Обозначает пи. Вычисление N-го знака числа Пи без вычисления предыдущих

), а общепринятым оно стало после работ Эйлера . Это обозначение происходит от начальной буквы греческих слов περιφέρεια - окружность, периферия и περίμετρος - периметр.

Оценки

  • 510 знаков после запятой: π ≈ 3,141 592 653 589 793 238 462 643 383 279 502 884 197 169 399 375 105 820 974 944 592 307 816 406 286 208 998 628 034 825 342 117 067 982 148 086 513 282 306 647 093 844 609 550 582 231 725 359 408 128 481 117 450 284 102 701 938 521 105 559 644 622 948 954 930 381 964 428 810 975 665 933 446 128 475 648 233 786 783 165 271 201 909 145 648 566 923 460 348 610 454 326 648 213 393 607 260 249 141 273 724 587 006 606 315 588 174 881 520 920 962 829 254 091 715 364 367 892 590 360 011 330 530 548 820 466 521 384 146 951 941 511 609 433 057 270 365 759 591 953 092 186 117 381 932 611 793 105 118 548 074 462 379 962 749 567 351 885 752 724 891 227 938 183 011 949 129 833 673 362…

Свойства

Соотношения

Известно много формул с числом π :

  • Формула Валлиса:
  • Тождество Эйлера :
  • Т. н. «интеграл Пуассона » или «интеграл Гаусса »

Трансцендентность и иррациональность

Нерешенные проблемы

  • Неизвестно, являются ли числа π и e алгебраически независимыми.
  • Неизвестно, являются ли числа π + e , π − e , πe , π / e , π e , π π , e e трансцендентными.
  • До сих пор ничего не известно о нормальности числа π ; неизвестно даже, какие из цифр 0-9 встречаются в десятичном представлении числа π бесконечное количество раз.

История вычисления

и Чудновского

Мнемонические правила

Чтобы нам не ошибаться, Надо правильно прочесть: Три, четырнадцать, пятнадцать, Девяносто два и шесть. Надо только постараться И запомнить всё как есть: Три, четырнадцать, пятнадцать, Девяносто два и шесть. Три, четырнадцать, пятнадцать, Девять, два, шесть, пять, три, пять. Чтоб наукой заниматься, Это каждый должен знать. Можно просто постараться И почаще повторять: «Три, четырнадцать, пятнадцать, Девять, двадцать шесть и пять.»

2. Подсчитайте количество букв в каждом слове в нижеприведенных фразах (без учета знаков препинания ) и запишите эти цифры подряд - не забывая про десятичную запятую после первой цифры «3», разумеется. Получится приближенное число Пи.

Это я знаю и помню прекрасно: Пи многие знаки мне лишни, напрасны.

Кто и шутя, и скоро пожелаетъ Пи узнать число - ужъ знаетъ!

Вот и Миша и Анюта прибежали Пи узнать число они желали.

(Вторая мнемоническая запись верна (с округлением последнего разряда) только при использовании дореформенной орфографии : при подсчете количества букв в словах необходимо учитывать твердые знаки!)

Еще один вариант этой мнемонической записи:

Это я знаю и помню прекрасно:
Пи многие знаки мне лишни, напрасны.
Доверимся знаньям громадным
Тех, пи кто сосчитал, цифр армаду.

Раз у Коли и Арины Распороли мы перины. Белый пух летал, кружился, Куражился, замирал, Ублажился, Нам же дал Головную боль старух. Ух, опасен пуха дух!

Если соблюдать стихотворный размер, можно довольно быстро запомнить:

Три, четырнадцать, пятнадцать, девять два, шесть пять, три пять
Восемь девять, семь и девять, три два, три восемь, сорок шесть
Два шесть четыре, три три восемь, три два семь девять, пять ноль два
Восемь восемь и четыре, девятнадцать, семь, один

Забавные факты

Примечания

Смотреть что такое "Число пи" в других словарях:

    число - Прие моч ное Источник: ГОСТ 111 90: Стекло листовое. Технические условия оригинал документа Смотри также родственные термины: 109. Число бетатронных колебаний … Словарь-справочник терминов нормативно-технической документации

    Сущ., с., употр. очень часто Морфология: (нет) чего? числа, чему? числу, (вижу) что? число, чем? числом, о чём? о числе; мн. что? числа, (нет) чего? чисел, чему? числам, (вижу) что? числа, чем? числами, о чём? о числах математика 1. Числом… … Толковый словарь Дмитриева

    ЧИСЛО, числа, мн. числа, чисел, числам, ср. 1. Понятие, служащее выражением количества, то, при помощи чего производится счет предметов и явлений (мат.). Целое число. Дробное число. Именованное число. Простое число. (см. простой1 в 1 знач.).… … Толковый словарь Ушакова

    Абстрактное, лишенное особенного содержания обозначение какоголибо члена некоторого ряда, в котором этому члену предшествует или следует за ним какой нибудь др. определенный член; абстрактный индивидуальный признак, отличающий одно множество от… … Философская энциклопедия

    Число - Число грамматическая категория, выражающая количественные характеристики предметов мысли. Грамматическое число одно из проявлений более обшей языковой категории количества (см. Категория языковая) наряду с лексическим проявлением («лексическое… … Лингвистический энциклопедический словарь

    Число, приближенно равное 2,718, которое часто встречается в математике и естественных науках. Например, при распаде радиоактивного вещества по истечении времени t от исходного количества вещества остается доля, равная e kt, где k число,… … Энциклопедия Кольера

    А; мн. числа, сел, слам; ср. 1. Единица счёта, выражающая то или иное количество. Дробное, целое, простое ч. Чётное, нечётное ч. Считать круглыми числами (приблизительно, считая целыми единицами или десятками). Натуральное ч. (целое положительное … Энциклопедический словарь

