действия с геометрическими фигурами, координатами и векторами. Задание содержит два пункта. В первом пункте задание нужно доказать, а во втором пункте вычислить.

В равнобедренном треугольнике ABC с углом 120° при вершине A проведена биссектриса BD. В треугольник ABC вписан прямоугольник DEFH так, что сторона FH лежит на отрезке BC, а вершина E – на отрезке AB. а) Докажите, что FH = 2DH. б) Найдите площадь прямоугольника DEFH, если AB = 4.

Решение: а)


1) ΔBEF – прямоугольный, EF⊥BC, ∠B = (180° – 120°) : 2 = 30°, тогда EF = BE по свойству катета, лежащего против угла 30°.

2) Пусть EF = DH = x , тогда BE = 2x , BF = x √3 по теореме Пифагора.

3) Так как ΔABC равнобедренный, значит, ∠B = ∠C = 30˚.

BD – биссектриса ∠B, значит ∠ABD = ∠DBC = 15˚.

4) Рассмотрим ΔDBH – прямоугольный, т.к. DH⊥BC.

2x = 4 – 2x
2x (√3 + 1) 4
1 = 2 – x
√3 + 1 2

√3 – 1 = 2 – x

x = 3 – √3

EF = 3 – √3

2) S DEFH = ED · EF = (3 – √3 ) · 2(3 – √3 )

S DEFH = 24 – 12√3.

Ответ: 24 – 12√3.


Задание № 17 - задание с развернутым ответом, это задание проверяет применение знаний и умений в практической деятельности и повседневной жизни, умение строить и исследовать математические модели. Это задание - текстовая задача с экономическим содержанием.

Пример 17. Вклад в размере 20 млн рублей планируется открыть на четыре года. В конце каждого года банк увеличивает вклад на 10% по сравнению с его размером в начале года. Кроме того, в начале третьего и четвёртого годов вкладчик ежегодно пополняет вклад на х млн. рублей, где х - целое число. Найдите наибольшее значение х , при котором банк за четыре года начислит на вклад меньше 17 млн рублей.

Решение: В конце первого года вклад составит 20 + 20 · 0,1 = 22 млн рублей, а в конце второго – 22 + 22 · 0,1 = 24,2 млн рублей. В начале третьего года вклад (в млн рублей) составит (24,2 + х ), а в конце - (24,2 + х) + (24,2 + х) · 0,1 = (26,62 + 1,1х ). В начале четвёртого года вклад составит (26,62 + 2,1х) , а в конце - (26,62 + 2,1х ) + (26,62 + 2,1х ) · 0,1 = (29,282 + 2,31х ). По условию, нужно найти наибольшее целое х, для которого выполнено неравенство

(29,282 + 2,31x ) – 20 – 2x < 17

29,282 + 2,31x – 20 – 2x < 17

0,31x < 17 + 20 – 29,282

0,31x < 7,718

x < 7718
310
x < 3859
155
x < 24 139
155

Наибольшее целое решение этого неравенства - число 24.

Ответ: 24.


Задание № 18 - задание повышенного уровня сложности с развернутым ответом. Это задание предназначено для конкурсного отбора в вузы с повышенными требованиями к математической подготовке абитуриентов. Задание высокого уровня сложности - это задание не на применение одного метода решения, а на комбинацию различных методов. Для успешного выполнения задания 18 необходим, кроме прочных математических знаний, также высокий уровень математической культуры.

При каких a система неравенств

x 2 + y 2 ≤ 2ay a 2 + 1
y + a ≤ |x | – a

имеет ровно два решения?

Решение: Данную систему можно переписать в виде

x 2 + (y a ) 2 ≤ 1
y ≤ |x | – a

Если нарисовать на плоскости множество решений первого неравенства, получится внутренность круга (с границей) радиуса 1 с центром в точке (0, а ). Множество решений второго неравенства – часть плоскости, лежащая под графиком функции y = | x | – a , причём последний есть график функции
y = | x | , сдвинутый вниз на а . Решение данной системы есть пересечение множеств решений каждого из неравенств.

Следовательно, два решения данная система будет иметь лишь в случае, изображённом на рис. 1.


Точки касания круга с прямыми и будут двумя решениями системы. Каждая из прямых наклонена к осям под углом 45°. Значит, треугольник PQR – прямоугольный равнобедренный. Точка Q имеет координаты (0, а ), а точка R – координаты (0, –а ). Кроме того, отрезки PR и PQ равны радиусу окружности, равному 1. Значит,

Qr = 2a = √2, a = √2 .
2
Ответ: a = √2 .
2


Задание № 19 - задание повышенного уровня сложности с развернутым ответом. Это задание предназначено для конкурсного отбора в вузы с повышенными требованиями к математической подготовке абитуриентов. Задание высокого уровня сложности - это задание не на применение одного метода решения, а на комбинацию различных методов. Для успешного выполнения задания 19 необходимо уметь осуществлять поиск решения, выбирая различные подходы из числа известных, модифицируя изученные методы.

