Какой ученый ввел понятие о биогеоценозе. Чем биогеоценоз отличается от экосистемы

Среды в пределах одной территории, связанные между собой круговоротом веществ и потоком энергии (природная экосистема). Представляет собой устойчивую саморегулирующуюся экологическую систему, в которой органические компоненты (животные, растения) неразрывно связаны с неорганическими (вода, почва). Примеры: сосновый лес, горная долина. Учение о биогеоценозе разработано Владимиром Сукачёвым в 1942 году . В зарубежной литературе - малоупотребимо. Ранее также широко употреблялось в немецкой научной литературе.

Биогеоценоз и экосистема

Свойства

Основные показатели

  • Видовой состав - количество видов, обитающих в биогеоценозе.
  • Видовое разнообразие - количество видов, обитающих в биогеоценозе на единицу площади или объема.

В большинстве случаев видовой состав и видовое разнообразие количественно не совпадают и видовое разнообразие напрямую зависит от исследуемого участка.

  • Биомасса - количество организмов биогеоценоза, выраженное в единицах массы. Чаще всего биомассу подразделяют на:
    • биомассу продуцентов
    • биомассу консументов
    • биомассу редуцентов
  • Продуктивность
  • Устойчивость
  • Способность к саморегуляции

Пространственные характеристики

Переход одного биогеоценоза в другой в пространстве или во времени сопровождается сменой состояний и свойств всех его компонентов и, следовательно, сменой характера биогеоценотического метаболизма. Границы биогеоценоза могут быть прослежены на многих из его компонентов, но чаще они совпадают с границами растительных сообществ (фитоценозов). Толща биогеоценоза не бывает однородной ни по составу и состоянию его компонентов, ни по условиям и результатам их биогеоценотической деятельности. Она дифференцируется на надземную, подземную, подводную части, которые в свою очередь делятся на элементарные вертикальные структуры - био-геогоризонты, очень специфичные по составу, структуре и состоянию живых и косных компонентов. Для обозначения горизонтальной неоднородности, или мозаичности биогеоценоза введено понятие биогеоценотических парцелл. Как и биогеоценоз в целом, это понятие комплексное, так как в состав парцеллы на правах участников обмена веществ и энергии входят растительность, животные, микроорганизмы, почва, атмосфера .

Механизмы устойчивости биогеоценозов

Одним из свойств биогеоценозов является способность к саморегуляции, то есть к поддержанию своего состава на определенном стабильном уровне. Это достигается благодаря устойчивому круговороту веществ и энергии. Устойчивость же самого круговорота обеспечивается несколькими механизмами:

  • достаточность жизненного пространства, то есть такой объем или площадь, которые обеспечивают один организм всеми необходимыми ему ресурсами.
  • богатство видового состава. Чем он богаче, тем устойчивее цепи питания и, следовательно, круговорот веществ.
  • многообразие взаимодействия видов, которые также поддерживают прочность трофических отношений.
  • средообразующие свойства видов, то есть участие видов в синтезе или окислении веществ.
  • направление антропогенного воздействия.

Таким образом, механизмы обеспечивают существование неменяющихся биогеоценозов, которые называются стабильными. Стабильный биогеоценоз, существующий длительное время, называется климаксическим. Стабильных биогеоценозов в природе мало, чаще встречаются устойчивые - меняющиеся биогеоценозы, но способные, благодаря саморегуляции, приходить в первоначальное, исходное положение.

Формы существующих взаимоотношений между организмами в биогеоценозах

Совместная жизнь организмов в биогеоценозах протекает в виде 6 основных типов взаимоотношений:

Литература

  • Разумовский С. М. Закономерности динамики биогеоценозов: Избр. труды. - М.: KMK Scientific Press, 1999.
  • Цветков В. Ф. Лесной биогеоценоз / В. Ф. Цветков. 2-е изд. Архангельск, 2003. 267 с.

Ссылки

.

Отрывок, характеризующий Биогеоценоз

Наташа знала, что ей надо уйти, но она не могла этого сделать: что то сжимало ей горло, и она неучтиво, прямо, открытыми глазами смотрела на князя Андрея.
«Сейчас? Сию минуту!… Нет, это не может быть!» думала она.
Он опять взглянул на нее, и этот взгляд убедил ее в том, что она не ошиблась. – Да, сейчас, сию минуту решалась ее судьба.
– Поди, Наташа, я позову тебя, – сказала графиня шопотом.
Наташа испуганными, умоляющими глазами взглянула на князя Андрея и на мать, и вышла.
– Я приехал, графиня, просить руки вашей дочери, – сказал князь Андрей. Лицо графини вспыхнуло, но она ничего не сказала.
– Ваше предложение… – степенно начала графиня. – Он молчал, глядя ей в глаза. – Ваше предложение… (она сконфузилась) нам приятно, и… я принимаю ваше предложение, я рада. И муж мой… я надеюсь… но от нее самой будет зависеть…
– Я скажу ей тогда, когда буду иметь ваше согласие… даете ли вы мне его? – сказал князь Андрей.
– Да, – сказала графиня и протянула ему руку и с смешанным чувством отчужденности и нежности прижалась губами к его лбу, когда он наклонился над ее рукой. Она желала любить его, как сына; но чувствовала, что он был чужой и страшный для нее человек. – Я уверена, что мой муж будет согласен, – сказала графиня, – но ваш батюшка…
– Мой отец, которому я сообщил свои планы, непременным условием согласия положил то, чтобы свадьба была не раньше года. И это то я хотел сообщить вам, – сказал князь Андрей.
– Правда, что Наташа еще молода, но так долго.
– Это не могло быть иначе, – со вздохом сказал князь Андрей.
– Я пошлю вам ее, – сказала графиня и вышла из комнаты.
– Господи, помилуй нас, – твердила она, отыскивая дочь. Соня сказала, что Наташа в спальне. Наташа сидела на своей кровати, бледная, с сухими глазами, смотрела на образа и, быстро крестясь, шептала что то. Увидав мать, она вскочила и бросилась к ней.
– Что? Мама?… Что?
– Поди, поди к нему. Он просит твоей руки, – сказала графиня холодно, как показалось Наташе… – Поди… поди, – проговорила мать с грустью и укоризной вслед убегавшей дочери, и тяжело вздохнула.
Наташа не помнила, как она вошла в гостиную. Войдя в дверь и увидав его, она остановилась. «Неужели этот чужой человек сделался теперь всё для меня?» спросила она себя и мгновенно ответила: «Да, всё: он один теперь дороже для меня всего на свете». Князь Андрей подошел к ней, опустив глаза.
– Я полюбил вас с той минуты, как увидал вас. Могу ли я надеяться?
Он взглянул на нее, и серьезная страстность выражения ее лица поразила его. Лицо ее говорило: «Зачем спрашивать? Зачем сомневаться в том, чего нельзя не знать? Зачем говорить, когда нельзя словами выразить того, что чувствуешь».
Она приблизилась к нему и остановилась. Он взял ее руку и поцеловал.
– Любите ли вы меня?
– Да, да, – как будто с досадой проговорила Наташа, громко вздохнула, другой раз, чаще и чаще, и зарыдала.
– Об чем? Что с вами?
– Ах, я так счастлива, – отвечала она, улыбнулась сквозь слезы, нагнулась ближе к нему, подумала секунду, как будто спрашивая себя, можно ли это, и поцеловала его.
Князь Андрей держал ее руки, смотрел ей в глаза, и не находил в своей душе прежней любви к ней. В душе его вдруг повернулось что то: не было прежней поэтической и таинственной прелести желания, а была жалость к ее женской и детской слабости, был страх перед ее преданностью и доверчивостью, тяжелое и вместе радостное сознание долга, навеки связавшего его с нею. Настоящее чувство, хотя и не было так светло и поэтично как прежнее, было серьезнее и сильнее.
– Сказала ли вам maman, что это не может быть раньше года? – сказал князь Андрей, продолжая глядеть в ее глаза. «Неужели это я, та девочка ребенок (все так говорили обо мне) думала Наташа, неужели я теперь с этой минуты жена, равная этого чужого, милого, умного человека, уважаемого даже отцом моим. Неужели это правда! неужели правда, что теперь уже нельзя шутить жизнию, теперь уж я большая, теперь уж лежит на мне ответственность за всякое мое дело и слово? Да, что он спросил у меня?»
– Нет, – отвечала она, но она не понимала того, что он спрашивал.
– Простите меня, – сказал князь Андрей, – но вы так молоды, а я уже так много испытал жизни. Мне страшно за вас. Вы не знаете себя.
Наташа с сосредоточенным вниманием слушала, стараясь понять смысл его слов и не понимала.
– Как ни тяжел мне будет этот год, отсрочивающий мое счастье, – продолжал князь Андрей, – в этот срок вы поверите себя. Я прошу вас через год сделать мое счастье; но вы свободны: помолвка наша останется тайной и, ежели вы убедились бы, что вы не любите меня, или полюбили бы… – сказал князь Андрей с неестественной улыбкой.
– Зачем вы это говорите? – перебила его Наташа. – Вы знаете, что с того самого дня, как вы в первый раз приехали в Отрадное, я полюбила вас, – сказала она, твердо уверенная, что она говорила правду.
– В год вы узнаете себя…
– Целый год! – вдруг сказала Наташа, теперь только поняв то, что свадьба отсрочена на год. – Да отчего ж год? Отчего ж год?… – Князь Андрей стал ей объяснять причины этой отсрочки. Наташа не слушала его.
– И нельзя иначе? – спросила она. Князь Андрей ничего не ответил, но в лице его выразилась невозможность изменить это решение.
– Это ужасно! Нет, это ужасно, ужасно! – вдруг заговорила Наташа и опять зарыдала. – Я умру, дожидаясь года: это нельзя, это ужасно. – Она взглянула в лицо своего жениха и увидала на нем выражение сострадания и недоумения.
– Нет, нет, я всё сделаю, – сказала она, вдруг остановив слезы, – я так счастлива! – Отец и мать вошли в комнату и благословили жениха и невесту.