    Ср. количество, счетом, на вопрос: сколько? и самый знак, выражающий количество, цифра. Без числа; нет числа, без счету, многое множество. Поставь приборы, по числу гостей. Числа римские, арабские или церковные. Целое число, ·противоп. дробь.… … Толковый словарь Даля

    ЧИСЛО, а, мн. числа, сел, слам, ср. 1. Основное понятие математики величина, при помощи к рой производится счёт. Целое ч. Дробное ч. Действительное ч. Комплексное ч. Натуральное ч. (целое положительное число). Простое ч. (натуральное число, не… … Толковый словарь Ожегова

Число π показывает, во сколько раз длина окружности больше ее диаметра. Неважно, какого размера окружность, - как заметили по меньшей мере еще 4 тыс. лет назад, соотношение всегда остается одним и тем же. Вопрос только, чему оно равняется.

Чтобы высчитать его приблизительно, достаточно обыкновенной нитки. Грек Архимед в III веке до н.э. применял более хитрый способ. Он чертил внутри и снаружи окружности правильные многоугольники. Складывая длины сторон многоугольников, Архимед все точнее определял вилку, в которой находится число π, и понял, что оно приблизительно равно 3,14.

Методом многоугольников пользовались еще почти 2 тыс. лет после Архимеда, это позволило узнать значение числа π вплоть до 38-й цифры после запятой. Еще один-два знака - и можно с точностью до атома рассчитать длину окружности с диаметром как у Вселенной.

Пока одни ученые использовали геометрический метод, другие догадались, что число π можно рассчитывать, складывая, вычитая, деля или умножая другие числа. Благодаря этому "хвост" вырос до нескольких сотен цифр после запятой.

С появлением первых вычислительных машин и особенно современных компьютеров точность повысилась на порядки - в 2016 году швейцарец Петер Трюб определил значение числа π до 22,4 трлн знаков после запятой . Если напечатать этот результат в строчку 14-м кеглем нормальной ширины, то запись получится немногим короче, чем среднее расстояние от Земли до Венеры.

В принципе ничто не мешает добиться еще большей точности, но для научных расчетов в этом давно нет нужды - разве что для тестирования компьютеров, алгоритмов и для исследований в математике. А исследовать есть что. Даже про само число π известно не все. Доказано, что оно записывается в виде бесконечной непериодической дроби , то есть цифрам после запятой нет предела, и они не складываются в повторяющиеся блоки. Но вот с одинаковой ли частотой появляются цифры и их комбинации, неясно. Судя по всему, это так, но пока никто не привел строгого доказательства.

Дальнейшие вычисления проводятся в основном из спортивного интереса - и по той же причине люди пытаются запомнить как можно больше цифр после запятой. Рекорд принадлежит индийцу Раджвиру Мине, который в 2015 году назвал на память 70 тыс. знаков , сидя с завязанными глазами почти десять часов.

Наверное, чтобы превзойти его результат, нужен особый талант. Но просто удивить друзей хорошей памятью способен каждый. Главное - использовать одну из мнемонических техник, которая потом может пригодиться и для чего-нибудь еще.

Структурировать данные

Самый очевидный способ - разбить число на одинаковые блоки. Например, можно представить π как телефонную книгу с десятизначными номерами, а можно - как причудливый учебник истории (и будущего), где перечислены годы. Много так не запомнишь, но, чтобы произвести впечатление, хватит и пары десятков знаков после запятой.

Превратить число в историю

Считается, что самый удобный способ запомнить цифры - придумать историю, где им будет соответствовать количество букв в словах (ноль было бы логично заменить пробелом, но тогда большинство слов сольется; вместо этого лучше использовать слова из десяти букв). По этому принципу построена фраза "Можно мне большую упаковку кофейных зерен?" на английском языке:

May - 3,

have - 4

large - 5

container - 9

coffee - 6

beans - 5

В дореволюционной России придумали похожее предложение: "Кто и шутя и скоро пожелает(ъ) Пи узнать число, уже знает(ъ)". Точность - до десятого знака после запятой: 3,1415926536. Но проще запомнить более современный вариант: "Она и была, и будет уважаемая на работе". Есть и стихотворение: "Это я знаю и помню прекрасно - пи, многие знаки мне лишни, напрасны". А советский математик Яков Перельман сочинил целый мнемонический диалог:

Что я знаю о кругах? (3,1415)

Вот и знаю я число, именуемое пи - молодец! (3,1415927)

Учи и знай в числе известном за цифрой цифру, как удачу примечать! (3,14159265359)

Американский математик Майкл Кит и вовсе написал целую книгу Not A Wake, в тексте которой содержится информация о первых 10 тыс. цифр числа π.

Заменить цифры буквами

Кому-то легче запомнить бессвязные буквы, чем случайные цифры. В этом случае цифры заменяются первыми буквами алфавита. Первое слово в названии рассказа Cadaeic Cadenza Майкла Кита появилось именно таким образом. Всего в этом произведении закодировано 3835 знаков числа пи - правда, тем же способом, что в книге Not a Wake.

В русском языке для подобных целей можно использовать буквы от А до И (последняя будет соответствовать нолю). Насколько удобно будет запоминать составленные из них комбинации - вопрос открытый.

Придумать образы для комбинаций цифр

Чтобы добиться по-настоящему выдающихся результатов, предыдущие методы не годятся. Рекордсмены используют технику визуализации: изображения запомнить легче, чем цифры. Сначала нужно сопоставить каждую цифру с согласной буквой. Получится, что каждому двухзначному числу (от 00 до 99) соответствует двухбуквенное сочетание.