Пусть Sn сумма п членов арифметической прогрессии (а п ). Известно, что S n + 1 = 2n 2 – 21n – 23.

а) Укажите формулу п -го члена этой прогрессии.

б) Найдите наименьшую по модулю сумму S n .

в) Найдите наименьшее п , при котором S n будет квадратом целого числа.

Решение : а) Очевидно, что a n = S n S n – 1 . Используя данную формулу, получаем:

S n = S (n – 1) + 1 = 2(n – 1) 2 – 21(n – 1) – 23 = 2n 2 – 25n ,

S n – 1 = S (n – 2) + 1 = 2(n – 1) 2 – 21(n – 2) – 23 = 2n 2 – 25n + 27

значит, a n = 2n 2 – 25n – (2n 2 – 29n + 27) = 4n – 27.

Б) Так как S n = 2n 2 – 25n , то рассмотрим функцию S (x ) = | 2x 2 – 25x| . Ее график можно увидеть на рисунке.


Очевидно, что наименьшее значение достигается в целочисленных точках, расположенных наиболее близко к нулям функции. Очевидно, что это точки х = 1, х = 12 и х = 13. Поскольку, S (1) = |S 1 | = |2 – 25| = 23, S (12) = |S 12 | = |2 · 144 – 25 · 12| = 12, S (13) = |S 13 | = |2 · 169 – 25 · 13| = 13, то наименьшее значение равно 12.

в) Из предыдущего пункта вытекает, что Sn положительно, начиная с n = 13. Так как S n = 2n 2 – 25n = n (2n – 25), то очевидный случай, когда данное выражение является полным квадратом, реализуется при n = 2n – 25, то есть при п = 25.

Осталось проверить значения с 13 до 25:

S 13 = 13 · 1, S 14 = 14 · 3, S 15 = 15 · 5, S 16 = 16 · 7, S 17 = 17 · 9, S 18 = 18 · 11, S 19 = 19 · 13, S 20 = 20 · 13, S 21 = 21 · 17, S 22 = 22 · 19, S 23 = 23 · 21, S 24 = 24 · 23.

Получается, что при меньших значениях п полный квадрат не достигается.

Ответ: а) a n = 4n – 27; б) 12; в) 25.

________________

*С мая 2017 года объединенная издательская группа «ДРОФА-ВЕНТАНА» входит в корпорацию «Российский учебник». В корпорацию также вошли издательство «Астрель» и цифровая образовательная платформа «LECTA». Генеральным директором назначен Александр Брычкин, выпускник Финансовой академии при Правительстве РФ, кандидат экономических наук, руководитель инновационных проектов издательства «ДРОФА» в сфере цифрового образования (электронные формы учебников, «Российская электронная школа», цифровая образовательная платформа LECTA). До прихода в издательство «ДРОФА» занимал позицию вице-президента по стратегическому развитию и инвестициям издательского холдинга «ЭКСМО-АСТ». Сегодня издательская корпорация «Российский учебник» обладает самым крупным портфелем учебников, включенных в Федеральный перечень - 485 наименований (примерно 40%, без учета учебников для коррекционной школы). Издательствам корпорации принадлежат наиболее востребованные российскими школами комплекты учебников по физике, черчению, биологии, химии, технологии, географии, астрономии - областям знаний, которые нужны для развития производственного потенциала страны. В портфель корпорации входят учебники и учебные пособия для начальной школы, удостоенные Премии Президента в области образования. Это учебники и пособия по предметным областям, которые необходимы для развития научно-технического и производственного потенциала России.

Считается, что задача по стереометрии на Профильном ЕГЭ по математике - только для отличников. Что для ее решения необходимы особые таланты и загадочное «пространственное мышление», которым обладают с рождения лишь редкие счастливчики.

Так ли это?

К счастью, всё значительно проще. То, что так красиво называют «пространственным мышлением», чаще всего означает знание основ стереометрии и умение строить чертежи.

Во-первых, необходимо знание формул стереометрии. В наших таблицах «Многогранники » и «Тела вращения » приведены все формулы, по которым вычисляются объемы и площади поверхности трехмерных тел.

Во-вторых - уверенное решение задач по геометрии, представленных в части 1 (первые 12 задач ЕГЭ). Это и планиметрические задачи, и стереометрические .

