Общая теория систем и другие науки о системах. Теория систем: Закономерности во взаимоотношениях между объектами Системным представлением о взаимосвязях различных теорий

Понятия «система» и «системность» играют важную роль в современной науке и практике.

Начиная с середины XX в. ведутся интенсивные разработки в области системного подхода к исследованиям и теории систем. В то же время само понятие системы имеет длительную историю. Первоначально системные представления сформировались в рамках философии: еще в античном мире был сформулирован тезис о том, что целое больше суммы его частей.

Древние философы (Платон, Аристотель и др.) толковали систему как мировой порядок, утверждая, что системность - свойство природы.

Принципы системности активно исследовались в философии (например, И. Кант стремился обосновать системность самого процесса познания) и в естественных науках. Наш соотечественник Е. Федоров в конце XIX в. пришел к выводу о системности природы в процессе создания кристаллографии.

Принцип системности в экономике формулировал и А. Смит, сделавший вывод, что эффект действия людей, организованных в группу, больше, чем сумма одиночных результатов.

Теория систем служит методологической базой теории управления. Это относительно молодая наука, организационное становление которой произошло во второй половине XX в.

Родоначальником теории систем считается австрийский ученый Л. фон Берталанфи.

Первый международный симпозиум по системам состоялся в Лондоне в 1961 г. Первый доклад на нем сделал выдающийся английский кибернетик С. Бир, что можно считать свидетельством гносеологической близости кибернетики и теории систем.

Центральное понятие теории систем - система (от греческого systema - «целое, составленное из частей»). Система - объект произвольной природы, обладающий выраженным системным свойством, которым не обладает ни одна из частей системы при любом способе ее членения, свойством, не выводимом из свойств частей.

В настоящем пособии мы будем использовать следующее рабочее определение системы: «Система - это целостная совокупность взаимосвязанных элементов, имеющая определенную структуру и взаимодействующая с окружающей средой в интересах достижения цели». Анализируя это определение, мы можем выявить несколько базисных понятий: целостность, совокупность, структурированность, взаимодействие со внешней средой, наличие цели и др. Они представляют собой систему понятий, т. е. внутреннюю организацию некоторого устойчивого объекта, целостность которого и есть система. Сама возможность выделить в поле исследования устойчивые объекты определяется свойством целостности системы, целями наблюдателя и возможностями его воспринимать действительность.


Основоположниками системного подхода являются: Л. фон Берталанфи, А. А. Богданов, Г. Саймон, П. Друкер, А. Чандлер.

Системный подход – это методологическое направление, состоящее в исследовании сложных объектов с использованием системного анализа.

Системный подход - направление методологии исследования, в основе которого лежит рассмотрение объекта как целостного множества элементов в совокупности отношений и связей между ними, то есть рассмотрение объекта как системы.

Говоря о системном подходе, можно говорить о некотором способе организации наших действий, таком, который охватывает любой род деятельности, выявляя закономерности и взаимосвязи с целью их более эффективного использования. При этом системный подход является не столько методом решения задач, сколько методом постановки задач. Как говорится, «Правильно заданный вопрос - половина ответа». Это качественно более высокий, нежели просто предметный, способ познания.

Анализ внутреннего строения организации обеспечивается с помощью использования системного подхода.

Для понимания сути и роли системного подхода в теории организаций рассмотрим первоначально понятие системы, ее отличительные признаки, состав компонентов.

Рассмотрим некоторые основные термины и понятия, широко используемые в системных исследованиях:

Система – множество взаимосвязанных элементов, объединенных ради достижения общей цели в единое целое, взаимодействие между которыми характеризуется упорядоченностью и регулярностью на отдельном отрезке времени. К основным компонентам системы относят: элементы системы, взаимоотношения между элементами, подсистемы, структуру системы. Система - совокупность взаимосвязанных элементов, образующих целостность или единство.

Элемент системы – это минимальная целая часть системы, которая функционально способна отразить некоторые общие закономерности системы в целом. Минимальность определяется субъектом исследования как часть, достаточная для удовлетворения познавательной потребности.

Взаимоотношения, или связи между элементами системы, выражаются через обмен веществом, энергией, информацией. Они бывают прямые и обратные, положительные и отрицательные, нейтральные или функциональные.

Подсистема – часть системы, состоящая из элементов, которые возможно объединить по схожим функциональным проявлениям. В зависимости от количества функций в системах может быть разное число подсистем.

Структура системы – это совокупность связей между элементами системы, ее подсистемами, между системой и внешней средой. Если рассматривают совокупность связей внутри системы, структуру считают внутренней. Если рассматриваются связи как внутри, так и с внешней средой, структура считается полной. Структура - способ взаимодействия элементов системы посредством определенных связей (картина связей и их стабильностей).

Процесс - динамическое изменение системы во времени.

Функция - работа элемента в системе.

Состояние - положение системы относительно других её положений.

Системный эффект - такой результат специальной переорганизации элементов системы, когда целое становится больше простой суммы частей.

Структурная оптимизация - целенаправленный итерационный процесс получения серии системных эффектов с целью оптимизации прикладной цели в рамках заданных ограничений. Структурная оптимизация практически достигается с помощью специального алгоритма структурной переорганизации элементов системы. Разработана серия имитационных моделей для демонстрации феномена структурной оптимизации и для обучения.

Состояние системы - упорядоченное множество существенных свойств, которыми она обладает в определенный момент времени.

Свойства системы - совокупность параметров, определяющих поведение системы.

Поведение системы - реальное или потенциальное действие системы.

Действие - происходящее с системой событие, вызванное другим событием.

Событие - изменение по крайней мере одного свойства системы.

Отличительными признаками системы выступают:

Наличие взаимосвязанных частей в объекте,

Взаимодействие между частями объекта,

Упорядоченность данного взаимодействия ради достижения общей цели системы.

Системные представления в теории организации

Формирование системных представлений

Классификация систем

Свойства систем

Развитие социально-экономических систем

Базовые свойства организации: устойчивость и гибкость

Формирование системных представлений

Понятия «система» и «системность» играют важную роль в современной науке и практической деятельности. Интенсивные разработки в области системного подхода и теории систем ведутся, начиная с середины ХХ в. Однако само понятие «система» имеет гораздо более давнюю историю. Первоначально системные представления формировались в рамках философии: еще в античности был сформулирован тезис о том, что целое больше суммы его частей. Древние философы (Платон, Аристотель и др.) толковали систему как мировой порядок, утверждая, что системность - свойство природы. Позднее И. Кант (1724–1804) обосновал системность самого процесса познания. Принципы системности активно исследовались и в естественных науках. Наш соотечественник Е. Федоров (1853–1919) в процессе создания науки кристаллографии пришел к выводу о системности природы.

Принцип системности в экономике сформулировал А. Смит (1723–1790), сделавший вывод, что эффект действия людей, организованных в группу, больше, чем сумма одиночных результатов.

Теория систем служит методологической базой теории управления. Это относительно молодая наука, организационное становление которой произошло во второй половине ХХ в. Родоначальником теории систем считается австрийский ученый Л. Берталанфи (1901–1972). Первый международный симпозиум по системам состоялся в Лондоне в 1961 г. Первый доклад на этом симпозиуме сделал выдающийся английский кибернетик С. Бир, что можно считать свидетельством гносеологической близости кибернетики и теории систем. Центральным в теории систем является понятие « система » (от греч. syst ē ma - целое, составленное из частей, соединение). Система - объект произвольной природы, обладающий выраженным системным свойством, которым не обладает ни одна из частей системы при любом способе ее членения, не выводимом из свойств частей.

«Система - это целостная совокупность взаимосвязанных элементов. Она имеет определенную структуру и взаимодействует с окружающей средой в интересах достижения поставленной цели».

Классификация систем

Абстрактные системы - системы, все элементы которых являются понятиями.

Конкретные системы - системы, элементы которых являются физическими объектами. Они разделяются на естественные (возникающие и существующие без участия человека) и искусственные (созданные человеком).

Открытые системы - системы, обменивающиеся с внешней средой веществом, энергией и информацией.

Закрытые системы - системы, у которых нет обмена с внешней средой.

Динамические системы занимают одно из центральных мест в общей теории систем. Такая система представляет собой структуризованный объект, имеющий входы и выходы, объект, в который в определенные моменты времени можно вводить и из которого можно выводить вещество, энергию, информацию. В одних динамических системах процессы протекают во времени непрерывно, а в других - совершаются только в дискретные моменты времени. Последние называют дискретными динамическими системами . При этом в обоих случаях предполагают, что поведение системы можно анализировать в некотором интервале времени, что непосредственно и определяется термином «динамическая».