Допустим, один - это "н", четыр е - "р", пят ь - "т". Тогда число 14 - это "нр", а 15 - "нт". Теперь эти пары следует дополнить другими буквами, чтобы получилось слова, например, "н ор а" и "н ит ь". Всего понадобится сто слов - вроде бы много, но за ними стоят всего десять букв, поэтому запомнить не так уж сложно.

Число π предстанет в уме как последовательность образов: три целых, нора, нить и т.п. Чтобы лучше запомнить эту последовательность, изображения можно нарисовать или распечатать на принтере и поставить перед глазами. Некоторые люди просто раскладывают соответствующие предметы по комнате и вспоминают числа, разглядывая интерьер. Регулярные тренировки по этому методу позволят запомнить сотни и даже тысячи знаков после запятой - или любую другую информацию, ведь визуализировать можно не только числа.

Марат Кузаев, Кристина Недкова

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

1. Актуальность работы.

В бесконечном множестве чисел, так же как среди звезд Вселенной, выделяются отдельные числа и целые их «созвездия» удивительной красоты, числа с необыкновенными свойствами и своеобразной, только им присущей гармонией. Надо только уметь увидеть эти числа, заметить их свойства. Всмотритесь в натуральный ряд чисел - и вы найдете в нем много удивительного и диковинного, забавного и серьезного, неожиданного и курьезного. Видит тот, кто смотрит. Ведь люди и в летнюю звездную ночь не заметят… сияние. Полярной звезды, если не направят свой взор в безоблачную высь.

Переходя из класса в класс я познакомился с натуральными, дробными, десятичными, отрицательными, рациональными. В этом году я изучил иррациональные. Среди иррациональных чисел есть особое число, точными вычислениями которого занимаются ученые уже много веков. Оно встретилось мне ещё в 6 классе при изучении темы «Длина окружности и площадь круга». Было акцентировано внимание на то, что довольно часто будем встречаться с ним на уроках в старших классах. Интересны были практические задания на нахождение числового значения числа π. Число π является одним из интереснейших чисел, встречающихся при изучении математики. Оно встречается в разных школьных дисциплинах. С числом π связано много интересных фактов, поэтому оно вызывает интерес к изучению.

Услышав об этом числе много интересного, я сам решил путём изучения дополнительной литературы и поиска в Интернете узнать как можно больше информации о нём и ответить на проблемные вопросы:

Как давно люди знали о числе пи?

Для чего необходимо его изучение?

Какие интересные факты с ним связаны

Верно ли, что значение пи равно приближённо 3,14

Поэтому, перед собой я поставил цель: исследовать историю числа π и значимость числа π на современном этапе развития математики.

Задачи:

Изучить литературу с целью получения информации об истории числа π;

Установить некоторые факты из «современной биографии» числа π;

Практическое вычисление приближенного значения отношения длины окружности к диаметру.

Объект исследования:

Объект исследования: Число ПИ.

Предмет исследования: Интересные факты, связанные с числом ПИ.

2. Основная часть. Удивительное число π.

Никакое другое число не является таким загадочным, как "Пи" с его знаменитым никогда не кончающимся числовым рядом. Во многих областях математики и физики ученые используют это число и его законы.

Мало какому числу из всех чисел, которые используются в математике, в естественных науках, в инженерном деле и в повседневной жизни, уделяется столько внимания, сколько уделяется числу пи. В одной книге говорится: «Число пи захватывает умы гениев науки и математиков-любителей во всем мире» («Fractals for the Classroom»).

Его можно встретить в теории вероятностей, в решении задач с комплексными числами и прочих неожиданных и далеких от геометрии областях математики. Английский математик Август де Морган назвал как-то "пи" “…загадочным числом 3,14159…, которое лезет в дверь, в окно и через крышу”. Это таинственное число, связанное с одной из трех классических задач Античности - построение квадрата, площадь которого равна площади заданного круга - влечет за собой шлейф драматических исторических и курьезных занимательных фактов.

Некоторые даже считают его одним из пяти важнейших чисел в математике. Но, как отмечается в книге «Fractals for the Classroom», при всей важности числа пи «трудно найти сферы в научных расчетах, где потребовалось бы больше двадцати десятичных знаков пи».

3. Понятие числа пи

Число π — математическая константа, выражающая отношение длины окружности к длине ее диаметра . Число π (произносится «пи» ) —математическая константа, выражающая отношение длины окружности к длине её диаметра. Обозначается буквой греческого алфавита «пи».

В цифровом выражении π начинается как 3,141592 и имеет бесконечную математическую продолжительность.

4. История числа "пи"

Как считают специалисты, это число было открыто вавилонскими магами . Оно использовалось при строительстве знаменитой Вавилонской башни. Однако недостаточно точное исчисление значения Пи привело к краху всего проекта. Возможно, что эта математическая константа лежала в основе строительства легендарного Храма царя Соломона.

История числа пи, выражающего отношение длины окружности к её диаметру, началась в Древнем Египте. Площадь круга диаметром d египетские математики определяли как (d-d/9) 2 (эта запись дана здесь в современных символах). Из приведенного выражения можно заключить, что в то время число p считали равным дроби (16/9) 2 , или 256/81 , т.е. π = 3,160...

В священной книге джайнизма (одной из древнейших религий, существовавших в Индии и возникшей в VI в. до н.э.) имеется указание, из которого следует, что число p в то время принимали равным, что даёт дробь 3,162... Древние греки Евдокс, Гиппократ и другие измерение окружности сводили к построению отрезка, а измерение круга - к построению равновеликого квадрата. Следует заметить, что на протяжении многих столетий математики разных стран и народов пытались выразить отношение длины окружности к диаметру рациональным числом.

Архимед в III в. до н.э. обосновал в своей небольшой работе "Измерение круга" три положения:

    Всякий круг равновелик прямоугольному треугольнику, катеты которого соответственно равны длине окружности и её радиусу;

    Площади круга относятся к квадрату, построенному на диаметре, как 11 к 14 ;

    Отношение любой окружности к её диаметру меньше 3 1/7 и больше 3 10/71 .