И главное - для решения задачи 14 вам понадобятся основные аксиомы и теоремы стереометрии. Лучше всего, если вы приобретете учебник по геометрии для 10-11 класса (автор - А. В. Погорелов или Л. С. Атанасян), и ответите на вопросы, список которых приведен ниже. Выпишите в тетрадь определения и формулировки теорем. Сделайте чертежи. Доказывать теоремы старайтесь самостоятельно.

Работая над этим заданием, сформулируйте для себя - чем отличаются определение и признак . Есть, например, определение параллельности прямой и плоскости - и признак параллельности прямой и плоскости. В чем разница между ними?

Очень хорошо, если вы сделаете задание самостоятельно, а затем сверите с ответами. Все ответы можно найти на нашем сайте, в этом разделе.

Программа по стереометрии .

  1. Плоскость в пространстве .Закончите фразу: Плоскость можно провести через...

    (Дайте четыре варианта ответа).

  2. Расположение плоскостей в пространстве.Закончите фразу: Если две плоскости имеют общую точку, то они...
  3. Параллельность прямой и плоскости. Определение и признак .
  4. Что такое наклонная и проекция наклонной . Рисунок.
  5. Угол между прямой и плоскостью.
  6. Перпендикулярность прямой и плоскости. Определение и признак.
  7. Скрещивающиеся прямые. Угол между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми .
  8. Расстояние от прямой до параллельной ей плоскости.
  9. Параллельность плоскостей. Определение и признак.
  10. Перпендикулярность плоскостей. Определение и признак.
  11. Закончите фразу:а) Линии пересечения двух параллельных плоскостей третьей плоскостью...

    б) Отрезки параллельных прямых, заключенные между параллельными плоскостями...

Приведем несколько простых правил для решения задач по стереометрии:

Есть два основных способа решения задач по стереометрии на ЕГЭ по математике. Первый - классический: применение на практике определений, теорем и признаков, список которых приведен выше. Второй -

В задании 14 ЕГЭ по математике выпускникам, сдающим экзамен, необходимо решить задачу по стереометрии. Именно поэтому научиться решать такие задачи должен каждый школьник, если он хочет получить положительную оценку на экзамене. В данной статье представлен разбор двух типов заданий 14 из ЕГЭ по математике 2016 года (профильный уровень) от репетитора по математике в Москве.

Доступен видеоразбор данного задания:

Рисунок к заданию будет выглядеть следующим образом:

а) Поскольку прямая MN параллельна прямой DA , которая принадлежит плоскости DAS , то прямая MN параллельна плоскости DAS . Следовательно, линия пересечения плоскости DAS и сечения KMN будет параллельна прямой MN . Пусть это линия KL . Тогда KMNL — искомое сечение.

Докажем, что плоскость сечения параллельна плоскости SBC . Прямая BC параллельна прямой MN , так как четырехугольник MNCB является прямоугольником (докажите сами). Теперь докажем подобие треугольников AKM и ASB . AC — диагональ квадрата. По теореме Пифагора для треугольника ADC находим:

AH — половина диагонали квадрата, поэтому . Тогда из теоремы Пифагора для прямоугольного треугольника находим:

Тогда имеют место соотношения:

Получается, что стороны, образующие угол A в треугольниках AKM и ASB , пропорциональны. Следовательно, треугольники подобны. Из этого следует равенство углов, в частности, равенство углов AMK и ABS . Так как эти углы соответственные при прямых KM , SB и секущей MB , то KM параллельна SB .

Итак, мы получили, что две пересекающиеся прямые одной плоскости (KM и NM ) соответственно параллельны двум пересекающимся прямым другой плоскости (SB и BC ). Следовательно, плоскости MNK и SBC параллельны.

б) Поскольку плоскости параллельны, расстояние от точки K до плоскости SBC равно расстоянию от точки S до плоскости KMN . Ищем это расстояние. Из точки S опускаем перпендикуляр SP к прямой DA . Плоскость SPH пересекается с плоскостью сечения по прямой OR . Искомое расстояние есть длин перпендикуляра из точки S к прямой OR .

Действительно, KL перпендикулярна плоскости OSR , так как она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости (OR и OS ). Перпендикулярность OR и KL следует из теоремы о трёх перпендикулярах. Следовательно, KL перпендикулярна высоте треугольника ORS , проведенной к стороне OR . То есть эта высота перпендикулярна двум пересекающимся прямым, лежащим в плоскости KMN , а значит перпендикулярна этой плоскости.

Ищем стороны треугольника SOR . Сторону SR ищем по теореме Пифагора из прямоугольного треугольника RSH : . Длину SP находим по теореме Пифагора из прямоугольного треугольника PSH : . Треугольники SOK и SPA подобны (докажите это сами) с коэффициентом подобия . Тогда и . Из прямоугольного треугольника SPH находим . Из теоремы косинусов для треугольника POR находим, что . Итак, нашли все стороны треугольника SOR .