Адаптивные системы - системы, функционирующие в условиях начальной неопределенности и изменяющихся внешних условиях. Понятие адаптации сформировалось в физиологии, где оно определяется как совокупность реакций, обеспечивающих приспособление организма к изменению внутренних и внешних условий. В теории управления адаптацией называют процесс накопления и использования информации в системе, направленной на достижение оптимального состояния при начальной непосредственности и изменяющихся внешних условиях.

Иерархические системы - системы, элементы которых сгруппированы по уровням, вертикально соотнесенным один с другим; при этом элементы уровней имеют разветвляющиеся выходы. Хотя понятие «иерархия» постоянно присутствовало в научном и повседневном обиходе, обстоятельное теоретическое изучение иерархических систем началось сравнительно недавно.

Рассматривая иерархические системы, воспользуемся принципом противопоставления. В качестве объекта противопоставления возьмем системы с линейной структурой (радиальные, централизованные). Для систем с централизованным управлением характерна однозначность, однонаправленность управляющих воздействий. В отличие от них иерархические системы, системы произвольной природы (технические, экономические, биологические, социальные и др.) назначения имеют многоуровневую и разветвленную структуру в функциональном, организационном или в каком-либо ином плане.

Благодаря своему универсальному характеру и ряду преимуществ по сравнению, например, с линейными структурами иерархические системы составляют предмет особого внимания в теории и практике менеджмента. К преимуществам иерархических систем следует также отнести свободу локальных воздействий, отсутствие необходимости пропускать очень большие потоки информации через один пункт управления, повышенную надежность. При выходе из строя одного элемента централизованной системы из строя выходит вся система; при выходе же из строя одного элемента в иерархической системе вероятность выхода из строя всей системы незначительна.

Для всех иерархических систем характерны:

последовательное вертикальное расположение уровней, составляющих систему (подсистему);

приоритет действий подсистем верхнего уровня (право вмешательства);

зависимость действий подсистемы верхнего уровня от фактического исполнения нижними уровнями своих функций;

относительная самостоятельность подсистем, что обеспечивает возможность сочетания централизованного и децентрализованного управления сложной системой.

Учитывая условность всякой классификации, следует отметить, что попытки классификации должны сами по себе обладать свойствами системности, поэтому классификацию можно считать разновидностью моделирования.

Системы классифицируют по различным признакам, например:

по их происхождению;

описанию переменных;

типу операторов;

способу управления.

Свойства систем

Изучение свойств системы предполагает прежде всего изучение взаимоотношения частей и целого. При этом имеется в виду, что:

1) целое - первично, а части - вторичны;

2) системообразующие факторы - это условия взаимосвязанности частей внутри одной системы;

3) части образуют неразрывное целое так, что воздействие на любые из них влияет на все остальное;

4) каждая часть имеет свое определенное назначение с точки зрения той цели, на достижение которой направлена деятельность всего целого;

5) природа частей и их функции определяются положением частей в целом, а их поведение регулируется взаимоотношением целого и его частей;

6) целое ведет себя как нечто единое, независимо от степени его сложности.

Одним из наиболее существенных свойств систем, характеризующих их сущность, является эмерджентность - несводимость свойств системы к свойствам ее элементов. Эмерджентностью называют наличие новых качеств целого, отсутствующих у его составных частей. Это означает, что свойства целого не являются простой суммой свойств составляющих его элементов, хотя и зависят от них. Вместе с тем объединенные в систему элементы могут терять свойства, присущие им вне системы, или приобретать новые.

Одним из наименее изученных свойств системы является эквифинальность . Оно характеризует предельные возможности систем определенного класса сложности. Берталанфи, предложивший этот термин, определяет эквифинальность применительно к открытой системе как «способность системы в отличие от состояний равновесия в закрытых системах, полностью детерминированных начальными условиями, достигать не зависящего от времени и от исходных условий состояния, которое определяется исключительно параметрами системы». Потребность во введении этого понятия возникает, начиная с некоторого уровня сложности систем. Эквифинальность - это внутренняя предрасположенность к достижению некоторого предельного состояния, которое не зависит от внешних условий. Идея изучения эквифинальности заключается в изучении параметров, определяющих некоторый предельный уровень организации.

Свойства , характеризующие строение систем . Анализ определений системы позволяет выделить некоторые из ее основных свойств. Они заключаются в том, что:

1) любая система представляет собой комплекс взаимосвязанных элементов;

2) система образует особое единство с внешней средой;

3) любая система представляет собой элемент системы более высокого порядка;

4) элементы, составляющие систему, в свою очередь, выступают в качестве систем более низкого порядка.

Проанализировать эти свойства можно по схеме, где: А - система; В и D - элементы системы А; С - элемент системы В. Элемент B, служащий элементом системы A, в свою очередь, является системой более низкого уровня, которая состоит из собственных элементов, включая, например, элемент C. И если мы рассмотрим элемент B как систему, взаимодействующую с внешней средой, то последнюю в этом случае будет представлять система C (элемент системы А). Поэтому особенность единства с внешней средой можно интерпретировать как взаимодействие элементов системы более высокого порядка. Подобные рассуждения можно провести для любого элемента любой системы.

Свойства , характеризующие функционирование и развитие систем . Наиболее существенными свойствами этого класса являются целенаправленность (целесообразность), эффективность и сложность систем. Цель является одним из основных понятий, характеризующих функционирование систем произвольной природы. Она представляет собой идеальный внутренний побуждающий мотив тех или иных действий. Формирование цели - это атрибут систем, в основе которых лежит деятельность человека. Такие системы могут изменять свои задачи в условиях постоянства или изменений внешней и внутренней среды. Тем самым они проявляют волю.

Параметрами систем, способных к целеполаганию, являются:

вероятность выбора определенного способа действий в определенном окружении;

эффективность способа действий;

полезность результата.

Содержание целей определяют объективные обстоятельства биологического, социального и другого характера. Функционирование систем, способных к целеполаганию, определяется внешними надсистемными критериями эффективности и эффективности как меры целенаправленности. Эффективность является внешним по отношению к системе критерием и требует учета свойств системы более высокого уровня, т. е. надсистемы. Таким образом, цель системы связана с понятием эффективности.

Нецелеполагающие системы, т. е. системы, которые не формируют цели, эффективностью не характеризуются.

Здесь возникает два вопроса:

1) вопрос о цели для систем неодушевленной природы, технических, физических и т. д. ;

2) вопрос об эффективности эргатических систем, т. е. систем, элементом которых наряду с техническими компонентами является и человек.

В связи с поставленными вопросами следует:

1) система действительно имеет цель;

2) система несет на себе отпечаток целеполагающей деятельности человека;

3) система ведет себя так, как будто она имеет цель.

Во всех этих случаях цель связана непосредственно с состоянием системы, хотя в двух последних случаях она не может рассматриваться как внутренний мотив действий и не может иметь другой интерпретации, кроме телеологической, только выраженной в терминах кибернетики.

В физической системе (например, в Солнечной системе) достижение какого-либо состояния (например, определенного взаимного расположения планет) можно связывать с понятием цели только в контексте предопределенности, обусловленной физическими законами природы. Поэтому, утверждая, что система, попав в определенное состояние, достигает заданной цели, мы полагаем, что цель существует априорно. При этом цель, рассматриваемая вне волевой и интеллектуальной деятельности человека, лишь интерпретирует общий междисциплинарный взгляд на проблему описания систем произвольной природы. Следовательно, цель можно определить как наиболее предпочтительное состояние в будущем. Это не только формирует единство в методах исследования, но и позволяет создавать концептуальную основу математического аппарата для такого рода исследований.

Целеполагающая деятельность человека связана с тем, что он выделяет себя из природы. Целенаправленное функционирование машин всегда несет на себе отпечаток целеполагающей деятельности человека.

Значение диалектической общности в принципах целеполагания и физической причинности особенно возрастает, когда исследуемая система содержит техническую, экономическую и социальную составляющие, как, например, в производственной системе.

Эффективность системы проявляется, когда мы учитываем цели людей, создающих и использующих в производстве данную технику. Например, производительность какой-то конкретной автоматической линии может быть высокой, но сама продукция, которую выпускают с помощью этой линии, может не пользоваться спросом.