По точным расчётам Архимеда отношение окружности к диаметру заключено между числами 3*10/71 и 3*1/7 , а это означает, что π = 3,1419... Истинное значение этого отношения 3,1415922653... В V в. до н.э. китайским математиком Цзу Чунчжи было найдено более точное значение этого числа: 3,1415927...

В первой половине XV в. обсерватории Улугбека , возле Самарканда , астроном и математик ал-Каши вычислил пи с 16 десятичными знаками. Ал-Каши произвёл уникальные расчёты, которые были нужны для составления таблицы синусов с шагом в 1" . Эти таблицы сыграли важную роль в астрономии.

Спустя полтора столетия в Европе Ф.Виет нашёл число пи только с 9 правильными десятичными знаками, сделав 16 удвоений числа сторон многоугольников. Но при этом Ф.Виет первым заметил, что пи можно отыскать, используя пределы некоторых рядов. Это открытие имело большое

значение, так как позволило вычислить пи с какой угодно точностью. Только через 250 лет после ал-Каши его результат был превзойдён.

День рождения числа “” .

Неофициальный праздник «День числа ПИ» отмечается 14 марта, которое в американском формате (день/ число) записывается как 3/14, что соответствует приближенному значению числа ПИ.

Существует и альтернативный вариант праздника - 22 июля. Он называется "День приближенного числа Пи". Дело в том, что представление этой даты в виде дроби (22/7) также дает в виде результата число Пи. Считается, что праздник придумал в 1987 году физик из Сан-Франциско Ларри Шоу, обративший внимание на то, дата и время совпадают с первыми разрядами числа π.

Интересные факты, связанные с числом “”

Ученые Токийского университета под руководством профессора Ясумаса Канада сумели поставить мировой рекорд в вычислениях числа Пи до 12411-триллионного знака. Для этого группе программистов и математиков понадобилась специальная программа, суперкомпьютер и 400 часов машинного времени. (Книга рекордов Гиннеса).

Германский король Фридрих Второй был настолько очарован эти числом, что посвятил ему …целый дворец Кастель дель Монте, в пропорциях которого можно вычислить ПИ. Сейчас волшебный дворец находится под охраной ЮНЕСКО.

Как запомнить первые цифры числа “ ”.

Три первые цифры числа  = 3,14… запомнить совсем несложно. А для запоминания большего числа знаков существуют забавные поговорки и стихи. Например, такие:

Нужно только постараться

И запомнить всё как есть:

Девяносто два и шесть.

С.Бобров. ”Волшебный двурог”

Тот, кто выучит это четверостишие, всегда сможет назвать 8 знаков числа :

В следующих фразах знаки числа  можно определить по количеству букв в каждом слове:

Что я знаю о кругах?” (3,1416);

Вот и знаю я число, именуемое Пи. - Молодец!”

(3,1415927);

Учи и знай в числе известном за цифрой цифру, как удачу примечать”

(3,14159265359)

5. Обозначение числа пи

Первым ввёл обозначение отношения длины окружности к диаметру современным символом пи английский математик У.Джонсон в 1706 г. В качестве символа он взял первую букву греческого слова "periferia" , что в переводе означает "окружность" . Введённое У.Джонсоном обозначение стало общеупотребительным после опубликования работ Л.Эйлера , который воспользовался введённым символом впервые в 1736 г.

В конце XVIII в. А.М.Лажандр на основе работ И.Г.Ламберта доказал, что число пи иррационально. Затем немецкий математик Ф.Линдеман , опираясь на исследования Ш.Эрмита , нашёл строгое доказательство того, что это число не только иррационально, но и трансцендентно, т.е. не может быть корнем алгебраического уравнения. Поиски точного выражения пи продолжались и после работ Ф.Виета . В начале XVII в. голландский математик из КёльнаЛудольф ван Цейлен (1540-1610) (некоторое историки его называют Л.ван Кейлен) нашёл 32 правильных знака. С тех пор (год публикации 1615) значение числа p с 32 десятичными знаками получило название числа Лудольфа .

6. Как запомнить число "Пи" с точностью до одиннадцати знаков

Число "Пи" - это отношение длины окружности к ее диаметру, оно выражается бесконечной десятичной дробью. В обиходе нам достаточно знать три знака (3,14). Однако в некоторых расчетах нужна большая точность.

У наших предков не было компьютеров, калькуляторов и справочников, но со времен Петра I они занимались геометрическими расчетами в астрономии, в машиностроении, в корабельном деле. Впоследствии сюда добавилась электротехника - там есть понятие "круговой частоты переменного тока". Для запоминания числа "Пи" было придумано двустишие (к сожалению, мы не знаем автора и места первой публикации его; но еще в конце 40-х годов двадцатого века московские школьники занимались по учебнику геометрии Киселева, где оно приводилось).

Двустишие написано по правилам старой русской орфографии, по которой послесогласной в конце слова обязательно ставился "мягкий" или "твердый" знак. Вот оно, это замечательное историческое двустишие:

Кто и шутя, и скоро пожелаетъ

"Пи" узнать число - ужъ знаетъ.

Тому, кто собирается в будущем заниматься точными расчетами, имеет смысл это запомнить. Так чему же равно число "Пи" с точностью до одиннадцати знаков? Сосчитай количество букв в каждом слове и напиши эти цифры подряд (первую цифру отдели запятой).

Такой точности уже вполне достаточно для инженерных расчетов. Кроме старинного существует и современный способ запоминания, на который указал в читатель, назвавшийся Георгием:

Чтобы нам не ошибаться,

Надо правильно прочесть:

Три, четырнадцать, пятнадцать,

Девяносто два и шесть.