Из теоремы косинусов для треугольника SOR находим , тогда из основного тригонометрического тождества находим . Тогда площадь треугольника OSR равна:

С другой стороны эта площадь равна , где h — искомая высота. Откуда находим .

Плоскости оснований призмы параллельны, поэтому сечение будет пересекать эти плоскости по прямым LS и DK , которые также параллельны. Пусть B 1 M — высота треугольника A 1 B 1 C 1 , а BE — высота треугольника ABC . Тогда рисунок будет выглядеть следующим образом:

Из прямоугольного треугольника B 1 M A 1 находим по теореме Пифагора . Из прямоугольного треугольника B 1 QS находим по теореме Пифагора . Тогда . Кроме того (половина высоты BE правильного треугольника ABC ). Треугольники MQT и PTB подобны по двум углам (углы PTB и MTQ равны как вертикальные, углы TPB и MQT равны как накрест лежащие при параллельных прямых MQ , PB и секущей PQ ). Их коэффициент подобия равен .

Далее из прямоугольного треугольника MBE находим . Используя доказанное подобие, находим . Аналогично, . Следовательно, .

Установите соответствие между графиками функций и характеристиками этих функций на отрезке [-1; 1].

[b]ХАРАКТЕРИСТИКИ

1) функция возрастает на отрезке [-1; 1]
2) функция убывает на отрезке [-1; 1]
3) функция имеет точку минимума на отрезке [-1; 1]
4) функция имеет точку максимума на отрезке [-1; 1]

На диаграмме показано количество запросов аббревиатуры ЕГЭ, сделанных на поисковом сайте Google во все месяцы с сентября 2015 года по август 2016 года. По горизонтали указываются месяца и год, по вертикали - количество запросов за данный месяц.

Пользуясь диаграммой, установите связь между промежутками времени и характером изменения количества запросов.

[b]ПРОМЕЖУТКИ ВРЕМЕНИ
А) Осень
Б) Зима
В) Весна
Г) Лето

[b]ХАРАКТЕР ИЗМЕНЕНИЯ КОЛИЧЕСТВА ЗАПРОСОВ
1) Резкий спад количества запросов
2) Количество запросов практически не менялось
3) Количество запросов плавно снижалось
4) Количество запросов плавно росло

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

На графике изображена зависимость частоты пульса гимнаста от времени в течение и после его выступления в вольных упражнениях.
На горизонтальной оси отмечено время(в минутах), прошедшее с начала выступления гимнаста, на вертикальной оси - частота пульса(в ударах в минуту).

Пользуясь графиком, поставьте в соответствие каждому периоду времени характеристику пульса гимнаста на этом периоде.

В таблице указаны доходы и расходы фирмы за 5 месяцев.

Пользуясь таблицей, поставьте в соответствие каждому из указанных периодов времени характеристику доходов и расходов.

В таблице под каждой буквой укажите соответствующий номер.

На рисунке точками показана среднесуточная температура воздуха в Москве в январе 2011 года. По горизонтали указываются числа месяца, по вертикали - температура в градусах Цельсия. Для наглядности точки соединены линией.
Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику изменения температуры.

На графике изображена зависимость скорости движения легкового автомобиля от времени. На вертикальной оси отмечена скорость легкового автомобиля в км/ч, на горизонтальной - время в секундах, прошедшее с начала движения автомобиля.

Пользуясь графиком, поставьте в соответствие каждому периоду времени характеристику движения автомобиля на этом интервале.

ПЕРИОДЫ ВРЕМЕНИ

А) 0-30 с
Б) 60-60 с
В) 60-90 с
Г) 90-120 с

ХАРАКТЕРИСТИКИ

1) скорость автомобиля достигла максимума за всё время движения автомобиля
2) скорость автомобиля не уменьшалась и не превышала 40 км/ч
3) автомобиль сделал остановку на 15 секунд
4) скорость автомобиля не увеличивалась на всём интервале

A
B
C
D

ЗНАЧЕНИЯ ПРОИЗВОДНОЙ

1) -4
2) 3
3) 2/3
4) -1/2

В таблице под каждой буквой укажите соответствующий номер.

На графике изображена зависимость температуры от времени в процессе разогрева двигателя легкового автомобиля. На горизонтальной оси отмечено время в минутах, прошедшее с момента запуска двигателя; на вертикальной оси - температура двигателя в градусах Цельсия.

Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику процесса разогрева двигателя на этом интервале.

ИНТЕРВАЛЫ ВРЕМЕНИ

A) 0-1 мин.
Б) 1-3 мин.
B) 3-6 мин.
Г) 8-10 мин.