Противоречивые свойства понятия «эффективность» создают определенные трудности в его понимании, интерпретации и применении. Противоречие состоит в том, что, с одной стороны, эффективность является атрибутом системы, таким же, как цель, а с другой - оценка эффективности опирается на свойства надсистемы, формирующей критерии эффективности. Противоречие это носит диалектический характер и стимулирует развитие представлений об эффективности систем. Связывая эффективность с целью, следует отметить, что цель должна быть в принципе достижимой. Цель может быть и не достигнута, но это не противоречит возможности ее принципиальной достижимости. Помимо главной цели в системе имеет место упорядоченное множество подцелей, которые образуют иерархическую структуру (дерево целей). Субъектами целеполагания в этом случае являются подсистемы и элементы системы.

Понятие сложной системы . Важное место в теории систем занимает выяснение того, что есть сложная система и чем она отличается, например, от системы с просто большим числом элементов (такие системы можно называть громоздкими системами).

Известны различные попытки определить понятие сложной системы:

1) в сложной системе обмен информацией происходит на семантическом, смысловом уровне, а в простых системах все информационные связи происходят на синтаксическом уровне;

2) в простых системах процесс управления основан на целевых критериях. Для сложных систем характерна возможность поведения, основанного не на заданной структуре целей, а на системе ценностей;

3) для простых систем характерно детерминированное поведение, для сложных - вероятностное;

4) сложной является самоорганизующаяся система, т. е. система, развивающаяся в направлении уменьшения энтропии без вмешательства систем более высокого уровня;

5) сложными являются только системы живой природы.

Обобщение многочисленных подходов позволяет выделить несколько основных концепций простоты (сложности) систем. К ним относятся:

логическая концепция простоты (сложности) систем. Здесь определяются меры некоторых свойств отношений, которые считаются упрощающими или усложняющими;

теоретико - информационная концепция , предполагающая отождествление энтропии с мерой сложности систем;

алгоритмическая концепция , согласно которой сложность определяется характеристиками алгоритма, необходимого для реконструкции исследуемого объекта;

теоретико - множественная концепция . Здесь сложность увязана с мощностью множества элементов, из которых состоит изучаемый объект;

статистическая концепция , связывающая сложность с вероятностью состояния системы.

Общим свойством всех этих концепций является подход к определению сложности как следствия недостаточности информации для желаемого качества управления системой. В определении уровня сложности системы роль субъекта является определяющей. Реально существующие объекты обладают самодостаточной системностью, категория «сложность системы» возникает вместе с появлением субъекта исследования. Сложной или простой система представляется субъекту лишь постольку, поскольку он хочет и может видеть ее таковой. Например, то, что психологу представляется сложной системой, для бухгалтера может оказаться элементарным объектом, штатной единицей, или то, что экономист считает простой системой, физик может рассматривать как очень сложную систему.

Развитие социально - экономических систем

С позиций системного подхода развитие организации как социально-экономической системы не может рассматриваться изолированно от принципов и закономерностей развития систем произвольной природы. Поэтому будем рассматривать проблемы развития систем произвольной природы, держа в поле зрения социально-экономическую систему (т. е. организацию), постоянно примеряя свои выводы к деловой организации.

Развитие связано с качественными изменениями. Иными словами, изменение и развитие - это разновидности процесса перемен, выделяемые в зависимости от уровня упорядоченности данного процесса. Если рассматривать объект развития как систему, то под качественными изменениями следует понимать возникновение новых устойчивых структурных составляющих - элементов, связей, зависимостей, т. е. процесс развития связан с преобразованием структуры системы.

Свойством развития обладают многие системы, не являются исключением и системы управления. Развитие представляет собой путь, который проходит каждая конкретная система с момента ее возникновения. Развитие, как известно, представляет собой закономерное, качественное изменение и характеризуется необратимостью и направленностью.

Как и любая система, система управления организацией в своем развитии проходит ряд последовательных этапов:

1) возникновение;

2) становление;

3) зрелость;

4) преобразование.

Таким образом, система управления имеет свой жизненный цикл.

Возникновение и становление представляют собой прогрессивное изменение системы, так как это есть процесс формирования, организации системы управления. В свою очередь, преобразование отражает процесс дезорганизации системы управления. Период зрелости отражает стационарное состояние системы, реализацию ее потенциала. «Стационарность системы равнозначна, по-видимому, стационарности структуры». В этот период процесс организации уравновешивается равным по силе, но противоположным по направлению процессом дезорганизации.

Возникновение означает появление нового качества. Но ни одна новая система управления не возникает на пустом месте, даже если ее возникновение связано с революционным социально-экономическим преобразованием, все равно это осуществляется на базе предшествующей системы. Возникнув на основе старых управленческих отношений, система управления имеет системные качества, которые укрепляются и расширяются в процессе функционирования и развития. Постепенно новая система управления «достраивается», т. е. образует новые подсистемы, которые необходимы для реализации собственных функций и достижения поставленных целей. «В процессе развития явления обычно наблюдается такая закономерность: развитие идет вначале не за счет всех элементов, а за счет более или менее узкой группы определяющих элементов с последующим доразвитием всех остальных элементов явления»

Любая социально-экономическая система обладает исторической преемственностью. Как отмечает А. Аверьянов, процесс возникновения можно разделить на два этапа:

1) скрытый, когда в недрах старого появляются новые элементы, идет их количественный рост;

2) явный, когда новые элементы образуют новую структуру, т. е. качество».

Возникновение нового свидетельствует о том, что старое в данных условиях себя исчерпало, перестало удовлетворять потребностям субъекта управления. Это означает, что всякие организационные перестройки элементов системы ведут не к совершенствованию, а к ее преобразованию.

Возникновение и развитие системы есть возникновение и разрешение ее противоречий. Становление представляет собой противоречивое единство процессов дифференциации и интеграции: дифференциация элементов усиливает их интеграцию, а интеграция, в свою очередь, сдерживает дифференциацию. В. Свидерский пишет: «Характерной особенностью развития как усложнения выступает единство процессов возрастания многообразия структурных зависимостей, с одной стороны, и целостности элементов в рамках данной структуры, с другой». Этот дифференционно-интеграционный процесс является организационным процессом. «Процесс усложнения структуры можно охарактеризовать как процесс дифференциации и интеграции».

Зрелая система находится в устойчивом состоянии. Но это не означает остановку процесса взаимодействия противоречивых сторон данной системы, что и обусловливает дальнейшее преобразование. По мере становления системы управления развиваются ее функции. Система специализируется и начинает приспосабливаться к определенному способу взаимодействия с внешней средой. В период зрелости прекращаются процессы дифференциации: между элементами системы образуется устойчивая связь, структуризация завершается. Как и любая другая система, система управления может успешно функционировать в той среде, в которой она сформировалась. Переход системы в другую среду неизбежно вызовет ее преобразование. Таков закон существования любых систем. Но даже функционирование в благоприятных внешних условиях не исключает обострения внутренних противоречий, которые выводят ее из состояния равновесия. Система управления вступает в завершающий этап своего развития - этап преобразования.

Преобразование системы управления означает ее переход в новое качество. Причиной преобразования выступает противоречие между формой связи элементов системы и их взаимодействием с внешним окружением. Внешняя среда воздействует на систему управления таким образом, что изменяет способ взаимодействия элементов системы со средой. По словам В. Прохоренко, «изменение внутренней структуры вещи сопровождается соответствующей трансформацией совокупности ее внешних свойств, а всякому изменению внешнего мира отвечает определенный (существенный или несущественный) сдвиг во внутренней структуре данного тела».

Вместе с функциями отдельных подсистем и элементов меняются и их связи с остальными частями системы управления, которые функционируют по-прежнему. Количество старых элементов и взаимодействий уменьшается, а число новых увеличивается. Таким образом, одна система разрушается, а другая возникает. Процесс преобразования одной системы управления означает одновременный процесс возникновения новой.

Развитие связано с определенной направленностью процесса. Прогрессивное развитие характеризуется такими свойствами, как повышение уровня организации системы, ее усложнение. Главное в направлении развития - возникновение новых возможностей в реализации основных целей системы: внутренних и предъявляемых извне требований.

Развитие организации - процесс закономерного перехода управления с одного качественного уровня на другой, обеспечивающий конкурентные преимущества производства или своевременную его переориентацию на другие рынки.