Надо только постараться

И запомнить всё как есть:

Три, четырнадцать, пятнадцать,

Девяносто два и шесть.

Три, четырнадцать, пятнадцать,

Девять, два, шесть, пять, три, пять.

Чтоб наукой заниматься,

Это каждый должен знать.

Можно просто постараться

И почаще повторять:

«Три, четырнадцать, пятнадцать,

Девять, двадцать шесть и пять.»

Ну а математики с помощью современных компьютеров могут вычислить практически любое количество знаков числа "Пи".

7. Рекорд запоминания числа пи

Запомнить знаки пи человечество пытается уже давно. Но как уложить в память бесконечность? Любимый вопрос мнемонистов-профессионалов. Разработано множество уникальных теорий и приёмов освоения огромного количества информации. Многие из них опробованы на пи.

Мировой рекорд, установленный в прошлом столетии в Германии - 40 000 знаков. Российский рекорд значений числа пи 1 декабря 2003 года в Челябинске установил Александр Беляев. За полтора часа с небольшими перерывами на школьной доске Александр написал 2500 цифр числа пи.

До этого рекордным в России считалось перечислить 2000 знаков, что удалось сделать в 1999 году в Екатеринбурге. По словам Александра Беляева - руководителя центра развития образной памяти, такой эксперимент со своей памятью может провести любой из нас. Важно лишь знать специальные техники запоминания и периодически тренироваться.

Заключение.

Число пи появляется в формулах, используемых во многих сферах. Физика, электротехника, электроника, теория вероятностей, строительство и навигация - это лишь некоторые из них. И кажется, что подобно тому как нет конца знакам числа пи, так нет конца и возможностям практического применения этого полезного, неуловимого числа пи.

В современной математике число пи - это не только отношение длины окружности к диаметру, оно входит в большое число различных формул.

Эта и другие взаимозависимости позволили математикам ещё глубже выяснить природу числа пи.

Точное значение числа π в современном мире представляет собой не только собственную научную ценность, но и используется для очень точных вычислений (например, орбиты спутника, строительства гигантских мостов), а также оценки быстродействия и мощности современных компьютеров.

В настоящее время с числом π связано труднообозримое множество формул, математических и физических фактов. Их количество продолжает стремительно расти. Всё это говорит о возрастающем интересе к важнейшей математической константе, изучение которой насчитывает уже более двадцати двух веков.

Проведенная работа мне была интересной. Я хотел узнать об истории числа π, практическом применении и думаю, что достиг поставленной цели. Подводя итог работы, я прихожу к выводу, что данная тема актуальна. С числом π связано много интересных фактов, поэтому оно вызывает интерес к изучению. В своей работе я подробнее познакомился с числом - одной из вечных ценностей, которой человечество пользуется уже много веков. Узнал некоторые аспекты его богатейшей истории. Выяснил, почему древний мир не знал правильного отношения длины окружности к диаметру. Посмотрел наглядно, какими способами можно получить число. На основе экспериментов вычислил приближенное значение числа различными способами. Провел обработку и анализ результатов эксперимента.

Любой школьник сегодня должен знать, что обозначает и чему приближенно равно число. Ведь у всех первое знакомство с числом, использование его при вычислении длины окружности, площади круга происходит в 6 классе. Но, к сожалению, эти знания остаются для многих формальными и уже через год - два мало кто помнит не только то, что отношение длины окружности к её диаметру одно и то же для всех окружностей, но даже с трудом вспоминают численное значение числа, равное 3,14.

Я попробовал приподнять завесу богатейшей истории числа, которым человечество пользуется уже много веков. Самостоятельно составил презентацию к своей работе.

История чисел увлекательна и загадочна. Я хотел бы продолжить исследования других удивительных чисел в математике. Это станет объектом моих следующих исследовательских изучений.

Список литературы.

1. Глейзер Г.И. История математики в школе IV- VI классы. - М.: Просвещение, 1982.

2. Депман И.Я., Виленкин Н.Я. За страницами учебника математики - М.: Просвещение, 1989.

3. Жуков А.В.Вездесущее число «пи». - М.: Едиториал УРСС, 2004.

4. Кымпан Ф. История числа «пи». - М.: Наука, 1971.

5. Свечников А.А. путешествие в историю математики - М.: Педагогика - Пресс, 1995.

6. Энциклопедия для детей. Т.11.Математика - М.: Аванта +, 1998.

Интернетресурсы:

- http:// crow.academy.ru/ materials_/pi/history.htm

Http://hab/kp.ru// daily/24123/344634/

Введение

В статье присутствуют математические формулы, поэтому для чтения перейдите на сайт для их корректного отображения. Число \(\pi \) имеет богатую историю. Данная константа обозначает отношение длины окружности к ее диаметру.

В науке число \(\pi \) используют в любых расчетах, где есть окружности. Начиная от объема банки газировки, до орбит спутников. И не только окружности. Ведь в изучении кривых линий число \(\pi \) помогает понять периодические и колебательные системы. Например, электромагнитные волны и даже музыку.

В 1706 году в книге «Новое введение в математику» британского ученого Уильяма Джонса (1675-1749 гг.) для обозначения числа 3,141592… впервые была использована буква греческого алфавита \(\pi \). Это обозначение происходит от начальной буквы греческих слов περιϕερεια – окружность, периферия и περιµετρoς – периметр. Общепринятым обозначение стало после работ Леонарда Эйлера в 1737 году.

Геометрический период

Постоянство отношения длины любой окружности к её диаметру было замечено уже давно. Жители Междуречья применяли довольно грубое приближение числа \(\pi \). Как следует из древних задач, в своих расчетах они используют значение \(\pi ≈ 3 \).