ХАРАКТЕРИСТИКИ

1) самый медленный рост температуры
2) температура падала
3) температура находилась в пределах от 40 °С до 80 °С
4) температура не превышала 30 °С.


На рисунке изображены график функции и касательные, проведённые к нему в точках с абсциссами A, B, C и D.
В правом столбце указаны значения производной функции в точках A, B, C и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней.

На графике изображена зависимость скорости погружения батискафа от времени. На вертикальной оси отмечена скорость в м/с, на горизонтальной - время в секундах, прошедшее с начала погружения.

Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику погружения батискафа на этом интервале.

ИНТЕРВАЛЫ ВРЕМЕНИ

А) 60-150c
Б) 150-180c
В) 180-240c
Г) 240-300 c

ХАРАКТЕРИСТИКИ

1) Батискаф 45 секунд погружался с постоянной скоростью.
2) Скорость погружения уменьшалась, а затем произошла остановка на полминуты.
3) Скорость погружения достигла максимума за все время.
4) Скорость погружения не увеличивалась на всем интервале, но батискаф не останавливался.

В таблице под каждой буквой укажите соответствующий номер.


На рисунке изображён график функции у = f(x) и отмечены точки А, В. С и D на оси Ох. Пользуясь графиком, поставьте в соответствие каждой точке характеристики функции и её производной.

А) А
Б) В
В) С
Г) D

ХАРАКТЕРИСТИКИ ФУНКЦИИ И ПРОИЗВОДНОЙ

1) значение функции в точке отрицательно и значение производной функции в точке отрицательно

2) значение функции в точке положительно и значение производной функции в точке положительно

3) значение функции в точке отрицательно, а значение производной функции в точке положительно

4) значение функции в точке положительно, а значение производной функции в точке равно нулю

На рисунке изображён график функции y=f(х). Точки a, b, c, d и e
задают на оси Ох интервалы. Пользуясь графиком, поставьте в соответствие каждому интервалу характеристику функции или её производной.


На рисунке изображён график функции y=f(x). Точки a, b, c, d и e
задают на оси Ox интервалы. Пользуясь графиком, поставьте в соответствие каждому интервалу характеристику функции или её производной.


На диаграмме показаны объёмы месячных продаж холодильников в магазине бытовой техники в течение года. По горизонтали указываются месяцы, по вертикали - количество проданных холодильников.

Пользуясь диаграммой, поставьте в соответствие каждому из указанных периодов времени характеристику продаж данного товара.

А) январь-март
Б) апрель-июнь
В) июль-сентябрь
Г) октябрь-декабрь

ХАРАКТЕРИСТИКА ПРОДАЖ

1) наибольший рост объёма продаж
2) наименьший рост объёма продаж
3) достиг минимума за всё время
4) достиг максимума за всё время


На рисунке точками показано атмосферное давление в городе N на протяжении трёх суток с 4 по 6 апреля 2013 года. В течение суток давление измеряется 4 раза: в 0:00, в 6:00, в 12:00 и в 18:00. По горизонтали указываются время суток и дата, по вертикали - давление в миллиметрах ртутного столба. Для наглядности точки соединены линиями.

На рисунке точками показаны объёмы месячных продаж обогревателей в магазине бытовой техники. По горизонтали указываются месяцы, по вертикали - количество проданных обогревателей. Для наглядности точки соединены линией.

На диаграмме изображена цена акций компании в период с 1 по 14 сентября 2013 г. По горизонтали указываются числа месяца, по вертикали - цена акции в рублях.

Пользуясь диаграммой, поставьте в соответствие каждому из ука¬занных периодов времени характеристику цены акций.
А) 1-3 сентября 1)самое быстрое падение цены цена
Б) 4-6 сентября 2)росла в течение всего периода
В) 7-9 сентября 3)самое медленное падение цены
Г) 9-11 сентября 4)цена сначала увеличивалась, а потом стала уменьшаться

На графике изображена зависимость скорости движения рейсового автобуса от времени. На вертикальной оси отмечена скорость ав¬тобуса в км/ч, на горизонтальной - время в минутах, прошедшее с начала движения автобус

ИНТЕРВАЛЫ ХАРАКТЕРИСТИКИ
ВРЕМЕНИ ДВИЖЕНИЯ
А) 4-8 мин 1) была остановка длительностью 2 мин
Б) 8-12 мин 2) скорость не меньше 20 км/ч на всём интервале
В) 12-16 мин 3) скорость не больше 60 км/ч
Г) 18-22 мин 4) была остановка длительностью 1 мин

На диаграмме изображена цена акций компании в период с 1 по 14 сентября 2013 г. По горизонтали указываются числа месяца, по вертикали - цена акции в рублях.Пользуясь диаграммой, поставьте в соответствие каждому из указанных интервалов времени характеристику цены акций.