В этом определении отражены прогрессивный характер развития управления и его направленность на обеспечение современных целей производственной системы.

Развивающаяся система должна удовлетворять, по крайней мере, следующим требованиям:

система должна быть открытой, т. е. обмениваться со средой веществом, энергией и информацией;

процессы, происходящие в системе, должны быть кооперативными, т. е. действия ее компонентов должны быть согласованными друг с другом;

система должна быть динамичной;

система должна находиться вдали от состояния равновесия

Главную роль здесь играют условия открытости и неравновесности, поскольку при их соблюдении остальные требования выполняются почти автоматически. Состояние равновесия может быть стационарным (устойчивым) и подвижным (неустойчивым). О стационарно равновесном состоянии говорят в том случае, если при изменении параметров системы, возникшем под влиянием внешних или внутренних возмущений, система возвращается в прежнее состояние. Состояние подвижного равновесия имеет место тогда, когда изменение параметров влечет за собой дальнейшие изменения в том же направлении и усиливается с течением времени.

Базовые свойства организации : устойчивость и гибкость

Устойчивость . Развитие реальных систем немонотонно и включает не только прогрессивные направления, но и пути деградации (которые могут смениться прогрессом, а могут и привести к краху), направления разрушения. В процессе развития, состоящего из циклически повторяющихся стадий эволюции и скачка, система постоянно переходит из устойчивого состояния в неустойчивое и обратно. Структурная и функциональная устойчивость, под которой мы понимаем способность системы сохранять свои параметры в определенной области значений, позволяющей ей поддерживать качественную определенность, в том числе состава, связей и поведения (но не равновесия!), формируется в процессе адаптации системы к изменившимся в результате катастрофы внешним и внутренним условиям и сохраняется в течение большей части эволюционной стадии.

Организация - открытая система, т. е. система, постоянно стремящаяся сохранить баланс между внутренними возможностями и внешними силами окружающей среды (т. е. самостабилизирующаяся) с целью сохранения своего устойчивого состояния. Устойчивость - способность системы приходить в равновесное состояние после воздействия внутренних и внешних (окружающей среды) возмущений. Например, А. Романцов пишет: «Устойчивость промышленного предприятия - это способность системы управления обеспечивать функционирование предприятия под влиянием внешних и внутренних факторов в состоянии равновесия и возвращать его в данное состояние после незначительных отклонений».

Любое предприятие является неким структурным образованием, обладающим системными свойствами. Важнейшим признаком системы является то, что составляющие систему элементы образуют во взаимосвязи единое целое с качественно новыми свойствами. В связи с этим следует подчеркнуть, что система есть упорядоченная совокупность взаимосвязанных и взаимодействующих элементов, закономерно образующих единое целое, обладающая свойствами, отсутствующими у элементов, ее образующих. Система обладает целостностью, активностью, способна к развитию и повышению своей организованности. Любая система должна соответствовать своей среде, приспосабливаться к ней, что дает возможность говорить об устойчивой организованной системе.

В данном контексте, с одной стороны, под устойчивостью можно понимать сохранение, неизменное состояние по отношению к возмущающим воздействиям внешней и внутренней среды организации, а с другой - ее можно рассматривать как процесс, своего рода движение «вперед», в результате которого происходит развитие и совершенствование организационных структур и систем.

Основываясь на существовании взаимоотношений и взаимодействия между системами, т. е. на существовании согласованного развития систем, можно утверждать, что устойчивость организации зависит от уровня организованности системы. Устойчивости всей системы способствует то, что одна часть системы усваивает то, что было отторжено другой. Кроме того, устойчивость комплекса может обеспечиваться за счет дополнительных связей с другими системами и увеличения разнообразия данной системы. Чем разнообразнее система, тем больше шансов, что один ее разрушенный элемент может быть заменен другим.

Устойчивость организации связана с ее равновесием. «Природа при всей своей бесконечности и вечности имеет начало и конец… Устойчивость - стремление к равновесию, взаимодействие начала и конца». Другими словами, нормальным состоянием системы является состояние неравновесное. Для этого есть объективные причины. В развитие этой темы следует обратить внимание на подход К. Вальтуха, который исходит из того, что в процессе производственной деятельности человек «систематически создает из предметов, находимых в природе, такие продукты, которые либо совсем не порождаются спонтанным природным формообразованием, либо порождаются лишь сравнительно редко». По его мнению, производство представляет собой производство информации. Информация же, как мера разнообразия, формирует неопределенность, относительное неравновесие.

Для сохранения системы в меняющейся внешней среде недостаточно простого обменного равновесия. Гарантией устойчивости может служить лишь возрастание суммы активностей, когда новые неблагоприятные воздействия встречают не прежнее, а возросшее сопротивление. Разрушение системы происходит именно из-за уменьшения суммы этих активностей-сопротивлений.

Развитие организации ведет к ее дальнейшему усложнению, появлению дополнительных связей, которые приводят к более устойчивым структурным соотношениям.

В действительности имеют место не абсолютно, а относительно устойчивые состояния организации. Такие состояния не являются состояниями полного равновесия, но подобны равновесным. При таком «квазиравновесном» состоянии обмен энергией между системой и окружающей средой относительно слабый, но зато имеет место относительно большая информационная связь

Действительная практическая устойчивость системы зависит не только от количества заключенных в ней активностей-сопротивлений, но и от способа их сочетания, характера их организационных связей. Чем больше неоднородность внутренних связей в системе, тем она менее устойчива, и наоборот, с возрастанием их однородности происходит увеличение устойчивости системы. В первом случае имеющиеся структурные противоречия сохраняются, и к ним добавляются все новые и новые. Во втором случае идущее разрушение отрывает от комплекса наименее прочно связанные с ним элементы, разрывает наиболее противоречивые связи. Усложнение этих связей, рост их неоднородности снижают стройность и устойчивость всей системы.

Рано или поздно развитие системы приводит к неустойчивости и кризису, поскольку части целого становятся различны, а накопившиеся системные противоречия перевешивают силу дополнительных связей между частями и ведут к их разрыву, к общему нарушению организационного единства. Структурная устойчивость обеспечивается за счет наличия механизмов, предназначенных для того, чтобы некоторые наиболее важные характеристики системы оставались практически неизменными независимо от всевозможных внешних воздействий.

Другим фактором устойчивости структуры может служить наличие в системе так называемой структурной избыточности, т. е. возможности дублирования существенных элементов системы. Такая избыточность позволяет не нарушать функционирование системы при неблагоприятных внешних воздействиях, а значит, и сохранить устойчивость структуры. Однако у такого сохранения существует предел. Если условия внешней среды выходят за те границы, в которых система с данной структурой устойчиво функционирует, то вначале наступает нарушение основных функций, а затем и структуры в целом. Во избежание такой ситуации системы могут компенсировать неблагоприятные возмущения при помощи большого числа их разновидностей, более широких границ изменений каждого возмущения и оперативности во времени.

Следует подчеркнуть, что устойчивость системы является следствием разрешения кризиса. Кризис любой системы представляет собой переход от одного этапа развития к другому, из одного качественного состояния в другое со своей критической точкой. Причиной любого кризиса является разрушение какой-либо внутренней связи, приводящее к потере устойчивости того равновесия, в котором находилась система.

Результатом любого кризиса всегда является либо преобразование системы, либо ее распад. Если система не разрушается, а развивается далее, то устранение противоречий достигается установлением связей между разошедшимися частями системы. В результате такого структурного преобразования комплекса возникает организационный комплекс, приспособленный к среде и соответствующий ей.

Однако не всякая система может успешно пройти этот путь самостоятельно, порой его результатом является признание экономической системы (организации) несостоятельной, что влечет ее ликвидацию. Поэтому меры, направленные на поддержание устойчивости функционирования организации, можно рассматривать в качестве антикризисных. Обеспечивать устойчивость функционирования системы должна система управления изменениями.

Гибкость . Понятию «гибкость» сопутствуют следующие основные признаки: воздействие на систему, изменение свойств или поведения системы, включая адаптацию, и наличие пределов изменения. Совокупность этих признаков позволяет дать субстанциональное определение гибкости.

Гибкость - способность системы, подвергнутой определенному воздействию, нормативно или адаптивно изменять свое состояние и (или) поведение в пределах, обусловленных критическими значениями параметров системы.