Все сообщества растений, животных, микроорганизмов, грибов, которые находятся в теснейшей связи друг с другом, создавая неразрывную систему взаимодействующих организмов и их популяций, - биоценоз , который также называют сообществом.

Продуценты в лесу - деревья, кустарники, травы, мхи.

Консументы - звери, птицы, насекомые.

Редуценты - наземные.

Продуценты в пруду - плавающие растения, водоросли, сине-зеленые.

Консументы - насекомые, земноводные, ракообразные, растительноядные и хищные рыбы.

Редуценты - водные формы грибов и растений.

Примером экосистемы является листопадный лес. В состав листопадных лесов входят буки, дубы, грабы, липы, клены, осины и другие деревья, чья листва осенью опадает. В лесу выделяется несколько ярусов растений: высокий и низкий древесный, кустарников, трав и мохового напочвенного покрова. Растения верхних ярусов более светолюбивые и лучше приспособлены к колебаниям температуры и влажности, чем растения нижних ярусов. Кустарники, травы и мхи в лесу теневыносливы, летом они существуют в полумраке, который образуется после полного развертывания листвы деревьев. На поверхности почвы лежит подстилка, состоящая из полуразложившихся остатков, опавшей листвы, веточек деревьев и кустарников, мертвых трав.

Фауна листопадных лесов богата. Много норных грызунов, землероющих насекомоядных, хищников. Встречаются млекопитающие, живущие на деревьях. Птицы гнездятся в различных ярусах леса: на земле, в кустарниках, на стволах или в дуплах и на вершинах деревьев. Много насекомых, которые питаются листьями и древесиной. В подстилке и верхних горизонтах почвы обитает громадное количество беспозвоночных животных, грибов и бактерий.

Свойства биогеоценозов.

Устойчивость.

Устойчивость - это свойство сообщества и экосистемы выдерживать изменения, создаваемые внешними воздействиями. Способность организмов переносить неблагоприятные условия и высокий потенциал размножения обеспечивают сохранение популяций в экосистеме, что гарантирует ее устойчивость.

Саморегуляция .

Биогеоценоз (на примере дубравы)
1. Дубрава, как природное сообщество (биогеоценоз), характеризующееся целостностью и устойчивостью

    • Рассмотренный нами на экскурсии такой вид природного сообщества, как дубрава является одним из наиболее сложных среди наземных биогеоценозов. Ну, во первых, что такое биогеоценоз? Биогеоценоз - это комплексы взаимосвязанных видов (популяций разных видов), обитающих на определенной территории с более или менее однородными условиями существованиями. Это определение понадобится для пользования в дальнейшем. Дубрава - это совершенная и устойчивая экологическая система, способная при неизменных внешних условиях существовать веками. Биогеоценоз дубравы составляют более сотни видов растений и несколько тысяч видов животных. Понятно, что при таком разнообразии видов, населяющих дубраву, поколебать устойчивость данного биогеоценоза, истребив один или несколько видов растений или животных будет сложно. Сложно, потому что в результате длительного сосуществования видов растений и животных из разрозненных видов они стали единым и совершенным биогеоценозом - дубравой, которая, как уже было сказано выше способна при неизменных внешних условиях существовать веками.

2. Основные компоненты биогеоценоза и связи между ними; растения - главное звено в экосистеме.

    • Основу подавляющего большинства биогеоценоза составляют зеленые растения, которые, как известно, являются производителем органического вещества (продуцентами). А так как в биогеоценозе обязательно присутствуют растительноядные и плотоядные животные - потребители живого органического вещества (консументы) и, наконец, разрушители органических остатков - преимущественно микроорганизмы, которые доводят распад органических веществ до простых минеральных соединений (редуценты), то не трудно догадаться, почему растения являются главным звеном в экосистеме. А потому, что в биогеоценозе все потребляют органические вещества, или соединения образующиеся после распада органических веществ и ясно, что если растения - главный источник органического вещества исчезнут, то жизнь в биогеоценозе практически исчезнет.

3. Круговорот веществ в биогеоценозе. Значение в круговороте растений, использующих солнечную энергию

    • Круговорот веществ в биогеоценозе - необходимое условие существования жизни. Он возник в процессе становления жизни и усложнялся в ходе эволюции живой природы. С другой стороны, чтобы в биогеоценозе был возможен круговорот веществ, необходимо наличие в экосистеме организмов, создающих органические вещества из неорганических и преобразующие энергию излучения солнца, а также организмов, которые используют эти органические вещества и снова превращают их в неорганические соединения. Все организмы по способу питания разделяются на две группы - автотрофы и гетеротрофы. Автотрофы (преимущественно растения) для синтеза органических веществ используют неорганические соединения окружающей среды. Гетеротрофы (животные, человек, грибы, бактерии) питаются готовыми органическими веществами, которые синтезировали автотрофы. Следовательно, гетеротрофы зависят от автотрофов. В любом биогеоценозе очень скоро иссякли бы все запасы неорганических соединений, если бы они не возобновлялись в процессе жизнедеятельности организмов. В результате дыхания, разложения трупов животных и растительных остатков органические вещества превращаются в неорганические соединения, которые возвращаются снова в природную среду и могут опять использоваться автотрофами. Таким образом, в биогеоценозе в результате жизнедеятельности организмов непрерывно осуществляется поток атомов из неживой природы в живую и обратно, замыкаясь в круговорот. Для круговорота веществ необходим приток энергии извне. Источником энергии является Солнце. Движение вещества, вызванное деятельностью организмов, происходит циклически, оно может быть использовано многократно, в то время как поток энергии в этом процессе имеет однонаправленный характер. Энергия излучения Солнца в биогеоценозе преобразуется в различные формы: В энергию химических связей, в механическую и, наконец, во внутреннюю. Из всего сказанного ясно, что круговорот веществ в биогеоценозе - необходимое условие существования жизни и растения (автотрофы) в нем самое главное звено.

4. Разнообразие видов в биогеоценозе, приспособленность их к совместному проживанию.

    • Характерная черта дубравы заключается в видовом разнообразии растительности. Как уже было сказано выше биогеоценоз дубравы составляют более сотни видов растений и несколько тысяч видов животных. Между растениями происходит усиленная конкуренция за основные жизненные условия: пространство, свет, воду с растворенными в ней минеральными веществами. В результате длительного естественного отбора у растений дубравы выработались приспособления, позволяющие разным видам существовать совместно. Это ярко проявляется в характерной для дубравы ярусности. Верхний ярус образую наиболее светолюбивые древесные породы: дуб, ясень, липа. Ниже располагаются сопутствующие им менее светолюбивые деревья: клен, яблоня, груша и др. Еще ниже расположен ярус подлеска, образованный различными кустарниками: лещиной, бересклетом, крушиной, калиной и т. п. Наконец на почве произрастает ярус травянистых растений. Чем ниже ярус, тем более теневыносливы образующие его растения. Ярусность выражена также в расположении корневых систем. Деревья верхних ярусов обладают наиболее глубокой корневой системой и могут использовать воду и минеральные вещества из глубинных слоев почвы.

5. Пищевые связи, экологическая пирамида.

6. Популяции растений и животных; факторы, вызывающие изменения в численности; саморегуляция в биогеоценозе.

7. Изменения в биогеоценозе весной: в жизни растений и животных.

8. Возможные направления изменения биогеоценоза.

