Важнейшие методы современных цито гистологических исследований. Методы исследования в гистологии, цитологии и эмбриологии

2. Объекты исследования гистологии

3. Приготовление гистологических препаратов

4. Методы исследования

5. Исторические этапы развития гистологии

1. Гистология наука о микроскопическом и субмикроскопическом строении, развитии и жизнедеятельности тканей животных организмов. Следовательно, гистология изучает один из уровней организации живой материи тканевой. Различают следующие иерархические уровни организации живой материи:

    клеточный;

    тканевой;

    структурно-функциональные единицы органов;

    органный уровень;

    системный уровень;

    организменный уровень

Гистология, как учебная дисциплина , включает в себя следующие разделы: цитологию, эмбриологию, общую гистологию (изучает строение и функции тканей), частную гистологию (изучает микроскопическое строение органов).

Основным объектом изучения гистологии является организм здорового человека и потому данная учебная дисциплина именуется как гистология человека.

Основная задача гистологии состоит в изучении строения клеток, тканей, органов, установления связей между различными явлениями, установление общих закономерностей.

Гистология, как и анатомия, относится к морфологическим наукам, главной задачей которых является изучение структур живых систем. В отличие от анатомии, гистология изучает строение живой материи на микроскопическом и электронно-микроскопическом уровне. При этом, изучение строения различных структурных элементов проводится в настоящее время с учетом выполняемых ими функций. Такой подход к изучению структур живой материи называется гистофизиологическим, а гистология нередко именуется как гистофизиология. Кроме того, при изучении живой материи на клеточном, тканевом и органном уровнях рассматривается не только форма, размеры и расположение интересующих структур, но методом цито- и гистохимии нередко определяется и состав веществ, образующих эти структуры. Наконец, изучаемые структуры обычно рассматриваются с учетом их развития, как во внутриутробном (эмбриональном) периоде, так и на протяжении постэмбрионального онтогенеза. Именно с этим связана необходимость включения эмбриологии в курс гистологии.

Гистология, как любая наука, имеет свои объекты и методы их изучения. Непосредственными объектами изучения являются клетки, фрагменты тканей и органов, особым способом приготовленные для изучения их под микроскопом.

2. Объекты исследования подразделяются на:

    живые (клетки в капле крови, клетки в культуре и другие);

    мертвые или фиксированные, которые могут быть взяты как от живого организма (биопсия), так и от трупов.

В любом случае после взятия кусочков они подвергаются действию фиксирующих растворов или замораживанию. И в научных, и в учебных целях используются фиксированные объекты. Приготовленные определенным способом препараты, используемые для изучения под микроскопом, называются гистологическими препаратами.

Гистологический препарат может быть в виде:

    тонкого окрашенного среза органа или ткани;

    мазка на стекле;

    отпечатка на стекле с разлома органа;

    тонкого пленочного препарата.

Гистологический препарат любой формы должен отвечать следующим требованиям:

    сохранять прижизненное состояние структур;

    быть достаточно тонким и прозрачным для изучения его под микроскопом в проходящем свете;

    быть контрастным, то есть изучаемые структуры должны под микроскопом четко определяться;

    препараты для световой микроскопии должны долго сохраняться и использоваться для повторного изучения.

Эти требования достигаются при приготовлении препарата.

3. Выделяют следующие этапы приготовления гистологического препарата

Взятие материала (кусочка ткани или органа) для приготовления препарата. При этом учитываются следующие моменты: забор материала должен проводиться как можно раньше после смерти или забоя животного, а при возможности от живого объекта (биопсия), чтобы лучше сохранились структуры клетки, ткани или органа; забор кусочков должен производиться острым инструментом, чтобы не травмировать ткани; толщина кусочка не должна превышать 5 мм, чтобы фиксирующий раствор мог проникнуть в толщу кусочка; обязательно производится маркировка кусочка (указывается наименование органа, номер животного или фамилия человека, дата забора и так далее).

Фиксация материала необходима для остановки обменных процессов и сохранения структур от распада. Фиксация достигается чаще всего погружением кусочка в фиксирующие жидкости, которые могут быть простыми спирты и формалин и сложными раствор Карнуа, фиксатор Цинкера и другие. Фиксатор вызывает денатурацию белка и тем самым приостанавливает обменные процессы и сохраняет структуры в их прижизненном состоянии. Фиксация может достигаться также замораживанием (охлаждением в струе СО2, жидким азотом и другие). Продолжительность фиксации подбирается опытным путем для каждой ткани или органа.

Заливка кусочков в уплотняющие среды (парафин, целлоидин, смолы) или замораживание для последующего изготовления тонких срезов.

Приготовление срезов на специальных приборах (микротоме или ультрамикротоме) с помощью специальных ножей. Срезы для световой микроскопии приклеиваются на предметные стекла, а для электронной микроскопии - монтируются на специальные сеточки.

Окраска срезов или их контрастирование (для электронной микроскопии). Перед окраской срезов удаляется уплотняющая среда (депарафинизация). Окраской достигается контрастность изучаемых структур. Красители подразделяются на основные, кислые и нейтральные. Наиболее широко используются основные красители (обычно гематоксилин) и кислые (эозин). Нередко используют сложные красители.