Организационный процесс должен обладать гибкостью, т. е. способностью к оперативным изменениям в ходе своего осуществления. С учетом этого выделяют гибкость ориентации процесса и гибкость его реализации. Таким образом, в данном случае гибкость рассматривается как один из важнейших инструментов процессуализации организации.

Свойство гибкости в организации как системе обеспечивается многими факторами, среди которых следует выделить:

принципы построения организационных структур;

технологическую (производственную) гибкость, которая оценивает технологию производства, определяет, насколько быстро можно перестроиться на выпуск новой продукции;

уровень квалификации работников;

современные средства коммуникации;

характер производственных отношений, включая стиль руководства, организационную культуру, психологический климат в коллективе, наличие неформальных групп и т. д.

Экономические признаки гибкости . На страте экономических факторов рассматривается эластичность, гибкость производства, определяемая природой хозяйственного механизма. Значение исследований экономических признаков гибкости в условиях полного хозяйственного расчета и самофинансирования возрастает. Приведем сформулированные В. Немчиновым признаки гибкости, которые связаны с предпосылками приближения цен к стоимости:

совпадение производства и потребления в целом и по отдельным продуктам;

пропорциональное развитие отдельных производств;

покрытие друг другом спроса и предложения.

Содержание понятия гибкости на экономической страте определяет возможности вовлечения в производство дополнительных ресурсов, изменения функций производственной системы, а также ее структуры. Вовлечение в производство дополнительных ресурсов, например дополнительного оборудования, создание новых мощностей не всегда оправдано. Поэтому возрастает экономическое значение использования фиксированных ресурсов производства, обеспечивающих его гибкость по отношению к выявленному платежеспособному спросу. Такую ситуацию можно обеспечить определенным запасом гибкости, который выражается в функциональных возможностях производственной системы.

Функциональные признаки гибкости . Одним из первых признаков, относящихся к функциональной гибкости производственных систем, следует назвать универсальность . Она обеспечивается соответствующей структурой ГПС и тем набором технологических операций, которые заложены в систему. Кроме того, в многомашинной системе универсальность определяется набором различных последовательностей операций. Предположим, что в системах 1 и 2 могут выполняться три вида операций: А, В, С. Система 1 может производить операции только в технологической последовательности АВС, а система 2 способна производить операции в технологических последовательностях АВС, ВСА, САВ, ВАС. Таким образом, можно утверждать, что система 2 более гибкая, чем система 1, а производственная гибкость определяется не только набором всех операций, но и набором их последовательностей. Универсальность как составляющая функциональной гибкости имеет пределы, обусловленные физическими возможностями системы.

Существенным признаком функциональной гибкости является адаптивность управления , которая обеспечивает выполнение технологической операции по заданной программе в условиях неполной априорной информации об управляемом процессе, а также работу системы в условиях изменения самой программы, причем когда стратегия изменения программы заранее неизвестна. Этот признак обеспечивается возможностями управляющих вычислительных машин, средствами автоматики и др.

Необходимо выделить и такой важный функциональный признак, как способность оптимизировать производственный процесс , в том числе и в случае непредвиденных ситуаций. Этот признак обеспечивается математическим моделированием. Поскольку в практике чаще всего встречаются стохастические задачи, одним из основных средств их решения для ГПС могут быть методы теории массового обслуживания.

Структурные признаки гибкости . Структурная гибкость предполагает также перестройки, которые затрагивают технологическую компоновку и конструктивные связи всей системы или ее отдельных элементов. К ним, в частности, относятся:

переналадка для обработки новой детали в пределах заданной номенклатуры;

перестройка для выпуска новой продукции;

перестройка в случае непредвиденных ситуаций, например при выходе из строя части оборудования.

Такие перестройки сопровождаются сменой оснастки, изменением количества оборудования, занятого в технологическом процессе, изменением его компоновки, сменой видов производственных механизмов.

Характерными структурными признаками ГПС являются модульность оборудования , разветвленность транспортных коммуникаций , резервирование оборудования .

1. Введение в теорию систем.

2. Понятие и свойства системы.

3. Элементы классификации систем.

4. Понятие о системном подходе.

5. Системный анализ транспортных систем.

Общая теория систем (теория систем) - научная и методологическая концепция исследования объектов, представляющих собой системы. Она тесно связана с системным подходом и является конкретизацией его принципов и методов. Первый вариант общей теории систем был выдвинут Людвигом фон Берталанфи. Его основная идея состоит в признании изоморфизма законов, управляющих функционированием системных объектов.

Предметом исследований в рамках этой теории является изучение:

    различных классов, видов и типов систем;

    основных принципов и закономерностей поведения систем (например, принцип узкого места);

    процессов функционирования и развития систем (например, равновесие, эволюция, адаптация, сверхмедленные процессы, переходные процессы).

В границах теории систем характеристики любого сложно организованного целого рассматриваются сквозь призму четырёх фундаментальных определяющих факторов:

    устройство системы;

    её состав (подсистемы, элементы);

    текущее глобальное состояние системной обусловленности;

    среда, в границах которой развёртываются все её организующие процессы.

В исключительных случаях, кроме того, помимо исследования названных факторов (строение, состав, состояние, среда), допустимы широкомасштабные исследования организации элементов нижних структурно-иерархических уровней, то есть инфраструктуры системы.

Общая теория систем и другие науки о системах

Сам фон Берталанфи считал, что следующие научные дисциплины имеют (отчасти) общие цели или методы с теорией систем:

    Кибернетика, - наука об общих закономерностях процессов управления и передачи информации в различных системах, будь то машины, живые организмы или общество.

    Теория информации - раздел прикладной математики, аксиоматически определяющий понятие информации, её свойства и устанавливающий предельные соотношения для систем передачи данных.

    Теория игр, анализирующая в рамках особого математического аппарата рациональную конкуренцию двух или более противодействующих сил с целью достижения максимального выигрыша и минимального проигрыша.

    Теория принятия решений, анализирующая рациональные выборы внутри человеческих организаций.

    Топология, включающая неметрические области, такие, как теория сетей и теория графов.

    Факторный анализ, то есть процедуры выделения факторов в многопеременных явлениях в социологии и других научных областях.

Рисунок 1.1 - Структура системологии

Общая теория систем в узком смысле, пытающаяся вывести из общих определений понятия «система», ряд понятий, характерных для организованных целых, таких как взаимодействие, сумма, механизация, централизация, конкуренция, финальность и т. д., и применяющая их к конкретным явлениям.

Прикладные науки о системах

Принято выделять коррелят теории систем в различных прикладных науках, именующимися иногда науками о системах, или системной наукой (англ. Systems Science). В прикладных науках о системах выделяются следующие области:

    Системотехника (англ. Systems Engineering), то есть научное планирование, проектирование, оценку и конструирование систем «человек - машина».

    Исследование операций (англ. Operations research), то есть научное управление существующими системами людей, машин, материалов, денег и т. д.

    Инженерная психология (англ. Human Engineering).

    Теория полевого поведения Курта Левина.

    СМД-методология, разрабатывавшаяся в Московском Методологическом Кружке Г. П. Щедровицким, его учениками и сотрудниками.

    Теория интегральной индивидуальности Вольфа Мерлина, основанная на теории Берталанфи.

Отраслевые теории систем (специфические знания о различных видах системах) (примеры: теория механизмов и машин, теория надёжности

Систе́ма (от др.-греч. σύστημα - целое, составленное из частей; соединение) - множество элементов, находящихся в отношениях и связях друг с другом, которое образует определённую целостность, единство.

По Бертрану Расселлу: «Множество есть совокупность различных элементов, мыслимая как единое целое»

Система - совокупность элементов, находящихся во взаимосвязи

и взаимоотношениях между собой, и образующих определенное един-

ство, целостность.

Свойство системы определяется не только и не сколько элемен-

тов ее составляющих сколько характером взаимосвязи между ними.

Для систем характерна взаимосвязь с окружающей средой, по отноше-

нию к которой система проявляет свою целостность. Для обеспече-

ния целостности необходимо чтобы система имела четкие границы.

Для систем характерна иерархическая структура, т.е. каждый

элемент системы является в свою очередь системой, также как и лю-

бая система является элементом системы более высокого уровня.

Элемент – предел членения системы с точки зрения аспекта рассмотрения, решения конкретной задачи, поставленной цели.

Связь – ограничение степени свободы элементов. Характеризуются направлением (направленные, ненаправленные), силой (сильные, слабые), характером (подчинения, порождения, равноправные, управления).