    • Любой биогеоценоз развивается и эволюционирует. Ведущее значение в процессе смены наземных биогеоценозов принадлежит растениям, но их деятельность неотделима от деятельности остальных компонентов системы, и биогеоценоз всегда живет и изменяется как единое целое. Смена идет в определенных направлениях, а длительность существования различных биогеоценозов очень различна. Примером изменения недостаточно сбалансированной системы может служить зарастание водоема. Вследствие недостатка кислорода в придонных слоях воды часть органического вещества остается неокисленной и не используется в дальнейшем круговороте. В прибрежной зоне накапливаются остатки водной растительности, образующие торфянистые отложения. Водоем мелеет. Прибрежная водная растительность распространяется к центру водоема, образуются торфяные отложения. Озеро постепенно превращается в болото. Окружающая наземная растительность постепенно надвигается на место бывшего водоема. В зависимости от местных условий здесь может возникнуть осоковый луг, лес или иной тип биогеоценоза. Дубрава тоже может превратится в иной тип биогеоценоза. К примеру, после вырубки деревьев она может превратится в луг, поле (агроценоз) или во что-то другое.

9. Влияние деятельности человека на биогеоценоз; мероприятия, которые необходимо проводить в целях его охраны.

    • Человек с недавних пор стал очень активно влиять на жизнь биогеоценоза. Хозяйственная деятельность людей - мощный фактор преобразования природы. В результате этой деятельности формируются своеобразные биогеоценозы. К числу их можно отнести, например, агроценозы, представляющие собой искусственные биогеоценозы, возникающие в результате сельскохозяйственной деятельности человека. Примерами могут служить искусственно создаваемые луга, поля, пастбища. Создаваемые человеком искусственные биогеоценозы требуют неустанного внимания и активного вмешательства в их жизнь. Конечно, в искусственных и естественных биогеоценозах много сходного и различного, но на этом мы останавливаться не будем. Влияет человек и на жизнь естественных биогеоценозов, но, конечно, не настолько сильно, как на агроценозы. Примером могут служить лесничества, создаваемые для высадки молодых деревьев, а также для ограничения охотничьего промысла. Примером могут также служить заповедники и национальные парки, создаваемые для охраны каких-то определенных видов растений и животных. Создаются также массовые общества, пропагандирующие сохранение и охрану окружающей среды, такие как общество "зеленых" и т.п.

10. Вывод: на примере экскурсионной прогулки по естественному биогеоценозу - дубраве выяснили и разобрали, почему дубрава целостна и устойчива, каковы основные компоненты биогеоценоза, какова их роль и какие существуют между ними связи, разобрали также, почему круговорот веществ в биогеоценозе - необходимое условие существования жизни, выяснили также как все разнообразие видов, обитающих в дубраве не конфликтует между собой, позволяя нормально развиваться друг - другу, разобрали какие существуют пищевые связи в дубраве и разобрали такое понятие как экологическая пирамида, обосновали факторы, вызывающие изменение в численности и такое явление как саморегуляция, выяснили какие происходят изменения в биогеоценозе весной и разобрали возможные направления эволюции биогеоценоза, а также как человек влияет на жизнь в биогеоценозах. В общем, на примере дубравы полностью разобрали жизнь биогеоценозов

Природные комплексы, в которых полностью сформировалась растительность, и которые могут существовать сами по себе, без вмешательства человека, а если человек или что-то другое, нарушит их, то они будут восстанавливаться, причем по определенным законам. Такие природные комплексы и есть биогеоценозы. Самые сложные и важные природные биогеоценозы – лесные. Ни в одном природном комплексе, ни в одном типе растительности эти взаимосвязи не выражены так резко и так многогранно, как в лесу.

Биогеоценоз - это совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, горной породы, растительности, животного мира и мира микроорганизмов, почвы и гидрологических условий), имеющая особую специфику взаимодействий этих слагающих ее компонентов и определенный тип обмена веществ и энергией: между собой и с другими явлениями природы и представляющая собой внутреннее противоречивое единство, находящееся в постоянном движении и развитии …".

В этом определении отражаются все сути биогеоценоза, черты и особенности, присущие только ему:

Биогеоценоз должен быть однородным по всем параметрам: живого и неживого вещества: растительности, животному миру, почвенному населению, рельефу, почвообразующей породе, свойствам почвы, глубине и режимам грунтовых вод;

Каждому биогеоценозу присуще наличие особого, только ему присущего типа обмена веществ и энергии,

Всем компонентам биогеоценоза свойственно единство жизни и ее среды, т.е. особенности и закономерности жизнедеятельности биогеоценоза определяются средой его обитания, таким образом, биогеоценоз представляет собой географическое понятие.

Кроме того, каждый конкретный биогеоценоз должен:

Быть однородным по своей истории;

Быть достаточно долговременным сложившимся образованием;

Ясно отличаться по растительности от соседних биогеоценозов и эти отличия должны быть закономерными и экологически объяснимыми.

Примеры биогеоценозов:

Дубняк разнотравный на подножье делювиального склона южной экспозиции на горной буро-лесной среднесуглинистой почве;

Луг злаковый в лощине на суглинистых оторфованных почвах,

Луг разнотравный на высокой пойме реки на пойменной дерново-глееватой среднесуглинистой почве,

Лиственничник лишайниковый на Al-Fe-гумусово-подзолистых почвах,

Лес смешанный широколиственный с лиановой растительностью на северном склоне на бурых лесных почвах и др.

Биогеоценоз – это вся совокупность видов и вся совокупность компонентов неживой природы, определяющих существование данной экосистемы с учетом неизбежного антропогенного воздействия".

Область знаний о биогеоценозах называется биогеоценологией. Чтобы управлять природными процессами, надо знать закономерности, которым они подчинены. Эти закономерности изучает ряд наук: метеорология, климатология, геология, почвоведение, гидрология, различные отделы ботаники и зоологии, микробиология и др. Биогеоценология же обобщает, синтезирует результаты перечисленных наук под определенным углом зрения, обращая основное внимание на взаимодействия компонентов биогеоценозов между собой и вскрывая общие закономерности, управляющие этими взаимодействиями.

2.Определение биогеоценоза

"Биогеоценоз – это участок земной поверхности, на котором в тесном взаимодействии развиваются: однородная по составу и производительности растительность, однородный комплекс животных и микроорганизмов, однородная по физико-химическому составу почва; поддерживается однородная газовая и климатическая ситуация, устанавливается одинаковый материально-энергетический обмен между всеми составляющими биогеоценоза" (В.Н. Сукачев).

3. Компонентный состав биогеоценоза

Составные части биогеоценоза – материальные тела (компоненты биогеоценоза). Их делят на 2 группы:

1.Живые (биотические, биоценоз)

2.Косные (абиотическое вещество, сырье) – экотоп, биотоп.

К ним относят углекислый газ, воду, кислород и др.

Биотические компоненты биогеоценоза:

1.Продуценты

2.Консументы

3.Редуценты (детритоядные, деструкторы органических веществ).

Продуценты – организмы, продуцирующие (синтезирующие) органические вещества из неорганических (зеленые растения).

Консументы – организмы, потребляющие готовые органические вещества. Первичные консументы – травоядные. Вторичные консументы – плотоядные.

Редуценты – организмы, разлагающие органические вещества до конечных продуктов распада (бактерии гниения и брожения).

В биогеоценозе устанавливается экологический гомеостаз – динамическое равновесие между всеми компонентами биогеоценоза.

Периодически происходит экологическая сукцессия - закономерная смена сообществ в биогеоценозе.

Существует несколько классификаций биогеоценозов.

I.1. Сухопутные,Пресноводные,2. Водные,Морские

II.По географической зоне:

1.Лесные,2.Болотные,3.Степные, 4.Луговые,5.Тундровые и т.д.

III.Лобачев в 1978 г. выделил биогеоценозы:

1)Природные 2)Сельские (агроценозы)

3)Урбаноценозы (городские, промышленные)

4.Границы между биогеоценозами.

Конфигурация и границы биогеоценоза определяются, по Сукачеву, границами, .свойственного ему фитоценоза, как автотрофной базы его, физиономически более отчетливо, чем другие компоненты, выражающие его в пространстве.

Горизонтальные границы между биогеоценозами, как и между растительными сообществами, по утверждению Ж. Леме (1976), бывают резкими, особенно в условиях вмешательства человека, но они могут быть и расплывчатыми, как бы размазанными в случае взаимопроникновения компонентов соседствующих биогеоценозов.

Б. А Быков (1970г) различает следующие типы границ между растительными сообществами и, следовательно, между биогеоценозами

а) резкие границы наблюдаются при резком различии в смежных ценозах экологических условий или при наличии доминантов, обладающих мощными средообразующими свойствами;

б) мозаичные границы в отличие от резких характеризуются включением в переходную полосу смежных ценозов их отдельных фрагментов, образующих своего рода комплексность;

в) каемчатые границы - когда в полосе контакта смежных ценозов развивается узкая кайма ценоза, отличающегося от обоих из них;

г) диффузные границы между смежными ценозами характеризуются постепенной пространственной сменой видового состава в зоне контакта при переходе одного в другой

Вертикальные границы биогеоценоза, как и горизонтальные, определяются по размещению живой растительной биомассы фитоценоза в пространстве – верхняя граница определяется максимальной высотой надземных органов растений - фототрофов - над поверхностью почвы, нижняя-максимальной глубиной проникновения корневой системы в почву.