Просветление срезов (в ксилоле, толуоле), заключение в смолы (бальзам, полистерол), закрытие покровным стеклом.

После этих последовательно проведенных процедур препарат может изучаться под световым микроскопом.

Для целей электронной микроскопии в этапах приготовления препаратов имеются некоторые особенности, но общие принципы те же. Главное отличие заключается в том, что гистологический препарат для световой микроскопии может длительно храниться и многократно использоваться. Срезы для электронной микроскопии используются однократно. При этом вначале интересующие объекты препарата фотографируются, а изучение структур производится уже на электронограммах.

Из тканей жидкой консистенции (кровь, костный мозг и другие) изготавливаются препараты в виде мазка на предметном стекле, которые также фиксируются, окрашиваются, а затем изучаются.

Из ломких паренхиматозных органов (печень, почка и другие) изготавливаются препараты в виде отпечатка органа: после разлома или разрыва органа, к месту разлома органа прикладывается предметное стекло, на которое приклеиваются некоторые свободные клетки. Затем препарат фиксируется, окрашивается и изучается.

Наконец, из некоторых органов (брыжейка, мягкая мозговая оболочка) или из рыхлой волокнистой соединительной ткани изготавливаются пленочные препараты путем растягивания или раздавливания между двумя стеклами, также с последующей фиксацией, окраской и заливкой в смолы.

4. Основным методом исследования биологических объектов, используемым в гистологии является микроскопирование , т. е. изучение гистологических препаратов по микроскопом. Микроскопия может быть самостоятельным методом изучения, но в последнее время она обычно сочетается с другими методами (гистохимии, гисторадиографии и другие). Следует помнить, что для микроскопии используются разные конструкции микроскопов, позволяющие изучить разные параметры изучаемых объектов. Различают следующие виды микроскопии:

    световая микроскопия (разрешающая способность 0,2 мкм) наиболее распространенный вид микроскопии;

    ультрафиолетовая микроскопия (разрешающая способность 0,1 мкм);

    люминесцентная (флюоресцентная) микроскопия для определения химических веществ в рассматриваемых структурах;

    фазово-контрастная микроскопия для изучения структур в неокрашенных гистологических препаратов;

    поляризационная микроскопия для изучения, главным образом, волокнистых структур;

    микроскопия в темном поле для изучения живых объектов;

    микроскопия в падающем свете для изучения толстых объектов;

    электронная микроскопия (разрешающая способность до 0,1-0,7 нм), две ее разновидности просвечивающая (трансмиссионная) электронная микроскопия и сканирующая или растровая микроскопии дает отображение поверхности ультраструктур.

Гистохимические и цитохимические методы позволяет определять состав химических веществ и даже их количество в изучаемых структурах. Метод основан на проведении химических реакций с используемым реактивом и химическими веществами, находящимися в субстрате, с образованием продукта реакции (контрастного или флюоресцентного), который затем определяется при световой или люминесцентной микроскопии.

Метод гистоавторадиографии позволяет выявить состав химических веществ в структурах и интенсивность обмена по включению радиоактивных изотопов в изучаемые структуры. Метод используется чаще всего в экспериментах на животных.

Метод дифференциального центрифугирования позволяет изучать отдельные органеллы или даже фрагменты, выделенные из клетки. Для этого кусочек исследуемого органа растирают, заливают физиологическим раствором, а затем разгоняют в центрифуге при различных оборотах (от 2-х до 150 тыс.) и получают интересующие фракции, которые затем изучают различными методами.

Метод интерферометрии позволяет определить сухую массу веществ в живых или фиксированных объектах.

Иммуноморфологические методы позволяет с помощью предварительно проведенных иммунных реакций, на основании взаимодействия антиген-антитело, определять субпопуляции лимфоцитов, определять степень чужеродности клеток, проводить гистологическое типирование тканей и органов (определять гистосовместимость) для трансплантации органов.

Метод культуры клеток (in vitro, in vivo) выращивание клеток в пробирке или в особых капсулах в организме и последующее изучение живых клеток под микроскопом.

Единицы измерения, используемые в гистологии

Для измерения структур в световой микроскопии используются в основном микрометры: 1 мкм составляет 0,001 мм; в электронной микроскопии используются нанометры: 1 нм составляет 0,001 мкм.

5. В истории развития гистологии условно выделяют три периода:

Домикроскопический период (с IV в. до н. э. по 1665 г.) связан с именами Аристотеля, Галена, Авиценны, Везалия, Фаллопия и характеризуется попытками выделения в организме животных и человека неоднородных тканей (твердых, мягких, жидких и так далее) и использованием методов анатомической препаровки.

Микроскопический период (с 1665 г. по 1950 г.). Начало периода связывают с именем английского физика Роберта Гука, который, во-первых, усовершенствовал микроскоп (полагают, что первые микроскопы были изобретены в самом начале XVII в.), во-вторых, использовал его для систематического исследования различных, в том числе биологических объектов и опубликовал результаты этих наблюдений в 1665 г. в книге "Микрография", в-третьих, впервые ввел термин "клетка" ("целлюля"). В дальнейшем осуществлялось непрерывное усовершенствование микроскопов и все более широкое использование их для изучения биологических тканей и органов.