Структура отражает определенные взаимосвязи, взаимное расположение составных частей системы, ее устройство (строение).

Понятия характеризующие функционирование и развитие системы:

Состояние – мгновенная фотография, «срез» системы, остановка ее в развитии.

Поведение – способ переходить из одного состояния в другое.(стр.30)

Равновесие – способность системы в отсутствии внешних возмущающих воздействий (или при постоянных воздействиях) сохранять свое состояние сколь угодно долго.

Устойчивость – способность системы возвращаться в состояние равновесия после того как она была выведена внешними (внутренними при наличии в системе активных элементов) возмущающими воздействиями.

Развитие - процесс, направленный на изменение материальных и духовных объектов с целью их усовершенствования.

Под развитием обычно понимают:

    увеличение сложности системы;

    улучшение приспособленности к внешним условиям (например, развитие организма);

    увеличение масштабов явления (например, развитие вредной привычки, стихийного бедствия);

    количественный рост экономики и качественное улучшение её структуры;

    социальный прогресс.

Понятия "система" и "системность" играют важную роль в современной науке и практической деятельности. Интенсивные разработки в области системного подхода и теории систем ведутся, начиная с середины ХХ в. Однако само понятие "система" имеет гораздо более давнюю историю. Первоначально системные представления формировались в рамках философии: еще в античности был сформулирован тезис о том, что целое больше суммы его частей. Древние философы (Платон, Аристотель и др.) толковали систему как мировой порядок, утверждая, что системность - свойство природы. Позднее И. Кант (1724-1804) обосновал системность самого процесса познания. Принципы системности активно исследовались и в естественных науках. Наш соотечественник Е. Федоров (1853-1919) в процессе создания науки кристаллографии пришел к выводу о системности природы.

Принцип системности в экономике сформулировал А. Смит (1723-1790), сделавший вывод , что эффект действия людей, организованных в группу, больше, чем сумма одиночных результатов.

Различные направления исследований системности позволили сделать вывод о том, что это свойство природы и свойство деятельности человека (рис. 2.1).

Теория систем служит методологической базой теории управления. Это относительно молодая наука, организационное становление которой произошло во второй половине ХХ в. Родоначальником теории систем считается австрийский ученый Л. Берталанфи (1901-1972). Первый международный симпозиум по системам состоялся в Лондоне в 1961 г. Первый доклад на этом симпозиуме сделал выдающийся английский кибернетик С. Бир, что можно считать свидетельством гносеологической близости кибернетики и теории систем.

Центральным в теории систем является понятие "система" (от греч. systēma - целое, составленное из частей, соединение). Система - объект произвольной природы, обладающий выраженным системным свойством, которым не обладает ни одна из частей системы при любом способе ее членения, не выводимом из свойств частей.


Рис. 2.1.

Приведенное определение нельзя считать исчерпывающим - оно отражает лишь некий общий подход к изучению объектов. В литературе по системному анализу можно найти множество определений системы (см. Приложение 1).

В настоящем учебнике мы будем использовать следующее рабочее определение системы:

" Система - это целостная совокупность взаимосвязанных элементов. Она имеет определенную структуру и взаимодействует с окружающей средой в интересах достижения поставленной цели".

Данное определение позволяет выявить следующие базисные понятия:

  • целостность;
  • совокупность;
  • структурированность;
  • взаимодействие с внешней средой;
  • наличие цели.

Они представляют собой систему понятий, т. е. внутреннюю организацию некоторого устойчивого объекта, целостность которого и есть система. Сама возможность выделения в поле исследования устойчивых объектов определяется свойством целостности системы, целями наблюдателя и возможностями его восприятия действительности.

ТЕМА 1. лекция 1. Введение в дисциплину

Введение

Введение

В современном мире специалисты в различных областях знаний постоянно сталкиваются с необходимостью решать сложные проблемы, порожденные сложностью самого окружающего мира, как естественного (природа), так и искусственного (техносфера). Для того, чтобы успешно с этой задачей справиться, недостаточно рассмотрения каких-то отдельных элементов, отдельных, частных вопросов. Необходимо рассматривать их, как мы говорим, в системе, с учетом множества взаимосвязей, множества специфических свойств. Для решения подобных задач, например, в области экологии (исследование устойчивости популяций животных, распространение загрязнений и т.п.), проектирования техники и т.п. было создано множество подходов, методов, приемов, которые в процессе своего развития и обобщения оформились в определенную технологию преодоления количественных и качественных сложностей.

Поскольку большие и сложные системы стали предметом изучения, управления и проектирования, потребовалось обобщение методов исследования таких систем и методов воздействия на них. Следовательно, появилась потребность в некоей прикладной науке, которая бы объединила теорию и технологию (практику) решения системных задач. Такие дисциплины возникали в разных областях практической деятельности, например:

 в инженерной деятельности: методы проектирования, инженерное творчество, системотехника;

 в экономике: исследование операций;

 в административном

 и политическом управлении: системный подход, футурология, политология;

 в прикладных научных исследованиях: «имитационное моделирование, методология эксперимента».

В конечном итоге развития этих дисциплин вызвало к жизни науку, которая получила название «системный анализ». Эта дисциплина для решения своих задач (ликвидации проблемы или выяснения ее причин) использует возможности различных наук и сфер деятельности. Она подразумевает использование математики, вычислительной техники, экспериментов (натурных и численных), моделирования.

На последнем слове следует остановиться. Наш курс называется «Системный анализ и моделирование процессов в техносфере». Таким образом, мы будем знакомиться с системным анализом не как с абстрактной дисциплиной, а в увязке с тем кругом проблем, которые вам, как специалистам, возможно, предстоит решать в вашей будущей деятельности. е. с разработкой математических моделей тех или иных явлений, происходящих в окружающей среде, в техносфере, или с проектированием систем обеспечения безопасности жизнедеятельности.

1. Системные представления в практической деятельности человека

Системность – это не какое-то придуманное учеными качество. Системен окружающий нас мир. Системно само человеческое мышление. Однако есть разные уровни системности. Применительно к человеческому знанию, человеческой деятельности это особенно заметно. Что такое появление проблемы? Это сигнал о недостаточной системности существующей деятельности. Что такое решение возникшей проблемы? Это успешный переход на новый, более высокий уровень системности. Утверждая это, в  1, авторы подчеркивают, что системность – это не столько состояние, сколько процесс.

Системно ли наше знание, наши представления? Возьмем то же слово «система» или «системность». Все вы, вероятно, смутно, интуитивно понимаете, что это такое, но попытка выразить словами эти понятия покажет, что это не так просто. То есть ваши представления системны, но уровень системности невысок, вы будете его повышать постепенно, в процессе изучения предмета.

Иерархия – структура с наличием подчиненности, т.е. неравнозначных связей между элементами, когда воздействия в одном из направлений оказывают гораздо большее влияние на элемент, чем в другом.

Мы легко употребляем в нашей речи слово «система» («солнечная», «нервная», «экологическая», «система мероприятий», «система уравнений», «система взглядов и т.п.). Самые очевидные и обязательные признаки систем мы можем отметить уже сейчас, а именно определенный состав, структурированность системы, взаимосвязанность составляющих ее частей, иерархичность, подчиненность организации всей системы определенный цели.

Это легко иллюстрируется на «биологическом» материале. Примером может служить организм животного человека. Действительно, организм – это система. Эта система представляет не простую совокупность составляющих ее элементов, подсистем (клеток, органов и т.д.), но совокупность взаимосвязанную, целью же ее служит поддержание гомеостаза – постоянства внутренней среды организма для обеспечения его жизнедеятельности.

В мире косной материи легко просматриваются все перечисленные признаки системы, за исключением, пожалуй, подчиненности определенной цели. Например, солнечная система – это не просто девять планет, обращающихся вокруг Солнца; их движения по орбитам взаимосвязаны, взаимозависимы: исчезновение одной из них, или изменение ее орбиты под действием какого-либо гипотетического внешнего воздействия повлияло бы на орбиты остальных составляющих системы, т.е. система в какой-то степени изменила бы свою внутреннюю структуру, оставаясь тем не менее, системой, единым целым. (Возможно, в каком-то смысле мы можем говорить здесь и о цели – сохранения устойчивости, постоянства ).