При этом в древесно-кустарниковых биогеоценозах вертикальные границы, как пишет Т. А. Работнов (1974а), не изменяются в течение вегетационного периода, в травяных же биогеоценозах (луговых, степных и т. п.) они варьируют по сезонам, так как происходит то нарастание травостоя, то снижение его, то полное отчуждение на сенокосах и пастбищах,. лишь нижние границы их не подвергаются сезонным изменениям.

Список литературы

Воронов А.Г. Геоботаника. Учеб. Пособие для ун-тов и пед. ин-тов. Изд. 2-е. М.: Высш. шк., 1973. 384 с.

Основы лесной биогеоценологии / Под ред. В.Н. Сукачева и Н.В. Дылиса. М.: Наука, 1964. 574 с.

Степановских А.С. Общая экология: Учебник для вузов. М.: ЮНИТИ, 2001. 510 с.

Цветков В.Ф. Лесной биогеоценоз. Архангельск, 2003. 2-е изд. 267 с.

Вопросы

1. Понятие о биогеоценозе и биогеоценологии.

2. Компонентный состав биогеоценоза.

3. Сущность биогеоценоза.

4. Свойства биоценозов: саморегуляция и самовоспроизведение. Принцип Ле-Шателье.

5. Биогеоценоз и экосистема: различия между этими понятиями.

1. Понятие о биогеоценозе и биогеоценологии

Человеку в своей повседневности постоянно приходится иметь дело с конкретными участками окружающих его природных комплексов: участками поля, луга, болота, водоема. Любой участок земной поверхности, или природный комплекс, должен рассматриваться как определенное природное единство, где вся растительность, фауна и микроорганизмы, почва и атмосфера тесно взаимосвязаны и взаимодействуют друг с другом. С этим взаимосвязями необходимо считаться при всяком хозяйственном использовании природных ресурсов (растительных, животных, почвенных и др.).

Природные комплексы, в которых полностью сформировалась растительность, и которые могут существовать сами по себе, без вмешательства человека, а если человек или что-то другое, нарушит их, то они будут восстанавливаться, причем по определенным законам. Такие природные комплексы и есть биогеоценозы (рис. 1 и 2).

Самые сложные и важные природные биогеоценозы – лесные (рис. 3). Ни в одном природном комплексе, ни в одном типе растительности эти взаимосвязи не выражены так резко и так многогранно, как в лесу.

Лес представляет собой наиболее мощную «пленку жизни». Лесам принадлежит доминирую-щая роль в сложении растительного покрова Земли. Они покрывают почти третью часть суши планеты – 3,9 млрд. га. Если учесть, что пустыни, полупустыни и тундры занимают около 3,8 млрд. га, а более 1 млрд. га приходится на бросовые, застроенные и другие непродуктивные земли, то становится очевидным, насколько велико значение лесов в формировании природных комплексов и выполняемой им функции живого вещества на Земле. Масса органического вещества, сосредоточенного в лесах, составляет 1017–1018 т, что в 5–10 раз превышает массу всей травянистой растительности.

Именно поэтому особое значение придавалось и придается биогеоценологическим исследованиям лесных систем и термин «биогеоценоз» был предложен академиком В.Н. Сукачевым в конце 30-х гг. 20 в. применительно к лесным экосистемам. Но оно правомерно по отношению к любой природной экосистеме в любом географическом районе Земли.

Определение биогеоценоза по В.Н.Сукачеву (1964: 23) считается классическим – «... это совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, горной породы, растительности, животного мира и мира микроорганизмов, почвы и гидрологических условий), имеющая особую специфику взаимодействий этих слагающих ее компонентов и определенный тип обмена веществ и энергией: между собой и с другими явлениями природы и представляющая собой внутреннее противоречивое единство, находящееся в постоянном движении и развитии …".

В этом определении отражаются все сути биогеоценоза, черты и особенности, присущие только ему:

  • биогеоценоз должен быть однородным по всем параметрам: живого и неживого вещества: растительности, животному миру, почвенному населению, рельефу, почвообразующей породе, свойствам почвы, глубине и режимам грунтовых вод;
  • каждому биогеоценозу присуще наличие особого, только ему присущего типа обмена веществ и энергии,
  • всем компонентам биогеоценоза свойственно единство жизни и ее среды, т.е. особенности и закономерности жизнедеятельности биогеоценоза определяются средой его обитания, таким образом, биогеоценоз представляет собой географическое понятие.

Кроме того, каждый конкретный биогеоценоз должен:

Быть однородным по своей истории;

Быть достаточно долговременным сложившимся образованием;

Ясно отличаться по растительности от соседних биогеоценозов и эти отличия должны быть закономерными и экологически объяснимыми.

Примеры биогеоценозов:

  • - дубняк разнотравный на подножье делювиального склона южной экспозиции на горной буро-лесной среднесуглинистой почве;
  • - луг злаковый в лощине на суглинистых оторфованных почвах,
  • - луг разнотравный на высокой пойме реки на пойменной дерново-глееватой среднесуглинистой почве,
  • - лиственничник лишайниковый на Al-Fe-гумусово-подзолистых почвах,
  • - лес смешанный широколиственный с лиановой растительностью на северном склоне на бурых лесных почвах и др.

Более простое определение: "Биогеоценоз – это вся совокупность видов и вся совокупность компонентов неживой природы, определяющих существование данной экосистемы с учетом неизбежного антропогенного воздействия" . Последнее добавление с учетом неизбежного антропогенного воздействия – дань современности. Во времена В.Н. Сукачева не было необходимости относить антропогенный фактор к основным средообразующим, каковым он является сейчас.

Область знаний о биогеоценозах называется биогеоценологией. Чтобы управлять природными процессами, надо знать закономерности, которым они подчинены. Эти закономерности изучает ряд наук: метеорология, климатология, геология, почвоведение, гидрология, различные отделы ботаники и зоологии, микробиология и др. Биогеоценология же обобщает, синтезирует результаты перечисленных наук под определенным углом зрения, обращая основное внимание на взаимодействия компонентов биогеоценозов между собой и вскрывая общие закономерности, управляющие этими взаимодействиями.

Объектом изучения биогеоценологии является биогеоценоз .

Предмет изучения биогеоценологии – взаимодействия компонентов биогеоценозов между собой и общие законы, управляющие этими взаимодействиями.

2. Компонентный состав биогеоценозов

Так, растения образуют относительно постоянную структуру биоценоза благодаря своей неподвижности, в то время как животные не могут служить структурной основой сообщества. Микроорганизмы, хотя в большинстве и не прикреплены к субстрату, передвигаются с небольшой скоростью; вода и воздух переносят их пассивно на значительные расстояния.

Животные зависят от растений, поскольку не могут строить органическое вещество из неорганического. Некоторые микроорганизмы (как все зеленые, так и ряд не зеленых) в этом отношении автономны, так как способны к построению органического вещества из неорганического за счет энергии солнечных лучей или энергии, выделяемой при химических реакциях окисления.

Микроорганизмы (микробы, бактерии, простейшие) играют большую роль в разложении мертвых органических веществ до минеральных , т. е. в процессе, без которого нормальное существование биоценозов было бы невозможным. В структуре наземных биоценозов значительную роль могут играть почвенные микроорганизмы.

Различия (биоморофологические, экологические, функциональные и др.) в особенностях организмов, составляющих эти три группы, настолько велики, что и методы их исследования заметно различаются. Поэтому существование трех отраслей знания – фитоценологии, зооценологии и микробоценологии, изучающих соответственно фитоценозы, зооценозы и микробоценозы, вполне правомерно.

Экотоп – место жизни или среда обитания биоценоза, некое "географическое" пространство. Его образуют с одной стороны почва с характерной подпочвой, с лесной подстилкой, а также с тем или иным количеством перегноя (гумуса); с другой – атмосфера с определенной величиной солнечной радиации, с тем или иным количеством свободной влаги, с характерным содержанием в воздухе углекислоты, различных примесей, аэрозолей и т.п., в водных биогеоценозах вместо атмосферы – вода . Роль среды в эволюции и существовании организмов не вызывают сомнений. Составляющие ее отдельные части (воздух, вода и др.) и факторы (температура, солнечное излучение, высотные градиенты, и др.) называют абиотическими, или неживыми, компонентами , в отличие от биотических компонентов , представленных живым веществом. В.Н. Сукачев физические факторы не относил к компонентам, а другие авторы относят (рис. 5).

Биотоп - это экотоп (см. рис. 5), преобразованный биоценозом для «себя». Биоценоз и биотоп функционируют в непрерывном единстве. Размеры биоценоза всегда совпадают с границами биотопа, следовательно, с границами биогеоценоза в целом.

Из всех компонентов биотопа ближе всего к биогенной составляющей части биогеоценоза стоит почва , поскольку ее происхождение напрямую связано с живым веществом. Органическое вещество в почве является продуктом жизнедеятельности биоценоза на разных стадиях трансформации.