Особое внимание уделялось изучению строения клетки. Ян Пуркинье описал наличие в животных клетках "протоплазмы" (цитоплазмы) и ядра, а несколько позже Р. Броун подтвердил наличие ядра и в большинстве животных клеток. Ботаник М. Шлейден заинтересовался происхождением клетокцитокенезисом. Результаты этих исследований позволили Т. Швану, на основании их сообщений, сформулировать клеточную теорию (1838-1839 гг.) в виде трех постулатов:

    все растительные и животные организмы состоят из клеток;

    все клетки развиваются по общему принципу из цитобластемы;

    каждая клетка обладает самостоятельной жизнедеятельностью, а жизнедеятельность организма является суммой деятельности клеток.

Однако вскоре Р. Вирхов (1858 г.) уточнил, что развитие клеток осуществляется путем деления исходной клетки (любая клетка из клетки). Разработанные Т. Шваном положения, клеточной теории актуальны до настоящего времени, хотя формулируется по-иному.

Современные положения клеточной теории:

    клетка является наименьшей единицей живого;

    клетки животных организмов сходны по своему строению;

    размножение клеток происходит путем деления исходной клетки;

    многоклеточные организмы представляют собой сложные ансамбли клеток и их производных, объединенные в системы тканей и органов, связанные между собой клеточными, гуморальными и нервными формами регуляции.

    Дальнейшее совершенствование микроскопов, особенно создание ахроматических объективов, позволило выявить в клетках более мелкие структуры:

    клеточный центр Гертвиг, 1875 г.;

    сетчатый аппарат или пластинчатый комплекс Гольджи, 1898 г.;

    митохондрии Бенда, 1898 г.

Современный этап развития гистологии начинается с 1950 г. с момента начала использования электронного микроскопа для изучения биологических объектов, хотя электронный микроскоп был изобретен раньше (Е. Руска, М. Кноль, 1931 г.). Однако для современного этапа развития гистологии характерно внедрение не только электронного микроскопа, но и других методов: цито- и гистохимии, гисторадиографии и других вышеперечисленных современных методов. При этом обычно используется комплекс разнообразных методик, позволяющий составить не только качественное представление об изучаемых структурах, но и получить точные количественные характеристики. Особенно широко в настоящее время используются различные морфометрические методики, в том числе автоматизированные системы обработки полученной информации с использованием компьютеров.

ЛЕКЦИЯ 2. Цитология. Цитоплазма

Гистология – («гистос» греч. – ткань, логис - учение) Это наука о строении, развитии и жизнедеятельности тканей многоклеточных организмов и человека. Невооруженному глазу недоступны объекты, являющиеся предметом этой науки. Поэтому и история гистологии тесно связана с истроией создания таких приборов, которые позволяют изучить мельчайшие предметы, невооруженным глазом. 2

Курс гистологии условно разделен на следующие разделы: n 1. Цитология - наука о клетке. n 2. Эмбриология - наука о развитии, от зарождения до полного формирования организма. n 3. Общая гистология - наука об общих закономерностях, присущих тканям. n 4. Частная гистология - изучает строение, развитие органов и систем.

ЦИТОЛОГИЯ – (греч. κύτος «клетка» и λόγος - «учение» , «наука») n Раздел биологии, изучающий живые клетки, их органоиды, их строение, функционирование, процессы клеточного размножения, старения и смерти. 4

ЭМБРИОЛОГИЯ n (от др. -греч. ἔμβρυον - эмбрион, зародыш + -λογία от λόγος - учение) - это наука, изучающая развитие зародыша. 5

История создания клеточной теории 1590 год. Янсен изобрел микроскоп, в котором увеличение обеспечивалось соединением двух линз. 1665 год. Роберт Гук впервые употребил термин клетка. 1650 -1700 годы. Антони ван Левенгук впервые описал бактерии и другие микроорганизмы. 1700 -1800 годы. Опубликовано много новых описаний и рисунков различных тканей, преимущественно растительных. 1827 году Карл Бэр обнаружил яйцеклетку у млекопитающих. 1831 -1833 годы. Роберт Броун описал ядро в растительных клетках. 1838 -1839 годы. Ботаник Матиас Шлейден и зоолог Теодор Шванн объединили идеи разных ученых и сформулировали клеточную теорию, которая постулировала, что основной единицей структуры и функции в живых организмах является клетка. 1855 год. Рудольф Вирхов показал, что все клетки образуются в результате клеточных делений.

История создания клеточной теории 1665 год. Рассматривая под микроскопом срез пробки, английский ученый, физик Роберт Гук обнаружил, что она состоит из ячеек, разделенных перегородками. Эти ячейки он назвал "клетками"

История создания клеточной теории В XVII столетии Левенгук сконструировал микроскоп и открыл людям дверь в микромир. Перед глазами изумленных исследователей замелькали разнообразнейшие инфузории, коловратки и прочая мельчайшая живность. Оказалось, что они повсюду – эти мельчайшие организмы: в воде, навозе, в воздухе и пыли, в земле и водосточных желобах, в гниющих отходах животного и растительного происхождения.