Естествознание не задастся вопросом о цели существования физического мира. Это область телеологии. Однако, известен так называемый антропный принцип. В своем «слабом» варианте он гласит, что мир устроен таким образом, и значения физических констант таковы, чтобы во Вселенной могла существовать жизнь. В своем «сильном» варианте он сводится к тому, что устройство мира и значения физических констант приспособлены к условиям наблюдателя , цель Вселенной - возникновение и развития человечества.

Кроме того, современные воззрения на процесс самоорганизации материи («синергетика» - рассмотрим далее) предполагает стремление неустойчивых неравновесных состояний систем к некоторым «точкам» - аттракторам, которые в некотором смысле мы может рассматривать как аналоги цели.

Системность человеческой деятельности . Если мы будет рассматривать практическую деятельность человека, то все перечисленные признаки систем здесь в самом деле очевидны. Действительно:

1) Всякое наше осознанное (неосознанные действия пока оставим в стороне) действие преследует определенную цель.

2) Во всяком действии легко увидеть его составные части, т.е. более мелкие действия.

3) При этом легко убедиться, что эти действия (составные части) должны выполняться не в произвольном порядке, а в определенной последовательности. Это и есть определенная, подчиненная цели взаимосвязанность составных частей, которая и является признаком системности.

Системность человеческой деятельности может быть также выражена через другое понятие – алгоритмичность. В последнее время понятие алгоритма из математики было перенесено на другие виды человеческой деятельности. Говорят об алгоритмах принятия управленческих решений, алгоритмах обучения, игры, алгоритмах изобретательства (г.Альтшуллер), алгоритмах творчества (Ю.Мурашковский, Kien fluas la rojo Kastalie?», Р. Зарипов «Машинный поиск вариантов при моделировании творческого процесса»). Здесь мы допускаем, что в алгоритме данной деятельности могут присутствовать и неформализованные действия, т.е. те, которые выполняются неосознанно.

Роль системных представлений в человеческой практике постоянно увеличивается, а с другой стороны растет сама системность человеческой практики.

Системность познания. Окружающий нас мир бесконечен. Человек же существует конечное время и располагает конечными материальными, энергетическими, информационными ресурсами. Но тем не менее человек получает мир и, идя долгой, извилистой тропой, совершая многочисленные ошибки, все же познает его верно, свидетельством чему является его практическая деятельность. А. Эйнштейн говорил, что самое удивительное в природе то, что она познаваема.

Следовательно, человеческое познание имеет какие-то особенности, которые позволяют разрешать противоречие между неограниченностью желаний человека познать мир и ограниченностью его возможностей сделать это, между бесконечностью природы и конечностью ресурсов человечества.

Такой особенностью является, прежде всего, наличие аналитического и синтетического образов мышления, т.е. способности к анализу и синтезу.

Анализ – это разделение целого на части, представление сложного в виде совокупности более простых компонент.

Чтобы понять целое, сложное, нужен и обратный процесс – синтез.

Синтез – метод исследования, состоящий в познании изучаемого предмета, явления как единого целью, в единстве и взаимосвязи его частей.

Аналитичность человеческого познания находит выражение, в частности, в выделении из единой натурфилософии различных наук. Процесс дифференциации наук, глубокое изучение все более узких вопросов идет и поныне.

Вместе с тем возникают так называемые «пограничные» науки, образующиеся как бы на стыке различных дисциплин, как, например, биохимия, биофизика.

Это уже процесс «синтеза» знаний. Другая, более высокая форма синтетических знаний реализуется в виде наук о самых общих свойствах природы (философия, математика). Такие науки как кибернетика, теория систем, теория организации, теория управления, инженерная психология, синтетичны по своей сути. В них соединяются естественные, технические и гуманитарные знания.

Осознание диалектического единства анализа и синтеза наступило не сразу, и в разные исторические эпохи системность мышления имела различный характер. Так, в истории познания человеком природы выделяют 4 стадии:

1-я – синкретическая – стадия нерасчлененного, недетализированного знания.

«…природа еще рассматривается в общем, как одно целое. Всеобщая связь явлений не доказывается в подробности: она является для греков результатом непосредственного созерцания» (Ф. Энгельс). На этой стадии формировалась так называемая натурфилософия – вместилище идей и догадок, ставших к XIII – XY столетиям зачатками естественных наук.

2-я – аналитическая (с XY – XVI вв) – мысленное расчленение и выделение частностей, приведшие к возникновению физики, химии и биологии и др. естественных наук. Для этой стадии характерен метафизический способ мышления.

3-я – синтетическая – воссоздание целостной картины Природы на основе ранее познанных частностей.

4-я – интегрально-дифференциальная (человечество еще только вступает в нее) призвана не только обосновать принципиальную целостность (интегральность) всего естествознания, но и сформировать действительно единую науку о Природе, рассматривая ее (Вселенную, Жизнь, Разум) как единый многогранный объект, с общими закономерностями развития.

Системность как свойство материи. Вернемся к вопросу о системности окружающего нас физического мира. Мы выяснили, что практической деятельности человека и его мышлению присуща системность. Но не специфическое ли это свойство человека, своего рода приспособление, выработанное для собственного удобства, упрощения своей деятельности в окружающем мире, а мир ничего не имеет общего с нашими представлениями о нем.

До самого последнего времени попытки ответить на этот вопрос лежали исключительно в области философии. И философы – материалисты и идеалисты, метафизики и приверженцы диалектики, агностики и те, кто был убежден в познаваемости мира имели по этому вопросу различные мнения. Так, материалист – метафизик Ф.Бэкон считал, что умственные построения полностью произвольны и ничему в природе не соответствуют. Он писал: «…Человеческий разум в силу своей склонности легко предполагает в вещах больше порядка и единообразия, чем их находит. И в то же время, как многое в природе единично и совершенно не имеет себе подобия, он придумывает параллели, соответствия и отношения, которых нет». Голландский философ – материалист XVII в Б.Спиноза высказывался в совершенно противоположном духе: «… порядок и связь идей та же, что порядок и связь вещей…» поскольку «…субстанция мыслящая и субстанция протяженная составляют одну и ту же субстанцию».

И. Кант считал, что мы должны «…предполагать систематическое единство природы непременно как объективно значимое и необходимое», а системность разума призвана искать в природе это вещество.

К.Маркс подчеркивал роль практики как критерия соответствия мышления человека действительности. Ленин неоднократно указывал, что познание есть бесконечный процесс приближения мышления к объекту, сопровождающийся возникновением противоречий и развитию их.

Действительно реальность и ее мысленное отображение не идентичны, не идентичны между собой естественные и искусственные системы. И тем не менее системность нашего мышления вытекает из системности мира Современная наука представляет мир как бесконечную иерархию систем, находящихся в непрерывном развитии.

Подводя некоторый итог, можно сделать следующее заключение.

Системность мира представляется в виде объективно существующей иерархии различно организованных взаимодействующих систем.


Системность мышления реализуется в том, что знания представляются в виде иерархической системы взаимосвязанных моделей.

2. Эволюция системных представлений

Надо сказать, что осознание системности мира и мышления всегда отставало от системности (эмпирической) человеческой практики.

История развития системных представлений шла как бы по разным направлениям и с разных исходных позиций. С одной стороны к современному пониманию шла философия, с другой – конкретные науки. В своем движении к истине они неминуемо должны были сойтись, что, в сущности и происходит в настоящее время.

Результаты философии относятся к множеству всех существующих и мыслимых систем, носят всеобщий характер. Чтобы применить их к конкретным ситуациям мы должны использовать дедуктивный метод.

Конкретные науки большей частью придерживаются противоположного, индуктивного метода, т.е. от исследования реальных, конкретных систем к установлению общих закономерностей.

Особый интерес представляют те моменты в истории, когда системность сама по себе становилась объектом исследования для естественных и технических наук.

2.1. Рождение понятия "система" (2500-2000 г. до н.э). Слово "система" появилось в Древней Греции и означало "сочетание", "организм", "организация", "союз", а также "нечто, поставленное вместе, приведенное в порядок".

2.2. Первая естественнонаучная (механическая) картина мира. Идеи Галилея (1564-1642) и И.Ньютона (1642-1727). Выработана определенная концепция системы с категориями: вещь и свойства , целое и часть .

2.3. Немецкая классическая философия. Глубокая и основательная разработка идеи системной организации научного знания. Структура научного знания стала предметом специального философского анализа.