Сообщество организмов ограничено биотопом (в случае с устрицами – границами отмели) с самого начала существования.

3. Сущность биогеоценоза

Сущность функционирования биогеоценоза можно представить в виде сложной системы множества синхронных биопотоков, направленных в биогеоценоз извне и исходящих из него (рис. 6). Предлагается различать две стороны этой сущности (Бяллович, 1969).

Одна сторона – статичность, или неподвижность, отражаемая в пространственной структуре. Ее элементы представлены в виде условных структурных единиц стационалей . Стационали обозначают все покоящееся, т.е. статическое, недвигающееся относительно территории и границ самого биогеоценоза или границ его частей: ярусов и парцелл. Эти элементы образованы растениями (ярусы и биогеогоризонты: 1S, 2S, 3S, полога, микрогруппировки, парцеллы: IS, IIS, IIIS ). В натуре эта сторона дает некие физические, габитуальные (статичные в момент измерения) параметры биогеоценоза и его структурных элементов. Например, для лесного сообщества это средние диаметр и высота, запас, полнота древостоя, и др.

Вторая сторона сущности отражает мобильность и многофункциональность биогеоценоза. Её можно представить сочетанием радиалей (R) и латералей (L). За этими понятиями скрывается мобильная составляющая биогеоценоза, т.е. биопотоки.

Радиали означают все движущееся в радиальном направлении – из одного яруса (биогеогоризонта) в другой, т.е. по вертикали.

Латерали символизируют все движущееся в пределах яруса (биогоризонта) в боковых направлениях – из одной парцеллы в другую, т.е. по горизонтали. Параметры радиалей и латералей измеряются в единицах, отражающих те или иные процессы.

Стационали создают биогеоценозу дискретность (прерывистость), а радиали и латерали – плавность, сглаженность), т.е. образуют своеобразный континуум круговорота вещества и энергии в пределах ярусов и парцелл ценоза.

Пример «потоков». В экосистемах с доминированием сосудистых растений, (лесные биогеоценозы, луга), наибольшее количество питательных веществ участвует во внутренних циклах, представляющих потоки от почвенных запасов элементов в растения и обратно – из растений в почву.

Внутрисистемный приход включает как жидкие, так и сухие выпадения из атмосферы, а также выветривание из подстилающей горной породы.

Внутрисистемный выход происходит с гидрологическим движением ионов и частиц вещества через почву. При этом имеет место частичная потеря, которая особенно важна для циклов круговорота некоторых химических элементов (S,N).

Характер и мощность внутрисистемных, или внутрибио-геоценотических, потоков определяют общий (интегральный) продукционный потенциал и пространственную структуру биогеоценоза. Этот потенциал обусловлен как собственными особенностями биогеоценоза, так и масштабами и интенсивностью его внешних связей – с соседними (смежными) биогеоценозами и экосистемами других, более высоких рангов.

В природе не бывает совершенно одинаковых биогеоценозов, даже если таковые имеют очень близкий состав компонентов, потому что в разных условиях среды одинаковые компоненты ценозов могут отличаться особенностями выполняемых функций, своими особыми продукционными показателями. Это общий закон мироздания.

4. Свойства биоценозов: саморегуляция и самовоспроизведимость. Принцип Ле-Шателье

Главными свойствами биоценозов, отличающих их от неживых компонентов, является способность продуцировать живое вещество , обладать саморегуляцией и самовоспроизводимостью . В биоценозе отдельные виды, популяции и группы видов могут заменяться соответственно другими без особого ущерба для содружества, а сама система существует за счет уравновешивания сил антагонизма (конкуренции) между видами. Для приобретения этих свойств биосистеме требуется время.

Очень важным свойством биоценозов, как всяких биологических материальных систем , является саморегуляция – способность выдерживать высокие отрицательные нагрузки, способность возвращаться в близкое к исходному состояние после существенных нарушений компонентов, структуры, взаимосвязей. Саморегуляция отражает принцип Ле-Шателье.

Согласно принципу Ле-Шателье, биогеоценоз способен поддерживать свое состояние при резких, неблагоприятных для него, воздействиях внешних факторов или возмущениях. При этом он изменяется таким образом, что снижает эффект возмущения и, таким образом, сохраняет свой status quo.

Пример. Восстановление прежнего типа сообщества после пожара, рубки леса, ветровала, вытаптывания и др. Отмечается высокая активность роста и высокая скорость обменных процессов растений, произрастающих в экстремальных условиях.

Поскольку компоненты ценоза находятся друг с другом в постоянном взаимодействии – связаны друг с другом потоками вещества и энергии, то, говоря о равновесии биогеоценоза, следует иметь в виду не статическое, а динамическое равновесие , в первую очередь равновесие потоков вещества и энергии. Если экосистему вывести из состояния динамического равновесия, то она стремится вернуться к нему, используя при этом часть своей внутренней энергии и упорядоченности (упорядоченность – структурная негэнтропия). Если резерва внутренней энергии и негэнтропии хватает, то система возвращается в состояние близкое к исходному. Если ресурсов вещества и энергии недостаточно, то система (биогеоценоз) либо безвозвратно разрушается, либо переходит в новое состояние динамического равновесия, но на значительно более низком энергетическом уровне. При этом говорят, что экосистема деградировала.

ПРИМЕРОМ деградации является распашка и уничтожение естественной растительности на значительных пространствах в зоне сухой степи. Это воздействие резко снижает запасы влаги в почве, способствует ветровой эрозии почв и экосистема переходит в новое состояние с очень низкой биологической продуктивностью. Степные экосистемы сменяются при этом экосистемами пустынь. Некоторые ученые экологи считают, что именно так на месте саванны в Северной Африке примерно 10 тыс. лет назад образовалась пустыня Сахара.

Один из самых характерных примеров невосстановимого разрушения биогеоценозов – горные полигоны, на которых добыча полезных ископаемых ведется открытым способом. Лесные пойменные биогеоценозы, самые продуктивные и разнообразные по видовому составу, превращаются в лунные ландшафты. Уничтожение теплоизоляционного слоя – растительного покрова – на почвах с многолетней мерзлотой тоже приводит к нарушению динамического равновесия и явлению термокарста.

Для всякого биогеоценоза существуют пределы толерантности (устойчивости). Одни более толерантны, или устойчивы, к воздействию внешних возмущающих факторов, другие менее. Но пока мало известно о пределах толерантности естественных экосистем, и среди ученых имеются разногласия. Например, одни говорят, что экосистемы тундры очень неустойчивы и легко уязвимы. Другие, напротив, считают, что самые неустойчивые – экосистемы влажных тропических лесов, а экосистемы тундры не менее устойчивы, чем экосистемы тайги и степи. Толерантность разных экологических систем должна быть изучена как можно скорее, иначе под мощным антропогенным воздействием окажутся как раз наиболее уязвимые экосистемы.

Проблема эта очень сложна тем, что разные экосистемы оказываются в разной степени устойчивыми по отношению к разрушающим факторам.

НАПРИМЕР, колея от трактора на склоне в зоне тайги через 50 лет зарастет и исчезнет, а вот такая же колея в зоне тундры через 50 лет превратится в овраг глубиной до 20-30 м и шириной до 10-20 м.

5. Биогеоценоз и экосистема: различия между этими понятиями

Несколько раньше, чем Сукачев разработал представление о биогеоценозе, в 1935 г., английским ботаником А. Тенсли был введен термин «экосистема».

Экосистема, по А. Тенсли, – «совокупность комплексов организмов с комплексом физических факторов его окружения, т. е. факторов местообитания в широком смысле». Для экосистем характерен разного рода обмен не только между организмами, но и между организмами и средой их обитания, иначе называемый круговоротом веществ. Эти же качества присущи и биогеоценозу.

Наиболее заметные изменения в состоянии биосферы, нарушения экологического равновесия происходят на уровне биогеоценоза. Поэтому большинство ученых в частности Ю. Одум (1975, 1986) и не считают отличия между понятиями "биогеоценоз" и "экосистема" существенными, ставят знак равенства между приведенными понятиями, подразумевая под экосистемой биоценоз, образующий вкупе с биотопом (экотопом) биогеоценоз. Это оправданно еще и тем, что термин «экосистема» широко применяется в смежных науках, особенно природоохранного содержания.

Однако ряд российских ученых не разделяют этого мнения, видя определенные отличия биогеоценоза от экосистемы.

Выделяют по размерам следующие типы экосистем:

  • микроэкосистемы (подушка лишайника и т. п.);
  • мезоэкосистемы (пруд, озеро, степь и др.);
  • макроэкосистемы (континент, океан) и, наконец,
  • глобальная экосистема, или экосфера – совокупность всех экосистем мира (биосфера Земли).

Биогеоценозу из перечисленного соответствует среднее положение между микро- и мезоэкосистемой. Он представляет элементарную единицу биосферы; это наименьшая единица, в которой осуществляются в биосфере вещественно-энергетический круговорот. Ни одна из частей биогеоценоза не в состоянии полностью осуществить этот круговорот.