История создания клеточной теории 1831 -1833 годы. Роберт Броун описал ядро в растительных клетках. В 1838 г. немецкий ботаник М. Шлейден привлек внимание к ядру, считал его образователем клетки. По Шлейдену, из зернистой субстанции конденсируется ядрышко, вокруг которого формируется ядро, а вокруг ядра - клетка, причём ядро в процессе образования клетки может исчезать.

История создания клеточной теории Немецкий зоолог Т. Шванн показал, что из клеток состоят и ткани животных. Он создал теорию, утверждающую, что клетки, содержащие ядра, представляют собой структурную и функциональную основу всех живых существ. Клеточная теория строения была сформулирована и опубликована Т. Шванном в 1839 г. Суть её можно выразить в следующих положениях: 1. Клетка – элементарная структурная единица строения всех живых существ; 2. Клетки растений и животных самостоятельны, гомологичны другу по происхождению и структуре. Каждая клетка функционирует независимо от других, но вместе со всеми. 3. Все клетки возникают из бесструктурного межклеточного вещества. (Ошибка!) 4. Жизнедеятельность клетки определяется оболочкой. (Ошибка!)

История создания клеточной теории В 1855 г. немецкий врач Р. Вирхов сделал обобщение: клетка может возникнуть только из предшествующей клетки. Это привело к осознанию того факта, что рост и развитие организмов связаны с делением клеток и их дальнейшей дифференцировкой, приводящей к образованию тканей и органов.

История создания клеточной теории Карл Бэр Еще в 1827 году Карл Бэр обнаружил яйцеклетку у млекопитающих, доказал, что развитие млекопитающих начинается с оплодотворенной яйцеклетки. Значит развитие любого организма начинается с одной оплодотворенной яйцеклетки, клетка является единицей развития.

История создания клеточной теории 1865 г. Опубликованы законы наследственности (Г. Мендель). 1868 г. Открыты нуклеиновые кислоты (Ф. Мишер) 1873 г. Открыты хромосомы (Ф. Шнейдер) 1874 г. Открыт митоз у растительных клеток (И. Д. Чистяков) 1878 г. Открыто митотическое деление животных клеток (В. Флеминг, П. И. Перемежко) 1879 г. Флеминг – поведение хромосом во время деления. 1882 г. Открыт мейоз у животных клеток (В. Флеминг) 1883 г. Показано, что в половых клетках число хромосом в два раза меньше, чем в соматических (Э. Ван Бенеден) 1887 г. Открыт мейоз у растительных клеток (Э. Страсбургер) 1898 г. Гольджи открыл сетчатый аппарат клетки, аппарат Гольджи. 1914 г. Сформулирована хромосомная теория наследственности (Т. Морган). 1924 г. Опубликована естественно-научная теория происхождения жизни на Земле (А. И. Опарин). 1953 г. Сформулированы представления о структуре ДНК и создана ее модель (Д. Уотсон и Ф. Крик). 1961 г. Определены природа и свойства генетического кода (Ф. Крик, Л. Барнет, С. Беннер).

Основные положения современной клеточной теории 1. Клетка - элементарная живая система, единица строения, жизнедеятельности, размножения и индивидуального развития организмов. 2. Клетки всех живых организмов гомологичны, едины по строению и происхождению. 3. Образование клеток. Новые клетки возникают только путем деления ранее существовавших клеток. 4. Клетка и организм. Клетка может быть самостоятельным организмом (прокариоты и одноклеточные эукариоты). Все многоклеточные организмы состоят из клеток. 5. Функции клеток. В клетках осуществляются: обмен веществ, раздражимость и возбудимость, движение, размножение и дифференцировка. 6. Эволюция клетки. Клеточная организация возникла на заре жизни и прошла длительный путь эволюционного развития от безъядерных форм (прокариот) к ядерным (эукариотам).

МЕТОДЫ МИКРОСКОПИРОВАНИЯ ГИСТОЛОГИЧЕСКИХ ПРЕПАРАТОВ 1. Световая микроскопия. 2. Ультрафиолетовая микроскопия. 3. Флюоресцентная (люминесцентная) микроскопия. 4. Фазово-контрастная микроскопия. 5. Микроскопия в темном поле. 6. Интерференционная микроскопия 7. Поляризационная микроскопия. 8. Электронная микроскопия. 17

Микроскоп n Этот оптический прибор позволяет наблюдать мелкие объекты. Увеличение изображения достигается системой линз объектива и окуляра. Зеркало, конденсор и диафрагма направляют световой поток и регулируют освещение объекта. Механическая часть микроскопа включает: штатив, предметный столик, макро- и микрометрический винты, тубусодержатель. 18