На рисунке точками показано атмосферное давление в городе N на протяжении трёх суток с 4 по 6 апреля 2013 года. В течение суток давление измеряется 4 раза: в 0:00,в 6:00, в 12:00, и в 18:00. По горизонтали указывается время суток и дата, по вертикали – давление в миллиметрах ртутного столба. Для наглядности точки соединены линиями. Пользуясь рисунком, поставьте в соответствие каждому из ука¬занных периодов времени характеристику атмосферного давления в городе N в течение этого периода.

Все рёбра правильной треугольной пирамиды SBCD с вершиной S равны 9.

Основание O высоты SO SS 1 , M - середина ребра SB , точка L лежит на ребре CD так, что CL : LD = 7: 2.

SBCD плоскостью S 1 LM - равнобедренная трапеция.

Решение.

а) Проведём медиану S 1 M треугольника SS 1 B , которая пересекает прямую BB 1 , являющуюся одновременно медианой треугольника SS 1 B и основания BCD , в точке T . Тогда ВТ : ТВ 1 = 4: 5.

Точка L , в свою очередь, делит отрезок B 1 D в отношении DL : 1 = 4: 5, так как LD : LC = 2: 7 и отрезок BB 1 - медиана треугольника BCD .

Следовательно, сторона сечения, проходящая через точки L и T , параллельна стороне BD основания BCD . Пусть прямая LT пересекает BC в точке P .

Проведём через точку M среднюю линию в треугольнике SBD , пусть она пересекает сторону SD в точке K . Тогда PMKL - искомое сечение, причём BP = DL и BM = KD . Из равенства треугольников BMP и DKL получим MP = KL , а значит, PMKL - равнобедренная трапеция.

б) Большее основание PL трапеции равно 7, поскольку треугольник LPC правильный. Второе основание MK равно 4,5, поскольку MK - средняя линия правильного треугольника SBD . Следовательно, средняя линия трапеции равна

Vasily Ass 09.03.2016 14:53

почему в 1-ом предложении решения BT: TB1 = 4:5, что это за свойство? "по­сколь­ку BB1 также яв­ля­ет­ся ме­ди­а­ной тре­уголь­ни­ка SS1B." такого свойства нет

Schg Wrbutr 21.04.2017 19:58

Скажите, откуда вы берете отношение 4:5? Можете это свойство медиан объяснить?

Александр Иванов

Медианы треугольника делятся точкой пересечения в отношении 2:1

В правильной треугольной пирамиде SABC сторона основания AB равна 12, а боковое ребро SA равно 8. Точки M и N - середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.

а) Докажите, что плоскость α делит медиану CE основания в отношении 5: 1, считая от точки C .

б) Найдите объём пирамиды, вершиной которой является точка C , а основанием - сечение пирамиды SABC плоскостью α.

Решение.

а) В основании правильной треугольной пирамиды лежит равносторонний треугольник. Проекция высоты S пирамиды на основание дает точку O , которая лежит на пересечении медиан. Таким образом, точка O делит медианы в отношении 2: 1, то есть

Рассмотрим высоту SE треугольника SAB . Точка F 1 являеся ее серединой. Следовательно, ее проекция на медиану CE делит отрезок OE пополам. В свою очередь отрезок тогда

В итоге получаем, что точка F делит медиану CE как или в соотношении 5: 1, начиная от точки C . Что и требовалось доказать.

б) Найдем высоту искомой пирамиды Медиану СЕ найдем по теореме Пифагора из прямоугольного треугольника BCE :

Вычислим площадь основания пирамиды (площадь трапеции MNZK ). Отрезок отрезок (так как это средняя линия треугольника ABS ), высота трапеции Найдем высоту SO из прямоугольного треугольника SOC :

Площадь трапеции (основания пирамиды) равна

Объем пирамиды найдем по формуле

Ответ: б)

Источник: Материалы для экспертов ЕГЭ 2016

В пирамиде SABC в основании лежит правильный треугольник ABC со стороной Точка O - основание высоты пирамиды, проведённой из вершины S.

а) Докажите, что точка O лежит вне треугольника ABC.

б) Найдите объём четырёхугольной пирамиды SABCO .

Решение.

а) Поскольку SA = SC , точка S лежит в плоскости, перпендикулярной отрезку AC и проходящей через его середину M . Следовательно, O лежит на прямой BM . Обозначим высоту пирамиды за x , тогда Следовательно, и При этом поэтому точка O лежит вне треугольника. Более того, поскольку AO BO, она лежит на продолжении BM за точку M .