2.4. Теоретическое естествознание XIX - XX вв. Различение объекта и предмета познания, повышение роли моделей в познании, исследование системообразующих принципов (порождение свойств целого из свойств элементов и свойств элементов из свойств целого).

2.5. Кибернетика. В 1834 году знаменитый физик М.-А. Ампер опубликовал книгу, содержащую классификации всевозможных наук (в том числе и пока не существовавших). Среди них он выделил специальную науку об управлении государством и назвал ее кибернетикой (от слова kbervik, первоначально означавшего управление кораблем, а затем получившего у самих греков более широкое значение искусства управления вообще).

В 1843 году появилась книга польского философа Б.Трентовского (по материалам курса лекций, который он читал ранее). Книга называлась «Отношение философии к кибернетике как к искусству управления народом». Это была попытка построения научных основ практической деятельности руководителя, которого он называл «кибернетом» (подробнее - в 1).

Общество середины прошлого века было не готово воспринять идеи кибернетики. Практика управления тогда еще могла обходиться без науки управления. И кибернетика была забыта.

В дальнейшем идеи системности появлялись и в других областях науки. Так, академик С. Федоров, исследуя явление кристаллизации веществ, установил некоторые закономерности развития систем, в частности, он указывал, что главным средством жизнеспособности и прогресса систем является не их приспособленность, а их способность к приспособлению, не стройность, а способность к повышению стройности.

2.6. Тектология. Следующий крупный вклад в теорию систем был внесен А.А.Богдановым (Малиновским) – личностью талантливой, всесторонней, увлекающейся. (Это его, автора собственной философии – эмпириомонизма критиковал Ленин в книге «Материализм и эмпириокритицизм»). Он активно участвовал в политической деятельности, был в социально-демократической партии, затем вышел из нее, то после революции вошел в состав Коммунистической академии написал «Краткий курс политической экономии». Он, кроме того, является и автором нескольких научно-фактических произведений. Основной же его профессией была медицина.

К 1925 г. он завершил свой трехтомный труд «Всеобщая организационная наука (тектология)». В его основу положена идея о том, что все существующие объекты и процессы имеют определенную степень, уровень организованности. В отличие от конкретных естественных наук, изучающих специфические особенности организации конкретных явлений, тектология должна изучать общие закономерности организации для всех уровней организованности. Все явление рассматриваются как непрерывные процессы организации и дезорганизации. Отмечается, что уровень организации тем выше, чем сильнее свойства целого отличаются от простой суммы свойств его частей.

Основное внимание в тектологии Богданова уделяется закономерностям развития организации, рассмотрению соотношений устойчивого и изменчивого , значению обратных связей , учету собственных целей организации (которые могут как содействовать целям высшего уровня организации, так и противоречить им).

Примеры: человеческое общество – экологический аспект, социально-экономический аспект, человеческий организм – иммунитет и т.п.

Кроме того, Богданов подчеркивал роль моделирования и математики , как потенциальных методов решения задач тектологии. Таким образом он предвосхитил многие положения современных кибернетических и системных теорий.

Став директором первого в мире института переливания крови (созданного по его же идее и при поддержке В.И.Ленина) он стал проверять некоторые выводы своей теории на примере кровеносной системы, проводя на себе рискованные опыты. Один из них завершился гибелью ученого. Тектология, также как и кибернетика в своем первом явлении миру, была на какое-то время забыта, и о ней вспомнили только тогда, когда и другие стали приходить к тем же результатам.

2.7. Кибернетика Винера

Можно сказать, что мир «созрел» для массового усвоения системных понятий и сознания системности мира к концу 40-х годов нашего века, когда в 1948 г. американский математик Н.Винер опубликовал книгу под названием «Кибернетика». Вначале он определил кибернетику как «науку об управлении и связи в животных и машинах » . Однако уже в следующей своей книге «Кибернетика и общество» он расширяет это определение и анализирует с позиций кибернетики процессы, происходящие в обществе. В 1956 г. в париже состоялся Первый международный конгресс по кибернетике.

После того, как кибернетика в СССР перестала называться лженаукой, в ее становлении внесли вклад и наши ученые, при этом появились новые определения, в частности:

«Кибернетика – это наука об оптимальном управлении сложными динамическими системами» (А.И.Берг).

«Кибернетика – это наука о системах, воспринимающих, хранящих, перерабатывающих и использующих информацию» (А.Н.Колмогоров).

Из этих определений видно, что предметом кибернетики является исследование систем , причем для кибернетики в принципе несущественно, какова природа этой системы, т.е. является ли она физической, биологической, экономической, организационной или даже воображаемой. Таким образом «кибернетика» вторгается в совершенно разнородные сферы. в приводится такой аналог: мир может быть представлен как как «булка», каждая наука, изучающая мир, – «ломоть» поперек, а кибернетика – это «ломоть» вдоль.

В рамках кибернетики Винера произошло дальнейшее развитие системных представлений, а именно:

    типизация моделей систем;

    выявление значения обратных связей в системе;

    подчеркивание принципа оптимальности в управлении и синтезе систем;

    понятие информации как всеобщего свойства материи, осознание возможности ее количественного описания;

    развитие методологии моделирования вообще и в особенности машинного эксперимента , т.е. математическая экспертиза с помощью ЭВМ.

2.8. Общая теория систем Л. Берталанфи. Общая теория систем – это как бы параллельный, независимый по отношению к кибернетике, подход к науке о системах. В 1950 г. австрийский биолог Л. Берталанфи опубликовал книгу «Основы общей теории систем». Берталанфи пытался отыскивать структурное сходство законов, установленных в различных дисциплинах и, обобщая их, выводить общесистемные закономерности.

Берталанфи подчеркивал особое значение обмена системы веществом, энергией и информацией (отрицательной энтропией или негэнтропией) с окружающей средой. В открытой системе устанавливается динамическое равновесие, которое может быть направлено в сторону усложнения организации вопреки второму закону термодинамики (благодаря вводу негэнтропии извне). В этом случае функционирование системы – это не просто отклик на изменение внешних условий, а сохранение старого или установление нового подвижного внутреннего равновесия системы (гомеостазиса).

Если в кибернетике Винера изучались лишь внутрисистемные обратные связи, а функционирование систем рассматривалось как отклик на внешние воздействия, то Берталанфи, развивая идеи физика Шредингера, разработал концепцию организма как открытой системы и сформулировал программу построения общей теории систем.

2.9. Синергетика

Еще один подход к исследованию систем связан с так называемой бельгийской школой во главе с И. Пригожиным. Этот ученый занимался термодинамикой неравновесных физических систем (Нобелевская премия 1977 г.) и обнаружил, что выявленные им закономерности справедливы для систем любой природы. Он как бы заново открыл уже известные свойства систем, но, кроме этого, предложил новую теорию динамики систем. Суть его теории заключается в следующем.

Материя не является пассивной субстанцией; ей присуща спонтанная активность, вызванная неустойчивостью неравновесных состояний, в которые приходит система в результате взаимодействия с окружающей средой. Так реализуется механизм самоорганизации систем, причем в особые «переломные» моменты (точки бифуркации) принципиально невозможно предсказать, станет ли система менее или более организованной .

Контрольные вопросы

    Может ли какое-либо явление быть несистемным?

    Что такое проблемная ситуация?

    Какая, по-вашему, деятельность не может быть алгоритмизирована?

    Приведите пример деятельности, которая ранее считалась чисто эвристической, а теперь успешно алгоритмизирована?

    Какие особенности мышления позволяют утверждать, что оно системно?

    Приведите аргументы в пользу системности всей материи.

    Каковы основные события в развитии системных представлений в течение последних 150 лет?

    Что означает греческое слово «система»?

    В чем отличие кибернетики Винера и теории систем Берталанфи?

    Какой взгляд на системность мира выражает синергетика?

Литература

    Ф.И.Перегудов, Ф.П.Тарасов. Введение в системный анализ. М.: «Высшая школа», 1989. 519.8(07)У П27.

    В.А.Губанов и др. Введение в системный анализ. Л., 1988.

    Р.Пэнтл. Методы системного анализа окружающей среды. М.: Мир, 1979.

    Н.В.Чепурных, А.Л.Новоселов. Экономика и экология. Развитие, катастрофы. М.: Наука, 1996.

    Д.Б.Браун. Системы обеспечения техники безопасности. М.: 1979.

    Спицнадель В.Н. Основы системного анализа. - СПб.: Издательский дом «Бизнес-пресса».