Специальые методы микроскопирования: - фазовоконтрастный микроскоп - (для изуч. живых неокраш-х обьектов)- микроскопия позволяет изучать живые и неокрашенные объекты. При прохождении света через окрашенные объекты изменяется амплитуда световой волны, а при прохождении света через неокрашенные – фаза световой волны, что и используют для получения высококонтрастного изображения в фазово-контрастной и интерференционной микроскопии. - темнопольный микроскоп (для изуч. живых неокраш-х обьектов). Используют специальный конденсор, выделяющий контрастирующие структуры неокрашенного материала. Темнопольная микроскопия позволяет наблюдать живые объекты. Наблюдаемый объект выглядит как освещённый на тёмном поле. При этом лучи от осветителя падают на объект сбоку, а в линзы микроскопа поступают только рассеянные лучи. 19

Специальые методы микроскопирования люминесцентный мик-п (для изуч. живых неокраш-х обьектов) микроскопия применяется для наблюдения флюоресцирующих (люминесцирующих) объектов. В люминесцентном микроскопе свет от мощного источника проходит через два фильтра. Один фильтр задерживает свет перед образцом и пропускает свет длины волны, возбуждающей флюоресценцию образца. Другой фильтр пропускает свет длины волны, излучаемой флюоресцирующим объектом. Таким образом, флюоресцирующие объекты поглощают свет одной длины волны и излучают в другой области спектра. -ультрафиолетовый способность м-па) мик-п (повышает разрешающую -поляризационный мик-п (для иссл. обьектов с упорядочонным располажением молекул - скелет. муск-ра, коллагеновые волокна и т. д.) микроскопия – формирование изображения неокрашенных анизотропных структур (например, коллагеновые волокна и миофибриллы). 20

Специальые методы микроскопирования -интерфекренционная микроскопия (для опред-я сухового остатка в клетках, определение толщины обьектов) - микроскопия объединяет принципы фазово-контрастной и поляризационной микроскопии и применяется для получения контрастного изображения неокрашенных объектов. Специальная интерференционная оптика (оптика Номарского) нашла применение в микроскопах с дифференциальным интерференционным контрастом. В. Электронная микроскопия: -трансмиционная (изучение обьектов на просвет) -сканирующий (изучение поверхности обьектов) Теоретически разрешение просвечивающего ЭМ составляет 0, 002 нм. Реальное разрешение современных микроскопов приближается к 0, 1 нм. Для биологических объектов разрешение ЭМ на практике составляет 2 нм. 21

Специальые методы микроскопирования Просвечивающий электронный микроскоп состоит из колонны, через которую в вакууме проходят электроны, излучаемые катодной нитью. Пучок электронов, фокусируемый кольцевыми магнитами, проходит через подготовленный образец. Характер рассеивания электронов зависит от плотности образца. Проходящие через образец электроны фокусируют, наблюдают на флюоресцирующем экране и регистрируют при помощи фотопластинки. Сканирующий электронный микроскоп применяют для получения трёхмерного изображения поверхности исследуемого объекта. Метод сколов (замораживание-скалывание) применяют для изучения внутреннего строения клеточных мембран. Клетки замораживают при температуре жидкого азота в присутствии криопротектора и используют для изготовления сколов. Плоскости скола проходят через гидрофобную середину двойного слоя липидов. Обнажённую внутреннюю поверхность мембран оттеняют платиной, полученные реплики изучают в сканирующем ЭМ. 22

Специальные (немикроскопические) методы: 1. Цито- или гистохимия - суть заключается использовании строгоспецифических химических реакций с светлым конечным продуктом в клетках и тканях для определения количества различных веществ(белков, ферментов, жиров, углеводов и т. д.). Можно применить на уровне светового или электронного микроскопа. 2. Цитофотометрия - метод применяется в комплексе с 1 и дает возможность количественно оценить выявленные цитогистохимическим методом белки, ферменты и т. д. 3. Авторадиография - вводят в организм вещества, содержащие радиоактивные изотопы химических элементов. Эти вещества включаются в обменные процессы в клетках. Локализацию, дальнейшие перемещения этих веществ в органах определяются на гистопрепаратах по излучению, которое улавливается фотоэмульсией, нанесенной на препарат. 4. Рентгентоструктурный анализ - позволяет определить количество химических элементов в клетках, изучить молекулярную структуру биологических микрообьектов. 24 5. Морфометрия - измерение размеров биол. структур на клеточном и субклеточном уровне.

Специальные (немикроскопические) методы 6. Микроургия - проведение очень тонких операций микроманипулятором под микроскопом (пересадка ядер, введение в клетки различных веществ, измерение биопотенциалов и т. д.) 6. Метод культивирования клеток и тканей - в питательных средах или в диффузионных камерах, имплантированных в различные ткани организма. 7. Ультрацентрофугирование - фракционирование клеток или субклеточных структур путем центрофугирования в растворах различной плотности. 8. Экспериментальный метод. 9. Метод трансплантации тканей и органов. 25

Фиксация сохраняет структуру клеток, тканей и органов, предотвращает их бактериальное загрязнение и ферментное переваривание, стабилизирует макромолекулы путём их химического сшивания. 32