Более точное значение для \(\pi \) использовали древние египтяне. В Лондоне и Нью-Йорке хранятся две части древнеегипетского папируса, который называют «папирус Ринда». Папирус был составлен писцом Армесом примерно между 2000-1700 гг. до н.э.. Армес в своем папирусе написал, что площадь круга с радиусом \(r\) равна площади квадрата со стороной, равной \(\frac{8}{9} \) от диаметра окружности \(\frac{8}{9} \cdot 2r \), то есть \(\frac{256}{81} \cdot r^2 = \pi r^2 \). Отсюда \(\pi = 3,16\).

Древнегреческий математик Архимед (287-212 гг. до н.э.) впервые поставил задачу измерения круга на научную почву. Он получил оценку \(3\frac{10}{71} < \pi < 3\frac{1}{7}\), рассмотрев отношение периметров вписанного и описанного 96-угольника к диаметру окружности. Архимед выразил приближение числа \(\pi \) в виде дроби \(\frac{22}{7}\), которое до сих называется архимедовым числом.

Метод достаточно простой, но при отсутствии готовых таблиц тригонометрических функций потребуется извлечение корней. Кроме этого, приближение сходится к \(\pi \) очень медленно: с каждой итерацией погрешность уменьшается лишь вчетверо.

Аналитический период

Несмотря на это, до середины 17 века все попытки европейских учёных вычислить число \(\pi \) сводились к увеличению сторон многоугольника. Так например, голландский математик Лудольф ван Цейлен (1540-1610 гг.) вычислил приближенное значение числа \(\pi \) с точностью до 20-ти десятичных цифр.

На вычисление ему понадобилось 10 лет. Удваивая по методу Архимеда число сторон вписанных и описанных многоугольников, он дошел до \(60 \cdot 2^{29} \) – угольника с целью вычисления \(\pi \) с 20 десятичными знаками.

После смерти в его рукописях были обнаружены ещё 15 точных цифр числа \(\pi \). Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число \(\pi \) иногда называли «лудольфовым числом» или «константой Лудольфа».

Одним из первых, кто представил метод, отличный от метода Архимеда, был Франсуа Виет (1540-1603 гг.). Он пришел к результату , что круг, диаметр которого равен единице, имеет площадь:

\[\frac{1}{2 \sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}} } \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} \cdots }}}} \]

С другой стороны, площадь равна \(\frac{\pi}{4} \). Подставив и упростив выражение, можно получить следующую формулу бесконечного произведения для вычисления приближенного значения \(\frac{\pi}{2} \):

\[\frac{\pi}{2} = \frac{2}{\sqrt{2}} \cdot \frac{2}{\sqrt{2 + \sqrt{2}}} \cdot \frac{2}{\sqrt{2+ \sqrt{2 + \sqrt{2}}}} \cdots \]

Полученная формула представляет собой первое точное аналитическое выражение для числа \(\pi \). Кроме этой формулы, Виет, используя метод Архимеда, дал с помощью вписанных и описанных многоугольников, начиная с 6-угольника и заканчивая многоугольником с \(2^{16} \cdot 6 \) сторонами приближение числа \(\pi \) с 9 правильными знаками.

Английский математик Уильям Броункер (1620-1684 гг.), используя цепную дробь , получил следующие результаты вычисления \(\frac{\pi}{4}\):

\[\frac{4}{\pi} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \frac{9^2}{2 + \frac{11^2}{2 + \cdots }}}}}} \]

Данный метод вычисления приближения числа \(\frac{4}{\pi} \) требует довольно больших вычислений, чтобы получить хотя бы небольшое приближение.

Получаемые в результате подстановки значения то больше, то меньше числа \(\pi \), и каждый раз все ближе к истинному значению, но для получения значения 3,141592 потребуется совершить довольно большие вычисления.

Другой английский математик Джон Мэчин (1686-1751 гг.) в 1706 году для вычисления числа \(\pi \) со 100 десятичными знаками воспользовался формулой, выведенной Лейбницем в 1673 году, и применил её следующим образом:

\[\frac{\pi}{4} = 4 arctg\frac{1}{5} – arctg\frac{1}{239} \]

Ряд быстро сходится и с его помощью можно вычислить число \(\pi \) с большой точностью. Формулы подобного типа использовались для установки нескольких рекордов в эпоху компьютеров.

В XVII в. с началом периода математики переменной величины наступил новый этап в вычислении \(\pi \). Немецкий математик Готфрид Вильгельм Лейбниц (1646-1716 гг.) в 1673 году нашел разложение числа \(\pi \), в общем виде его можно записать следующим бесконечным рядом:

\[ \pi = 1 – 4(\frac{1}{3} + \frac{1}{5} – \frac{1}{7} + \frac{1}{9} – \frac{1}{11} + \cdots) \]

Ряд получается при подстановке x = 1 в \(arctg x = x – \frac{x^3}{3} + \frac{x^5}{5} – \frac{x^7}{7} + \frac{x^9}{9} – \cdots\)

Леонард Эйлер развивает идею Лейбница в своих работах, посвященных использованию рядов для arctg x при вычислении числа \(\pi \). В трактате «De variis modis circuli quadraturam numeris proxime exprimendi» (О различных методах выражения квадратуры круга приближенными числами), написанном в 1738 году, рассматриваются методы усовершенствования вычислений по формуле Лейбница.