Различия между экосистемой и биогеоценозом можно свести к следующим положениям:

1) биогеоценоз - понятие территориальное , относится к конкретным участкам суши и имеет определенные границы, совпадающие с границами фитоценоза. Характерная особенность биогеоценоза, на которую указывают Н.В. Тимофеев-Ресовский, А.Н. Тюрюканов (1966) – через территорию биогеоценоза не проходит ни одна существенная биоценотическая, почвенно-геохимическая, геоморфологическая и микроклиматическая граница .

- понятие экосистемы шире, чем понятие биогеоценоза ; оно применимо к биологическим системам разной сложности и размеров; экосистемы часто не имеют определенного объема и строгих границ;

2) в биогеоценозе органическое вещество всегда продуцируют растения, поэтому основной компонент биогеоценоза – фитоценоз ;

В экосистемах органическое вещество не всегда создается живыми организмами, нередко поступает извне.

(приносится течением – озеро, море; вносится человеком – сельскохозяйственные угодья, переносится ветром или осадками – растительные остатки на эродированных склонах гор).

3) биогеоценоз потенциально бессмертен ;

Существование экосистемы может закончиться с прекращением прихода в нее вещества или энергии.

4) экосистема может быть и наземным и водным образованием;

Биогеоценоз всегда наземная или мелководная экосистема.

5) – в биогеоценозе всегда должен быть единый эдификатор (эдификаторная группировка или синузия), определяющий всю жизнь и строй системы.

В экосистеме их может быть несколько.

На ранних стадиях развития экосистема склона – это будущий лесной ценоз. Она состоит из группировок организмов с разными эдификаторами и довольно неоднородными условиями среды. Лишь в будущем на одну и ту же группировку могут оказывать влияние не только её эдификатор, но и эдификатор ценоза. И второй будет основным.

Таким образом, не каждая экосистема является биогеоценозом, но каждый биогеоценоз – экосистема , полностью соответствующая определению Тенсли.

Иллюстрации биогеоценозов Приморья

Лесные биогеоценозы

Луговые биогеоценозы

Биоценоз (или сообщество ) — исторически сложившаяся устойчивая совокупность популяций организмов разных видов, населяющих сравнительно однородный участок территории или акватории и связанных определенными взаимоотношениями. (К. Мебиус, 1877 г.).

Примеры биоценозов: сообщества на стволе дерева, в норе, на участке леса, луга, озера, болота, пруда и т.д.

Различные популяции биоценоза должны быть приспособлены к совместной жизни. Это означает, что:

■ у всех видов биоценоза должны быть сходные требования к абиотическим условиям среды (свету, температуре, влажности и т.д.);

■ должны существовать закономерные трофические (пищевые), топические, форические и фабрические взаимосвязи между организмами разных популяций, необходимые для осуществления их питания, размножения, расселения и защиты.

❖ Составные части биоценоза:

фитоценоз (устойчивое сообщество растений); имеет легко распознаваемые характерные черты и границы, является главным структурным компонентом любого биоценоза, определяет видовой состав зоо-, мико- и микробоценозов;
зооценоз (совокупность взаимосвязанных видов животных);
микоценоз (сообщество грибов);
микробоценоз (сообщество микроорганизмов).

Экотоп — это первичный комплекс абиотических факторов среды и некоторых компонентов живого происхождения (почва, грунт), имевшихся на участке земной поверхности (суши или водоема), занимаемом тем или иным биоценозом, без учета изменений, привнесенных живыми существами данного биоценоза.

■ Все факторы экотопа можно разделить на климатоп , эдафотоп и гидротоп .
Климатоп - совокупность климатических факторов экотопа.
Эдафотоп — совокупность почвенно-грунтовых факторов.
Гидротоп — совокупность гидрофакторов (наличие и характеристики водоема, содержащейся в нем воды и т.п.).

Биотоп — это участок среды (суши или водоема), имеющий относительно однородные условия обитания и занимаемый одним биоценозом. При этом условия среды рассматриваются с учетом всех видоизменений, которые были привнесены в них организмами данного биоценоза.

Биогеоценоз и экосистема

Биогеоценоз (кратко — БГЦ ) — это лежащий в границах определенного фитоценоза и связанный взаимным обменом веществ и энергии единый природный комплекс, образованный участком земной поверхности (суши) с определенными условиями среды обитания (биотопом) и популяциями всех видов организмов, населяющих этот биотоп (биоценозом), см. рис.

Примеры биогеоценозов: ельник, дубрава, сфагновое болото, суходольный луг и др.

Биогеоценоз функционирует как целостная самовоспроизво-дящаяся, саморегулирующаяся открытая система. Популяции организмов получают из неорганической среды ресурсы, необходимые для поддержания жизни, и одновременно выделяют продукты жизнедеятельности, восстанавливающие среду.

Экологическая система (или экосистема ) — любая совокупность совместно обитающих организмов и неорганических компонентов, при взаимодействии которых происходит круговорот веществ и поток энергии .

Примеры экосистем; гниющий пень, муравейник, лужа с дождевой водой, парк, аквариум, биосфера и др.

Отличие экосистемы от биогеоценоза . Понятие экосистемы не требует каких-то ограничений на занимаемую ею территорию или акваторию и может применяться к любым комплексам организмов и их среды обитания (включая водную), не только к естественным (природным), но и к созданным человеком. Биогеоценоз — это природная, выделяемая на суше экосистема, границы которой определены фитоценозом, т.е. растительным сообществом. Поэтому экосистема — понятие более широкое, чем биогеоценоз: любой биогеоценоз является экосистемой, но не всякая экосистема является биогеоценозом .

❖ Компоненты биогеоценоза:
■ неорганические вещества, включающиеся в круговорот (соединения углерода и азота, кислород, вода, минеральные соли);
■ климатические факторы (температура, освещенность, влажность);
■ органические вещества (белки, нуклеиновые кислоты, углеводы, липиды и др.);
■ организмы различных функциональных групп — продуценты, консументы, редуценты.

Продуценты — автотрофные организмы (в основном зеленые растения и водоросли), синтезирующие органические вещества из неорганических. Продуценты используют энергию Солнца, преобразуя ее в химическую энергию органических веществ, доступную всем остальным организмам.

Редуценты — гетеротрофные организмы (бактерии, грибы), которые в процессе своего питания разрушают органическое вещество отмерших растений и животных и экскременты животных, превращая их в простые неорганические соединения, пригодные для усвоения растениями.

Характеристики биогеоценоза (экосистемы): биомасса, продуктивность, видовое разнообразие, плотность популяций каждого вида, соотношение видов по численности и плотности популяций, пространственная и трофическая (пищевая) структуры и т.д.

Биомасса — суммарная масса всех организмов экосистемы или отдельных ее трофических уровней.

■ Биомасса выражается обычно в единицах массы вещества на единицу площади или объема экосистемы (кг/га, кг/м 3 и др.).

■ Биомасса всех организмов Земли составляет 2,4 10 12 т сухого вещества, 90% от этого количества составляет биомасса наземных растений.

Продуктивность — прирост биомассы, созданный организмами экосистемы за единицу времени на единице площади или объема.

■ Продуктивность выражается в единицах массы вещества на единицу площади или объема за определенный отрезок времени (кг/м 2 в год и др.).

Первичная продуктивность экосистемы — количество биомассы, продуцированной за единицу времени всеми растениями этой экосистемы в результате фотосинтеза.

Вторичная продуктивность экосистемы — количество биомассы, продуцированной всеми консументами этой экосистемы за единицу времени.

■ Общая годовая продукция сухого органического вещества на Земле 150-200 млрд, т (из них 2/3 дают наземные экосистемы, 1/3 — водные экосистемы).

■ Наиболее продуктивные экосистемы: тропический дождевой лес (около 2 кг/м 2 в год) и приполярные области Мирового океана (около 0,25 кг/м 2 в год).

Видовая структура биогеоценоза (экосистемы)

Видовая структура БГЦ или экосистемы — разнообразие видов всех входящих в БГЦ (или экосистему) популяций и соотношение этих видов по численности (или биомассе) и плотности популяций.

■ В каждой экосистеме происходит естественный отбор организмов, наиболее приспособленных к данным экологическим условиям.

■ Различают экосистемы, богатые видами (коралловые рифы, дождевые тропические леса и др.), и бедные ими (арктическая тундра, пустыни, болота и др.).

Виды-доминанты — виды, преобладающие по численности особей или занимающие большую площадь в данной экосистеме.

Виды-эдификаторы — виды-доминанты (чаще растения, иногда животные), играющие главную роль в определении состава, структуры и свойств экосистемы путем создания среды для всего сообщества (в ельнике — ель, в березняке — береза и т. д.).