б) Из треугольника SMA найдем Теперь, из треугольника SMO находим Тогда из треугольника BOS имеем

Ответ:

В правильной четырёхугольной пирамиде SABCD с вершиной S сторона основания равна 8. Точка L - середина ребра SC . Тангенс угла между прямыми BL и SA равен

а) Пусть O - центр основания пирамиды. Докажите, что прямые BO и LO перпендикулярны.

б) Найдите площадь поверхности пирамиды.

Решение.

а) Поскольку средняя линия треугольника , Но по теореме о трех перпендикулярах - проекция на плоскость основания пирамиды - прямая Значит, и

б) Пусть Тогда , Кроме того, , откуда Тогда высота боковой грани пирамиды и площадь поверхности пирамиды

Ответ: 192.

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016

Все рёбра правильной четырёхугольной пирамиды SABCD с вершиной S равны 6. Основание высоты SO этой пирамиды является серединой отрезка SS 1 , M - середина ребра AS , точка L лежит на ребре BC так, что BL : LC = 1: 2.

а) Докажите, что сечение пирамиды SABCD плоскостью S 1 LM - равнобокая трапеция.

б) Вычислите длину средней линии этой трапеции.

Решение.

Прямая S 1 M пересекает медиану AO треугольника ABD в точке T так, что АТ : TO = 2: 1, поскольку T - точка пересечения медиан треугольника SAS 1 и O - точка пересечения диагоналей основания ABCD , так как пирамида SABCD правильная.

Следовательно, AT : TC = 1: 2. Точка L делит отрезок BC в отношении BL : LC = 1: 2, следовательно, треугольники ACB и TCL подобны с коэффициентом подобия k = AC : TC = BC : CL = 3: 2, так как они имеют общий угол с вершиной C и стороны AC и BC в треугольнике ABC пропорциональны сторонам TC и LC треугольника TCL , заключающим тот же угол. Значит, сторона сечения, проходящая через точки L и T , параллельна стороне AB основания пирамиды SABCD AD в точке P .

Сторона сечения, проходящая через точку M в плоскости SAB , параллельна прямой AB , так как плоскость S 1 LM пересекает плоскость SAB и проходит через прямую PL , параллельную плоскости SAB . Пусть эта сторона сечения пересекает сторону SB в точке K . Тогда сечение PMKL - равнобокая трапеция, поскольку AP = BL и AM = BK .

Большее основание LP трапеции равно 6, поскольку ABCD - квадрат. Второе основание MK трапеции равно 3, поскольку MK - средняя линия треугольника SAB . Значит, средняя линия трапеции равна

Ответ: б) 4,5.

В треугольной пирамиде ABCD двугранные углы при рёбрах AD и BC равны. AB = BD = DC = AC = 5.

а) Докажите, что AD = BC .

б) Найдите объем пирамиды, если двугранные углы при AD и BC равны 60°.

Решение.

а) Треугольник BAC - равнобедренный. Проведём AM BC . M - середина BC , тогда DM BC , так как треугольник BDC равнобедренный. ∠AMD BC . Аналогично ∠BNC = φ - линейный угол двугранного угла при ребре AD . ΔABC = ΔDBC по трём сторонам, тогда MA = MD и

Аналогично ΔBAD = ΔCAD и NB = NC , а

Треугольники ANM и BMN равны по общему катету MN и острому углу α, тогда AN = BM . Но следовательно, AD = BC .

б) По условию φ = 60°, тогда треугольник AMD равносторонний. Пусть AD = AM = MD = BC = a , тогда В треугольнике AMB имеем откуда и

Ответ:

Источник: За­да­ния 14 (С2) ЕГЭ 2016, ЕГЭ по ма­те­ма­ти­ке - 2016. До­сроч­ная волна, ре­зерв­ный день, вариант А. Ларина (часть С).

В одном основании прямого кругового цилиндра с высотой 12 и радиусом основания 6 проведена хорда AB , равная радиусу основания, а в другом его основании проведён диаметр CD , перпендикулярный AB . Построено сечение ABNM , проходящее через прямую AB перпендикулярно прямой CD так, что точка C и центр основания цилиндра, в котором проведён диаметр CD , лежат с одной стороны от сечения.

а) Докажите, что диагонали этого сечения равны между собой.

б) Найдите объём пирамиды CABNM .

Решение.

а) Для построения сечения опустим перпендикуляры AM и BN на второе основание цилиндра. Отрезки AM и BN параллельны и равны, значит, ABNM - параллелограмм. Так как прямые AM и BN перпендикулярны основаниям цилиндра и, в частности, прямой AB , параллелограмм ABNM является прямоугольником. Диагонали прямоугольника равны, что и требовалось доказать.