Эйлер пишет о том, что ряд для арктангенса будет сходиться быстрее, если аргумент будет стремиться к нулю. Для \(x = 1\) сходимость ряда очень медленная: для вычисления с точностью до 100 цифр необходимо сложить \(10^{50}\) членов ряда. Ускорить вычисления можно, уменьшив значение аргумента. Если принять \(x = \frac{\sqrt{3}}{3}\), то получается ряд

\[ \frac{\pi}{6} = artctg\frac{\sqrt{3}}{3} = \frac{\sqrt{3}}{3}(1 – \frac{1}{3 \cdot 3} + \frac{1}{5 \cdot 3^2} – \frac{1}{7 \cdot 3^3} + \cdots) \]

По утверждению Эйлера, если мы возьмем 210 членов этого ряда, то получим 100 верных знаков числа. Полученный ряд неудобен, потому что необходимо знать достаточно точное значение иррационального числа \(\sqrt{3} \). Также Эйлер в своих вычислениях использовал разложения арктангенсов на сумму арктангенсов меньших аргументов :

\[где x = n + \frac{n^2-1}{m-n}, y = m + p, z = m + \frac{m^2+1}{p} \]

Далеко не все формулы для вычисления \(\pi \), которые использовал Эйлер в своих записных книжках, были опубликованы. В опубликованных работах и записных книжках он рассмотрел 3 различных ряда для вычисления арктангенса, а также привел множество утверждений, касающихся количества суммируемых членов, необходимых для получения приближенного значения \(\pi \) c заданной точностью.

В последующие годы уточнения значения числа \(\pi \) происходили все быстрее и быстрее. Так, например, в 1794 году Георг Вега (1754-1802 гг.) определил уже 140 знаков , из который только 136 оказались верными.

Период компьютерных вычислений

XX век ознаменован совершенно новым этапом в вычислении числа \(\pi \). Индийский математик Сриниваса Рамануджан (1887-1920 гг.) обнаружил множество новых формул для \(\pi \). В 1910 году он получил формулу для вычисления \(\pi \) через разложение арктангенса в ряд Тейлора:

\[\pi = \frac{9801}{2\sqrt{2} \sum\limits_{k=1}^{\infty} \frac{(1103+26390k) \cdot (4k)!}{(4\cdot99)^{4k} (k!)^2}} .\]

При k=100 достигается точность в 600 верных цифр числа \(\pi \).

Появление ЭВМ позволило существенно увеличить точность получаемых значений за более короткие сроки. В 1949 году всего за 70 часов с помощью ENIAC группа ученых под руководством Джона фон Неймана (1903-1957 гг.) получила 2037 знаков после запятой числа \(\pi \) . Давид и Грегорий Чудновские в 1987 году получили формулу, с помощью которой смогли установить несколько рекордов в вычислении \(\pi \):

\[\frac{1}{\pi} = \frac{1}{426880\sqrt{10005}} \sum\limits_{k=1}^{\infty} \frac{(6k)!(13591409+545140134k)}{(3k)!(k!)^3(-640320)^{3k}}.\]

Каждый член ряда дает по 14 цифр. В 1989 году было получено 1 011 196 691 цифр после запятой. Данная формула хорошо подходит для вычисления \(\pi \) на персональных компьютерах. На данный момент братья являются профессорами в политехническом институте Нью-Йоркского университета.

Важным событием недавнего времени стало открытие формулы в 1997 году Саймоном Плаффом . Она позволяет извлечь любую шестнадцатеричную цифру числа \(\pi \) без вычисления предыдущих. Формула носит название «Формула Бэйли – Боруэйна – Плаффа» в честь авторов статьи, где формула была впервые опубликована. Она имеет следующий вид:

\[\pi = \sum\limits_{k=1}^{\infty} \frac{1}{16^k} (\frac{4}{8k+1} – \frac{2}{8k+4} – \frac{1}{8k+5} – \frac{1}{8k+6}) .\]

В 2006 году Саймон, используя PSLQ, получил несколько красивых формул для вычисления \(\pi \). Например,

\[ \frac{\pi}{24} = \sum\limits_{n=1}^{\infty} \frac{1}{n} (\frac{3}{q^n – 1} – \frac{4}{q^{2n} -1} + \frac{1}{q^{4n} -1}), \]

\[ \frac{\pi^3}{180} = \sum\limits_{n=1}^{\infty} \frac{1}{n^3} (\frac{4}{q^{2n} – 1} – \frac{5}{q^{2n} -1} + \frac{1}{q^{4n} -1}), \]

где \(q = e^{\pi}\). В 2009 году японские ученые, используя суперкомпьютер T2K Tsukuba System, получили число \(\pi \) c 2 576 980 377 524 десятичными знаками после запятой. Вычисления заняли 73 часа 36 минут. Компьютер был оснащен 640-ка четырех ядерными процессорами AMD Opteron, что обеспечило производительность в 95 триллионов операций в секунду.

Следующее достижение в вычислении \(\pi \) принадлежит французскому программисту Фабрису Беллару , который в конце 2009 года на своем персональном компьютере под управлением Fedora 10 установил рекорд, вычислив 2 699 999 990 000 знаков после запятой числа \(\pi \). За последние 14 лет это первый мировой рекорд, который поставлен без использования суперкомпьютера. Для высокой производительности Фабрис использовал формулу братьев Чудновских. В общей сложности вычисление заняло 131 день (103 дня расчеты и 13 дней проверка результата). Достижение Беллара показало, что для таких вычислений не обязательно иметь суперкомпьютер.

Всего через полгода рекорд Франсуа был побит инженерами Александром Йи и Сингеру Кондо. Для установления рекорда в 5 триллионов знаков после запятой числа \(\pi \) был также использован персональный компьютер, но уже с более внушительными характеристиками: два процессора Intel Xeon X5680 по 3,33 ГГц, 96 ГБ оперативной памяти, 38 ТБ дисковой памяти и операционная система Windows Server 2008 R2 Enterprise x64. Для вычислений Александр и Сингеру использовали формулу братьев Чудновских. Процесс вычисления занял 90 дней и 22 ТБ дискового пространства. В 2011 году они установили еще один рекорд , вычислив 10 триллионов десятичных знаков числа \(\pi \). Вычисления происходили на том же компьютере, на котором был поставлен их предыдущий рекорд и занял в общей сложности 371 день. В конце 2013 года Александр и Сингеру улучшили рекорд до 12,1 триллиона цифр числа \(\pi \), вычисление которых заняло у них всего 94 дня. Такое улучшение в производительности достигнуто благодаря оптимизации производительности программного обеспечения, увеличения количества ядер процессора и значительного улучшения отказоустойчивости ПО.