Например , в еловом лесу освещенность значительно меньше, а температура воздуха ниже, чем в лиственном; дождевые воды, стекающие с крон елей, имеют кислую реакцию, а под деревьями формируется мощная подстилка из очень медленно разлагающейся хвои с низким содержанием гумуса. В результате ель в процессе своей жизнедеятельности настолько изменяет условия среды, что данный биотоп становится непригодным для существования многих видов организмов и заселяется только видами, хорошо приспособленными к жизни в таких условиях.

Роль редких и малочисленных видов: они увеличивают разнообразие связей в сообществе и служат резервом для замещения видов-доминантов.

■Чем специфичней условия среды, тем беднее видовой состав и выше численность отдельных видов. И наоборот, в богатых сообществах все виды малочисленны.

■ Чем выше видовое разнообразие, тем устойчивее сообщество.

Пространственная и экологическая структуры биогеоценоза

Пространственная структура — распределение организмов (в основном растений) по достаточно четко ограниченным в пространстве (по вертикали и/или по горизонтали) элементам структуры — ярусам и микрогруппировкам .

Ярусы характеризуют вертикальное расчленение фитоценозов. Их образуют надземные вегетативные органы растений и их корневые системы.

■ Основной фактор, определяющий вертикальное распределение растений, — количество света, обусловливающее температурный и влажностный режимы на разных уровнях над поверхностью почвы в биогеоценозе. Верхние ярусы образуются светолюбивыми и лучше приспособленными к колебаниям температуры и влажности воздуха растениями; в нижних ярусах обитают растения, менее требовательные к свету.

■ Ярусы хорошо выражены в лесу (древесный, кустарниковый, травянистый, моховой и т.д.). Животные также распределены по ярусам (обитатели кустарников, мохового покрова, почвы и т. д.).

■ Подземная ярусность фитоценозов выражена слабо или отсутствует. Как правило, общая масса подземных органов закономерно снижается сверху вниз.

Мозаичность — расчлененность (неоднородность) биогеоценоза по горизонтали, выражающаяся в наличии в нем различных микрогруппировок, которые различаются видовым составом, количественным соотношением разных видов, продуктивностью и другими признаками и свойствами.

Мозаичность обусловлена:
■ неоднородностью микрорельефа;
■ особенностями биологии размножения и формы растений;
■ деятельностью растений, животных и человека (образованием муравейников, вытаптыванием травостоя, выборочной вырубкой деревьев и др.).

Экологическая структура БГЦ — это соотношение различных экологических групп организмов, составляющих данный биогеоценоз.

■ Разнообразие и обилие представителей той или иной экологической группы зависят от условий среды (в пустынях преобладают приспособленные к жизни в условиях недостатка воды растения ксерофиты и животные ксерофилы; в водных сообществах — растения гидрофиты и животные гидрофилы и т.д.) и складываются в течение длительного времени в определенных климатических, почвенно-грунтовых и ландшафтных условиях строго закономерно.

■ Это разнообразие обеспечивает высокую плотность организмов в расчете на единицу территории, их максимальную биологическую продуктивность и оптимальные конкурентные отношения.

Сообщества со сходной экологической структурой могут иметь разный видовой состав, так как одни и те же экологические ниши могут занимать разные виды (пример: одну и ту же экологическую нишу в европейской тайге занимает куница, в сибирской — соболь).

Трофическая структура экосистемы. Круговорот веществ и поток энергии в экосистемах

Все организмы в любой экосистеме объединяет общность питательных веществ и энергии, необходимых для поддержания жизни. Необходимое условие существования экосистемы — постоянный приток энергии извне. Основным способом движения веществ и энергии в экосистеме является питание.

Трофический уровень — совокупность организмов, объединенных типом питания.

Различают следующие трофические уровни:

первый уровень образуют автотрофные организмы (продуценты ), создающие органические вещества из неорганических за счет солнечной энергии;

второй трофический уровень образуют травоядные животные (консументы 1-го порядка: гусеницы бабочек, мыши, полевки, зайцы, козы и т. п.), потребляющие органические вещества, созданные растениями-продуцентами;

третий трофический уровень составляют плотоядные животные (консументы 2-го порядка: хищные насекомые, насекомоядные птицы и т.п.), поедающие мелких травоядных животных;

четвертый трофический уровень образуют плотоядные животные (консументы 3-го порядка : хищные птицы и звери), потребляющие консументов 2-го порядка, и т.д.

Плотоядные животные могут переходить с третьего на четвертый уровень и обратно, а также на более высокие трофические уровни.

Трофическая (пищевая) цепь (или цепь питания ) — ряд организмов, связанных друг с другом пищевыми взаимоотношениями (путем поедания одних видов другими) и составляющих определенную последовательность, по которой осуществляется круговорот веществ и поток энергии в экосистеме путем их передачи с одного трофического уровня на другой.

■ Отдельными звеньями трофической цепи являются организмы, принадлежащие к разным трофическим уровням.

Трофическая сеть экосистемы сложное соединение всех характерных для данной экосистемы цепей питания, в которых звенья одной цепи являются составными частями других цепей.

■ Трофическая сеть отражает трофическую структуру экосистемы.

❖ Типы трофических цепей:

пастбищные цепи (цепи выедания или потребления ) начинаются с фотосинтезирующих организмов-продуцентов: на суше : растения → насекомые → насекомоядные птицы → хищные птицы; или растения → растительноядные млекопитающие → хищные млекопитающие; в море : водоросли и фитопланктон → низшие ракообразные (зоопланктон) → рыбы → млекопитающие (и частично птицы). Пастбищные цепи преобладают в морях на относительно небольших глубинах.

детритные цепи (цепи разложения ) начинаются с отмерших мелких остатков растений, трупов и экскрементов животных (детрита ): детрит → питающиеся им микроорганизмы-редуценты (бактерии, грибы) → мелкие животные (детритофаги: дождевые черви, мокрицы, клещи, ногохвостки, нематоды) → хищники (птицы, млекопитающие). Такие цепи наиболее распространены в лесах, где более 90% ежегодного прироста биомассы растений отмирает, подвергаясь разложению сапро-трофными организмами и минерализации.

Основные характеристики пищевой цепи внутри биогеоценоза: длина цепи, количество, размер и биомасса организмов на каждом трофическом уровне.

■ Цепь питания обычно состоит из 3-5 звеньев (трофических уровней) вследствие больших потерь энергии на построение новых тканей и дыхание организмов.

Продуктивность организмов каждого последующего трофического уровня пищевой цепи всегда меньше (в среднем в Ю раз) продукции предыдущего, поскольку:

■ консументами ассимилируется лишь часть пищи (остальное выделяется в виде экскрементов);

■ большая часть питательных веществ, всасываемых кишечником, расходуется на дыхание и другие процессы жизнедеятельности.

Экологическая пирамида графическое изображение соотношения между численностями особей, биомассами или энергиями организмов, составляющих трофические уровни в экосистеме, выраженное в числе особей.

■ При этом отдельные звенья пищевой цепи изображают в виде прямоугольников, площадь которых соответствует численным значениям звеньев.

Типы экологических пирамид:

■ пирамида чисел графически отображает соотношение численностей особей разных трофических уровней экосистемы;

■ пирамида биомасс графически показывает количество биомассы (массы живого вещества) на каждом трофическом уровне;

■ пирамида энергии графически отображает величины потоков энергии, передаваемой с одного трофического уровня на другой.

❖ Свойства экологических пирамид:

■ высота пирамид определяется длиной пищевой цепи;

■ биомасса и численность особей каждого последующего звена в цепи питания прогрессивно уменьшается — правило экологической пирамиды; оно действует в большинстве (но не во всех) наземных экосистем; в таких экосистемах основания пирамид чисел и биомасс больше последующих уровней;

■ в водных экосистемах основания пирамид чисел и биомасс могут быть меньше, чем размеры последующих уровней (пирамиды перевернуты), что объясняется небольшими размерами организмов-продуцентов (одноклеточных водорослей -фитопланктона);

■ пирамида энергии в наземных и водных экосистемах всегда суживается кверху, так как энергия, затраченная на дыхание, не передается на следующий трофический уровень и уходит из экосистемы.

Самовоспроизводство. саморегуляция и устойчивость экосистем

Любая экосистема является сложной динамической системой, состоящей из многих сотен, иногда тысяч видов организмов, объединенных трофическими, топическими и другими связями.

Самовоспроизводство — способность экосистем воссоздавать поток энергии и обеспечивать круговорот основных веществ и элементов между живыми и неживыми компонентами.

■ Живые организмы извлекают из среды ресурсы и поставляют в нее продукты жизнедеятельности (растения используют световую энергию, СО 2 , Н 2 О, пополняют атмосферу О 2 ; животные поглощают из атмосферы О 2 , выделяют в нее СО 2 и т.д.).

Саморегуляция — способность населения экосистемы восстанавливать свой видовой и количественный состав после какого-либо отклонения, а также способность его различных видов существовать совместно, не уничтожая полностью друг друга, а лишь ограничивая численность особей каждого вида определенным уровнем.