Фиксирующая жидкость формалин, спирты, глутаральдегид - Наиболее распространённые фиксаторы; Криофиксация - Лучшую сохранность структур обеспечивает мгновенное замораживание образцов в жидком азоте (– 196 °С); Лиофилизация – небольшие кусочки ткани подвергаются быстрому замораживанию, прекращающему метаболические процессы. Обезвоживание- стандартная процедура удаления воды-обезвоживание в спиртах, возрастающей крепости (от 70 до 60%). Заливка – делает ткань прочной, предотвращает её раздаваливание и сминание при резании, дает возможность получать срезы стандартной толщины. Наиболее распространенная среда для заливки – парафин. Используют также – целлоидин, пластически среды и смолы. 33

Обезвоживание готовит фиксированную ткань к проникновению в неё сред для заливки. Вода живой ткани, а также вода фиксирующих смесей (большинство фиксаторов – водные растворы) после фиксации должна быть полностью удалена. Стандартная процедура удаления воды – обезвоживание в спиртах возрастающей от 60° до 100° крепости. 34

Заливка – необходимая процедура, предваряющая приготовление срезов. Заливка делает ткань прочной, предотвращает её раздавливание и сминание при резании, даёт возможность получить тонкие срезы стандартной толщины. Наиболее распространённая среда для заливки – парафин. Используют также целлоидин, пластические среды и смолы. 35

Ротационный микротом. 40 n Блоки, содержащие кусочек органа, закрепляют в подвижном объектодержателе. При его опускании на ноже остаются серийные срезы, их снимают с ножа и монтируют на предметное стекло для последующей обработки и микроскопирования.

Методы окраски гистосрезов: n Ядерные (основные): n гематоксилин – окрашивает n n n n ядра в синий цвет; железный гематоксилин; азур II (в фиолетовый); кармин (в красный); сафранин (в красный); метиловый синий (в синий); толуидиновый (в синий); тиониновый (в синий). n Цитоплазматические- (кислые): n эозин – в розовый; n эритрозин; n оранжевый «G» ; n кислый фуксин –в красный; n пикриновая кислота - в желтый; n конго –красный – в красный 44

СПЕЦИАЛЬНЫЕ Методы окраски гистосрезов n Судан III –окраска липидов и жиров в оранжевый цвет; n осмиевая кислота – окраска липидов и жиров в черный цвет; n орсеин -окраска эластических волокон в коричневый цвет; n азотнокислое серебро – импрегнация нервных элементов в темнокоричневый цвет. 45

Структуры клеток: n ОКСИФИЛИЯn способность окрашиваться кислыми красителями в розовый цвет n Базофилияn способность окрашиваться основными красителями в синий цвет n Нейтрофилия – n способность окрашиваться кислыми и основными красителями в фиолетовый цвет. 47

1

Клетка n - это элементарная живая система, состоящая из цитоплазмы, ядра, оболочки и являющаяся основой развития, строения и жизнедеятельности животных и растительных организмов.

Гликокаликс- надмембранный комплекс, состоит из сахаридов, связанных с белками и сахаридов, связанных с липидами. Функции n Рецепция (гормоны, цитокины, медиаторы и антигены) n Межклеточные взаимодействия(раздражимость и узнавание) n Пристеночное пищеварение (микроворсинки каемчатых клеток кишечника)

Функции цитолеммы: - разграничительная; - активный и пассивный транспорт веществ в обе стороны; - рецепторные функции; -контакт с соседними клетками.

Гистология (от греческого histes – ткань и logos – учение) в переводе означает «наука о тканях». Однако такое определение суживает объем этой науки, поскольку метод гистологии изучает не только ткани, но и клетки и тонкое строение органов. Кроме того, в задачу гистологии входит выяснение эволюции клеток и тканей, становление и развитие их в организме, изучение функций клеток, тканей, органов и межклеточного вещества, в изучении регенерации тканей, обеспечивающих структурную и функциональную их целостность.

В связи с этим, гистологию принято делить на три раздела: цитологию, общую гистологию и частную гистологию (микроскопическую анатомию). Как вы уже знаете, цитология – это наука о клетке – элементарной единице строения, функционирования и происхождения живой материи. В задачу общей гистологии входит изучение строения, развития, функционирования и происхождения тканей. Частная гистология – это учение о микроскопическом и ультро3микроскопическом строении органов. Следует отметить, что выше указанное деление гистологии на разделы искусственно, поскольку клетки формируют ткани, ткани входят в состав органов, а органы формирую организм.

Следовательно, клетки, ткани и органы части целого организма. Целостностью обладает только организм в его единстве с внешней средой, а клетки, ткани и органы имеют подчиненное значение. Тем не менее с делением гистологии на разделы приходится мириться. Оно необходимо, в первую очередь, для удобства изложения материала. Кроме того, каждый из разделов призван решать определенный круг проблем.

Гистология не может развиваться без тесной связи с другими биологическими дисциплинами: анатомией, физиологией, генетикой, и т.д. Кроме того, гистология связана и с химией, физикой, поскольку в гистологических исследованиях все чаще применяются физико-химические методы исследования, различные химические вещества (фиксаторы, красители) и физические приборы (микроскопы, микротомы и т.д.).