Текущим рекордом является рекорд Александра Йи и Сингеру Кондо, который составляет 12,1 триллиона цифр после запятой числа \(\pi \).

Таким образом, мы рассмотрели методы вычисления числа \(\pi \), используемые в древние времена, аналитические методы, а также рассмотрели современные методы и рекорды по вычислению числа \(\pi \) на компьютерах.

Список источников

  1. Жуков А.В. Вездесущее число Пи – М.:Изд-во ЛКИ, 2007 – 216 с.
  2. Ф.Рудио. О квадратуре круга, с приложением истории вопроса, составленной Ф.Рудио. / Рудио Ф. – М.: ОНТИ НКТП СССР, 1936. – 235c.
  3. Arndt, J. Pi Unleashed / J. Arndt, C. Haenel. – Springer, 2001. – 270p.
  4. Шухман, Е.В. Приближенное вычисление числа Пи с помощью ряда для arctg x в опубликованных и неопубликованных работах Леонарда Эйлера / Е.В. Шухман. – История науки и техники, 2008 – №4. – С. 2-17.
  5. Euler, L. De variis modis circuli quadraturam numeris proxime exprimendi/ Commentarii academiae scientiarum Petropolitanae. 1744 – Vol.9 – 222-236p.
  6. Шумихин, С. Число Пи. История длиною в 4000 лет / С. Шумихин, А. Шумихина. – М.: Эксмо, 2011. – 192с.
  7. Борвейн, Дж.М. Рамануджан и число Пи. / Борвейн, Дж.М., Борвейн П.Б. В мире науки. 1988 – №4. – С. 58-66.
  8. Alex Yee. Number world. Access mode: numberworld.org

Понравилось?

Расскажи

Одним из самых загадочных чисел, известных человечеству, безусловно, является число Π (читается - пи). В алгебре это число отражает величину соотношения длины окружности и ее диаметра. Ранее эту величину называли лудольфовым числом. Как и откуда взялось число Пи доподлинно не известно, но математики делят на 3 этапа всю историю числа Π, на древний, классический и эру цифровых компьютеров.

Число П - иррационально, то есть его нельзя представить в виде простой дроби, где числитель и знаменатель целые числа. Поэтому, такое число не имеет окончания и является периодическим. Впервые иррациональность П доказал И. Ламберт в 1761 году.

Кроме этого свойства, число П не может являться еще и корнем какого-нибудь многочлена, а потому является числом свойство, когда было доказано в 1882 году, положило конец почти сакральному спору математиков «о квадратуре круга», который продолжался на протяжении 2 500 лет.

Известно, что первым ввел обозначение этого числа британец Джонс в 1706 году. После того как появились труды Эйлера, использование такого обозначения стало общепринятым.

Чтобы детально разобраться, что такое число Пи, следует сказать, что его использование настолько широко, что трудно даже назвать область науки, в которой бы без него обходятся. Одно из самых простых и знакомых еще из школьной программы значений - это обозначение геометрического периода. Отношение длины круга к длине его диаметра является постоянной и равно 3, 14. Это значение было известно еще древнейшим математикам в Индии, Греции, Вавилоне, Египте. Наиболее ранний вариант вычисления соотношения относится к 1900 году до н. э. Более приближенное к современному значение П вычислил китайский ученый Лю Хуэй, кроме того, он изобрел и быстрый способ такого вычисления. Его величина оставалась общепринятой на протяжении почти 900 лет.

Классический период развития математики ознаменовался тем, что чтобы установить точно, что такое число Пи, ученые стали использовать методы математического анализа. В 1400-х годах индийский математик Мадхава использовал для вычисления теорию рядов и определил период числа П с точностью до 11 цифр после запятой. Первым европейцем, после Архимеда, который исследовал число П и внес значительный вклад в его обоснование, стал голландец Людольф ван Цейлен, который определил уже 15 цифр после запятой, а в завещании написал весьма занимательные слова: «…кому интересно - пусть идет дальше». Именно в честь этого ученого, число П и получило свое первое и единственное за всю историю именное название.

Эпоха компьютерных вычислений привнесла новые детали в понимание сущности числа П. Так, чтобы выяснить, что такое число Пи, в 1949 году впервые была использована вычислительная машина ЭНИАК, одним из разработчиков которой был будущий «отец» теории современных компьютеров Дж. Первое измерение велось на протяжении 70 часов и дало 2037 цифр после запятой в периоде числа П. Отметка в миллион знаков была достигнута в 1973 году. Кроме того, в этот период были установлены и другие формулы, отражающие число П. Так, братья Чудновские смогли найти такую, которая позволила вычислить 1 011 196 691 цифр периода.

Вообще следует отметить, что чтобы ответить на вопрос: "Что такое число Пи?", многие исследования стали напоминать соревнования. Сегодня уже суперкомпьютеры занимаются вопросом, какое же оно на самом деле, число Пи. интересные факты, связанные с этими исследованиями, пронизывают практически всю историю математики.

Сегодня, например, проводятся мировые чемпионаты по запоминанию числа П и фиксируются мировые рекорды, последний принадлежит китайцу Лю Чао, за сутки с небольшим, назвал 67 890 знаков. В мире есть даже праздник числа П, который отмечается как «День числа Пи».

По данным на 2011 год уже установлено 10 триллионов цифр периода числа.