■ Регулирующие факторы формируются в самой экосистеме: хищники регулируют численность своих жертв, деятельность травоядных животных влияет на растения и т.д.

Экосистемный гомеостаз — свойство относительного постоянства видового состава и численности особей различных видов в экосистеме, а также относительной стабильности и целостности генетической структуры экосистемы.

■ Указанное постоянство соблюдается лишь в среднем и отражает динамическое равновесие противоположно действующих факторов.

Устойчивость — способность экосистемы выдерживать изменения, вызванные внешними (природными или антропогенными) воздействиями, и восстанавливать связи и динамическое равновесие между основными ее компонентами, нарушенные внешним воздействием.

■ Устойчивость каждой экосистемы имеет свои пределы: если интенсивность или время действия внешнего воздействия превысит некоторый порог, экосистема может погибнуть.

♦ Факторы, обеспечивающие устойчивость и длительность существования экосистемы:
■ постоянный приток солнечной энергии;
■ общий круговорот веществ, осуществляемый продуцентами, консументами и редуцентами;
■ саморегуляция экосистемы;
■ биологическое разнообразие и сложность трофических связей организмов, входящих в ее состав;
■ возможность переключения организмов на питание другим видом взамен вида, ставшего редким (так как почти все виды животных могут использовать несколько источников пищи); при этом малочисленный вид, освобожденный от пресса выедания, постепенно будет восстанавливать свою численность;
■ высокий потенциал размножения основных групп организмов экосистемы (экосистема устойчива, если уменьшение осадков на 50% приводит к уменьшению массы продуцентов на 25%, травоядных консументов на 12,5%, хищных консументов на 6,2% и т.д.);
■ генетическое разнообразие особей популяций; чем оно выше, тем больший шанс у популяции иметь организмы с аллелями, ответственными за появление признаков и свойств, позволяющих выжить и размножаться в изменившихся условиях существования и восстановить прежнюю численность;
■ невысокая степень колебаний условий внешней среды. Например, высоко устойчивы тропические экосистемы, поскольку для тропиков характерны относительное постоянство температуры, влажности, освещенности. Наоборот, для тундры характерны резкие перепады температуры, влажности, освещенности, поэтому тундровые экосистемы менее устойчивы, и им свойственны резкие колебания численности популяций разных видов.

Основанные на знании законов динамики экосистем расчеты их продуктивности и потоков энергии позволяют регулировать численность популяций и круговорот веществ в экосистемах так, чтобы добиться наибольшего выхода необходимой для человека продукции.

Непродуманное вмешательство человека в экосистемы может нарушить природные цепи питания и привести к неконтролируемому росту или снижению численности особей определенных популяций и к нарушению природных экосистем.

Саморазвитие и сукцессия экосистем

Абсолютно устойчивое состояние экосистемы никогда не достигается по причине:
■ непостоянства условий внешней среды;
■ изменений, происходящих в самой экосистеме вследствие жизнедеятельности ее организмов.

Саморазвитие экосистемы — ее способность к циклическим и поступательным изменениям, вызванным различными причинами.
■ Циклические изменения обычно связаны с суточными и сезонными изменениями внешних условий и биологическими ритмами организмов.
■ Поступательные изменения вызываются постоянно действующими внешними или внутренними факторами и приводят к смене одного биогеоценоза другим (сукцессии).

Сукцессия — закономерная, последовательная, необратимая и направленная смена (на определенной территории) одного биогеоценоза другим.

Смена одного фитоценоза в экосистеме другим составляет сукцессионный ряд . При отсутствии нарушений сукцессия завершается образованием более устойчивого сообщества, находящегося в относительном равновесии с абиотической средой (ельник, дубрава, ковыльные степи, торфяное болото и др.).

❖ Причины сукцессий:

внешние : постоянно действующие внешние факторы: изменение на данной территории климата и почвенно-грунтовых условий (заболачивание, засоление), в том числе в результате хозяйственной деятельности человека (вырубки лесов, орошения земель в засушливых районах, осушения болот, внесения удобрений на луга, распашки, усиленного выпаса скота и т.д.);

внутренние: изменения, возникающие в биотопе вследствие жизнедеятельности организмов при длительном существовании популяций на одном месте, из-за чего биотоп становится малопригодным для одних видов, но пригодным для других. В результате на этом месте развивается другой, более приспособленный к новым условиям биоценоз.

Изменение условий среды обитания (биотопа) неизбежно приводит к изменению (смене) биоценоза. В результате на месте прежнего биогеоценоза (экосистемы) возникает новый. Ведущая роль в процессе смены биогеоценозов принадлежит растениям, хотя биогеоценозы изменяются как единое целое. Одновременно с изменением растительности изменяется и животный мир.

❖ Классификация сукцессий в зависимости от состояния и свойств среды:

первичные , начинающиеся на участках, лишенных почвы и растительности (на голых скалах, песчаных дюнах, образовавшихся водоемах, наносах рек, застывших лавовых потоках и т.п.; они длятся сотни и тысячи лет. Важнейшей стадией таких сукцессий является образование почвы путем накопления отмерших растительных остатков или продуктов их разложения;

вторичные , происходящие на месте сформировавшихся сообществ после их нарушения в результате эрозии, пожара, вырубки, засухи, вулканического извержения и т.п. Поскольку в таких местах обычно сохраняются богатые жизненные ресурсы, эти сукцессии протекают быстро (в течение десятков лет).

Агроиеноз

Агроценоз (или агробиоценоз ) — искусственно созданная человеком экосистема, структуру и функции которой он поддерживает и контролирует в своих интересах. Это сообщество организмов, обитающих на землях сельскохозяйственного пользования, занятых посевами или посадками культурных растений.

Примеры; поля, огороды, сады, парки, лесопосадки, пастбища, оранжереи, аквариумы, водоемы для разведения рыбы и т.п.

Роль человека в агроценозе: он создает агроценоз, обеспечивает его высокую продуктивность с помощью комплекса специальных агротехнических приемов, собирает и использует урожай.

❖ Роль агроценозов:

■ в настоящее время они занимают 10% всей поверхности суши (около 1,2 млрд, га) и ежегодно дают 2,5 млрд, т сельскохозяйственной продукции (около 90% всей пищевой энергии, необходимой человечеству);

■ они обладают огромными потенциалом для увеличения продуктивности, реализация которого возможна при постоянном, научно обоснованном уходе за почвой, обеспечении растений влагой и элементами минерального питания, охране растений от неблагоприятных абиотических и биотических факторов.

В состав агроценоза входят культурные растения, сорняки, насекомые, дождевые черви, мышевидные грызуны, птицы, бактерии, грибы и другие организмы, связанные между собой трофическими взаимоотношениями.

Пищевые цепи в агроценозе те же, что и в природной экосистеме: продуценты (культурные растения и сорняки), консументы (насекомые, птицы, полевки, лисы) и редуценты (бактерии, грибы); обязательное звено пищевой цепи — человек.

❖ Отличия агроценозов от естественных биогеоценозов:

■ в агроценозах действует преимущественно не естественный, а искусственный отбор , который направлен человеком главным образом на максимальное повышение урожайности сельскохозяйственных культур. Это резко снижает экологическую устойчивость агроценозов, которые не способны к саморегуляции и самообновлению, не могут существовать самостоятельно (без поддержки человека) в течение более-менее длительного времени (превращаются в биогеоценоз) и могут погибнуть при массовом размножении вредителей или возбудителей болезней;

■ в агроценозах отсутствует полный круговорот веществ и резко нарушен баланс питательных элементов (их основная часть изымается человеком при сборе урожая); для возмещения потерь необходимо постоянное внесение в почву различных питательных веществ в виде удобрений;

■ агроценозы, помимо солнечной энергии, имеют дополнительный источник энергии в виде энергии вносимых человеком минеральных и органических удобрений, химических средств защиты от сорняков, вредителей и болезней, энергии, затраченной на обработку почвы, орошение или осушение земель и т.д.;

смена агроценозов происходит по воле человека (в полевых агроценозах — севооборот );

продуктивность агроценозов выше , чем биогеоценозов.

♦ Методы повышения продуктивности агроценозов:
■ осушение и орошение почв;
■ борьба с эрозией (укрепление склонов, безотвальная вспашка, залуживание бывших торфяников);
■ нормированное внесение удобрений;
■ дозированное применение средств борьбы с сорняками, вредителями и болезнями растений;
■ применение биологических способов борьбы с вредителями;
■ использование высокопроизводительной техники;
■ выведение и использование новых высокоурожайных сортов культурных растений, устойчивых к болезням и вредителям;
■ соблюдение научно обоснованных севооборотов;
■ использование теплиц и парников;
■ применение методов выращивания овощей без грунта — гидропоники (в качестве субстрата используется гравий, орошаемый растворами солей) и аэропоники (субстрат отсутствует, а корни периодически опрыскиваются растворами минеральных солей).