Основным методом исследования гистологии является микроскопический, который заключается в специальной подготовке объектов и рассматривании их под микроскопом. Подготовка заключается в фиксации и окрашивании объекта тем или иным красителем и изготовлении тонких срезов с последующим изучением их в микроскопе. Изучать тонкое строение гистологических объектов можно и на живых препаратах. Однако изучение объекта в живом состоянии весьма затруднительно. Во-первых гистологические структуры в проходящем свете бесцветны и почти не различимы в микроскопе, во-вторых изучению их в микроскопе препятствуют большие размеры. Все это обусловливает необходимость исследования фиксированных объектов, т.е. мертвых клеток, обработанных разными веществами, которые сохраняют ее строение и химический состав. Каждый из этих способов имеет свои преимущества и недостатки, что указывает на необходимость применения их обоих, как дополняющих друг друга.

Современная техника открывает широкие возможности для исследования гистологических структур в живом виде. На живых объектах изучаются физические свойства и химический состав клеток. При помощи микроманипулятора можно проводить различные операции на клетках (удаление внутриклеточных структур, пересадка ядра из одной клетки в другую и т.д.).

Глава 2. МЕТОДЫ ИССЛЕДОВАНИЯ В ГИСТОЛОГИИ, ЦИТОЛОГИИ И ЭМБРИОЛОГИИ

Глава 2. МЕТОДЫ ИССЛЕДОВАНИЯ В ГИСТОЛОГИИ, ЦИТОЛОГИИ И ЭМБРИОЛОГИИ

Для прогресса гистологии, цитологии и эмбриологии большое значение имеет внедрение достижений физики и химии, новых методов смежных наук - биохимии, молекулярной биологии, генной инженерии.

Современные методы исследования не только позволяют изучать ткани как единое целое, но и выделять из них отдельные типы клеток для изучения их жизнедеятельности в течение длительного времени, выделять отдельные клеточные органеллы и составляющие их макромолекулы (например, молекулы дезоксирибонуклеиновой кислоты - ДНК), исследовать их функциональные особенности.

Такие возможности открылись в связи с созданием новых приборов и технологий - различных типов микроскопов, компьютерной техники, рентге-ноструктурного анализа, применения метода ядерно-магнитного резонанса (ЯМР), радиоактивных изотопов и авторадиографии, электрофореза и хроматографии, фракционирования клеточного содержимого с помощью ультрацентрифугирования, разделения и культивирования клеток, получения гибридов; использования биотехнологических методов - получения гибридом и моноклональных антител, рекомбинантных ДНК и др.

Таким образом, биологические объекты можно изучать на тканевом, клеточном, субклеточном и молекулярном уровнях. Несмотря на внедрение в естественные науки разнообразных биохимических, биофизических, физических и технологических методов, необходимых для решения многих вопросов, связанных с жизнедеятельностью клеток и тканей, гистология в своей основе остается морфологической наукой с присущим ей набором методов. Последние позволяют охарактеризовать процессы, происходящие в клетках и тканях, их структурные особенности.

Главными этапами цитологического и гистологического анализа являются выбор объекта исследования, его подготовка для изучения под микроскопом, качественный и количественный анализ изображений гистологических элементов.

Объектами исследования служат живые и фиксированные клетки и ткани, их изображения, полученные при использовании световых и элек-

тронных микроскопов или на экране дисплея. Существует ряд методов, позволяющих проводить анализ указанных объектов.

2.1. МЕТОДЫ МИКРОСКОПИРОВАНИЯ ГИСТОЛОГИЧЕСКИХ ПРЕПАРАТОВ

Основным методом изучения биологических микрообъектов являются световая и электронная микроскопия, которые широко используются в экспериментальной и клинической практике.

Микроскопирование - главный метод изучения микрообъектов, используемый в биологии более 300 лет. Для изучения гистологических препаратов применяют разнообразные виды световых микроскопов и электронные микроскопы. С момента создания и применения первых микроскопов они постоянно совершенствовались. Современные микроскопы представляют собой сложные оптические системы, обладающие высокой разрешающей способностью. Размер самой маленькой структуры, которую можно видеть с помощью микроскопа, определяется наименьшим разрешаемым расстоянием (d), которое в основном зависит от длины волны света (λ) и длины волн электромагнитных колебаний потока электронов и др. Эта зависимость приближенно определяется формулой d = λ/2. Таким образом, чем меньше длина волны, тем меньше разрешаемое расстояние, и тем меньшие по размерам микроструктуры можно видеть в препарате.

Световая микроскопия. Для изучения гистологических микрообъектов применяют обычные световые микроскопы и их разновидности, в которых используются источники света с волнами различной длины. В обычных световых микроскопах источником освещения служит естественный или искусственный свет (рис. 2.1). Минимальная длина волны видимой части спектра примерно 0,4 мкм. Следовательно, для обычного светового микроскопа наименьшее разрешаемое расстояние приблизительно составляет 0,2 мкм, а общее увеличение (произведение увеличения объектива на увеличение окуляра) может быть 1500-2500.