б) Площадь прямоугольника ABNM равна Отрезок OH равен Высота CH пирамиды CABNM равна Следовательно, объём пирамиды CABNM равен

Ответ: б)

В правильной треугольной призме ABCA 1 B 1 C 1 все рёбра равны 6. На рёбрах AA 1 и CC 1 отмечены точки M и N соответственно, причём AM = 2, CN = 1.

а) Докажите, что плоскость MNB 1 разбивает призму на два многогранника, объёмы которых равны.

б) Найдите объём тетраэдра MNBB 1 .

Решение.

Площадь основания призмы равна а объём призмы равен

В четырёхугольной пирамиде B 1 A 1 C 1 NM A 1 B 1 C 1 , опущенной на сторону A 1 C 1 , и равна Основание A 1 C 1 NM пирамиды B 1 A 1 C 1 NM является трапецией, площадь которой равна 27. Значит, объём пирамиды B 1 A 1 C 1 NM равен то есть составляет половину объёма призмы. Поэтому объёмы многогранников B 1 A 1 C 1 NM и ABCMB 1 N равны.

б) В четырёхугольной пирамиде BACNM высота совпадает с высотой основания призмы ABC , опущенной на сторону AC , и равна Основание пирамиды BACNM является трапецией, площадь которой равна 9. Объём пирамиды BACNM равен

Многогранник ABCMB 1 N состоит из двух частей: BACNM и MNBB 1 . Значит, объём тетраэдра MNBB 1 равен

Ответ:

Источник: За­да­ния 14 (С2) ЕГЭ 2016, ЕГЭ - 2016. Досрочная волна. Ва­ри­ант 201. Юг

Александр Иванов

Высота в правильном треугольнике со стороной 6

Есть правильная треугольная призма ABCA 1 B 1 C 1 со стороной основания 12 и высотой 3. Точка K - середина BC , точка L лежит на стороне A 1 B 1 так, что В 1 L = 5. Точка М - середина A 1 C 1 .

Через точки K и L проведена плоскость таким образом, что она параллельна прямой AC .

а) Доказать, что указанная выше плоскость перпендикулярна прямой MB .

б) Найти объем пирамиды с вершиной в точке В и у которой основанием является сечение призмы плоскостью.

Решение.

а) Отметим точки и на ребрах и соответственно так чтобы Тогда плоскость это плоскость

Очевидно , поскольку проекция на плоскость - высота треугольника Она перпендикулярна , а значит и По теореме о трех перпендикулярах

Рассмотрим теперь проекцию точки на плоскость Поскольку проекция на эту плоскость - середина ребра , то Докажем теперь, что прямая перпендикулярна Тогда по теореме о трех перпендикулярах окажется что , а тогда и

Обозначим за точку пересечения отрезков и , за и - проекции точек и на прямую Тогда

Итак, тангенсы этих углов обратны друг другу, поэтому углы в сумме дают 90° и угол = 180° - 90° = 90°, что и требовалось доказать.

б) Очевидно , так как - равносторонний треугольник.

Ответ:

Источник: ЕГЭ - 2016. Ос­нов­ная волна 06.06.2016. Центр

Длина диагонали куба ABCDA 1 B 1 C 1 D 1 равна 3. На луче A 1 C отмечена точка P так, что A 1 P = 4.

а) Докажите, что PBDC 1 - правильный тетраэдр.

б) Найдите длину отрезка AP .

Решение.

а) Введём систему координат как показано на рисунке. Поскольку ребро куба в корень меньше его диагонали, ребро данного куба равно Тогда точки B , D , C 1 имеют координаты соответственно.

Поскольку P лежит на продолжении A 1 C , отрезок A 1 P можно рассматривать как диагональ куба с ребром Тогда точка P имеет координаты

Найдём расстояние от P до точек D 1 , B и C 1:

Отрезки C 1 B , DB и DC 1 - диагонали граней куба, поэтому по теореме Пифагора Тогда Значит, все рёбра тетраэдра DBC 1 P равны, поэтому он правильный.

б) Координаты точки A : Раcстояние от точки P до точки A равно

Ответ:

Приведём другое решение.

а) Диагональ куба в больше его ребра: Следовательно,

Заметим, что как диагонали квадратов со стороной AB . Тогда треугольник BC 1 D - правильный.

Пусть Поскольку ABCD - квадрат имеем:

Поскольку как накрест лежащие, и как вертикальные, получаем: по двум углам, тогда

Заметим, что треугольник - прямоугольный, тогда откуда

В треугольнике OMC имеем: так как - верно. Тогда, по теореме, обратной теореме Пифагора, ΔOMC − прямоугольный, ∠M = 90°.