Таким образом, с помощью светового микроскопа можно увидеть не только отдельные клетки размером от 4 до 150 мкм, но и их внутриклеточные структуры - органеллы, включения. Для усиления контрастности микрообъектов применяют их окрашивание.

Ультрафиолетовая микроскопия. Это разновидность световой микроскопии. В ультрафиолетовом микроскопе используют более короткие ультрафиолетовые лучи с длиной волны около 0,2 мкм. Разрешаемое расстояние здесь в 2 раза меньше, чем в обычных световых микроскопах, и составляет приблизительно 0,1 мкм. Полученное в ультрафиолетовых лучах невидимое глазом изображение преобразуется в видимое с помощью регистрации на фотопластинке или путем применения специальных устройств (люминесцентный экран, электронно-оптический преобразователь).

Флюоресцентная (люминесцентная) микроскопия. Явления флюоресценции заключаются в том, что атомы и молекулы ряда веществ, поглощая коротко-

Рис. 2.1. Микроскопы для биологических исследований:

а - световой биологический микроскоп «Биолам-С»: 1 - основание; 2 - ту-бусодержатель; 3 - наклонный тубус; 4 - окуляр; 5 - револьвер; 6 - объективы; 7 - столик; 8 - конденсор с ирисовой диафрагмой; 9 - винт конденсора; 10 - зеркало; 11 - микрометрический винт; 12 - макрометрический винт; б - электронный микроскоп ЭМВ-100АК с автоматизированной системой обработки изображений: 1 - колонка микроскопа (с электронно-оптической системой и камерой для образцов); 2 - пульт управления; 3 - камера с люминесцентным экраном; 4 - блок анализа изображений; 5 - датчик видеосигнала; в - конфокальный микроскоп: 1 - световой микроскоп; 2 - регистратор изображения (фотоэлектронный умножитель);

3 - сканирующее устройство для перемещения светового луча по оси X, Y, Z;

4 - блок питания и стойка управления лазерами; 5 - компьютер для обработки изображений

волновые лучи, переходят в возбужденное состояние. Обратный переход из возбужденного состояния в нормальное происходит с испусканием света, но с большей длиной волны. В флюоресцентном микроскопе в качестве источников света для возбуждения флюоресценции применяют ртутные или ксе-ноновые лампы сверхвысокого давления, обладающие высокой яркостью в области спектра 0,25-0,4 мкм (ближние ультрафиолетовые лучи) и 0,4-0,5 мкм (сине-фиолетовые лучи). Длина световой волны флюоресценции всегда больше длины волны возбуждающего света, поэтому их разделяют с помощью светофильтров и изучают изображение объекта только в свете флюоресценции. Различают собственную, или первичную, и наведенную, или вторичную, флюоресценцию. Любая клетка живого организма обладает собственной флюоресценцией, однако она часто бывает чрезвычайно слабой.

Первичной флюоресценцией обладают серотонин, катехоламины (адреналин, норадреналин), содержащиеся в нервных, тучных и других клетках, после фиксации тканей в парах формальдегида при 60-80 °С (метод Фалька).

Вторичная флюоресценция возникает при обработке препаратов специальными красителями - флюорохромами.

Существуют различные флюорохромы, которые специфически связываются с определенными макромолекулами (акридиновый оранжевый, родамин, флюоресцеин и др.). Например, при обработке препаратов акридиновым оранжевым ДНК и ее соединения в клетках имеют ярко-зеленое, а РНК и ее производные - ярко-красное свечение. Существует много красителей, с помощью которых можно выявить белки, липиды, внутриклеточные ионы кальция, магния, натрия и др. Таким образом, спектральный состав излучения несет информацию о внутреннем строении объекта и его химическом составе. Вариант метода флюоресцентной микроскопии, при котором и возбуждение, и излучение флюоресценции происходят в ультрафиолетовой области спектра, получил название метода ультрафиолетовой флюоресцентной микроскопии.

Для повышения контрастности флюорохромированных объектов применяется конфокальный вариант оптического микроскопа (см. рис. 2.1, в). В качестве освещения используется пучок монохроматического света малого диаметра, который создает лазерный источник. В каждый момент времени в фокусе микроскопа находится небольшой участок (объем) клетки. Пучок света перемещается по объекту (сканирует объект по осям X, Y, Z). При каждом перемещении пучка света по одной из линий сканирования получается информация об исследуемой структуре, находящейся в данной точке (объеме) по линии сканирования (оптическом срезе клетки), например о локализации белков в составе микротрубочек в клетке. Вся полученная информация от каждой точки сканирования клетки передается на компьютер, объединяется с помощью специальной программы и выдается на экран монитора в виде контрастного изображения. С помощью данного метода микроскопии получается информация о форме клеток, цитоскеле-те, структуре ядра, хромосом и др. С помощью программы компьютер на основе полученной информации по каждой линии сканирования создает объемное изображение клетки, что позволяет рассматривать клетку под разными углами зрения.

Фазово-контрастная микроскопия. Этот метод служит для получения контрастных изображений прозрачных и бесцветных живых объектов, невидимых при обычных методах микроскопирования. Метод основан на том, что свет, проходя структуры с различным коэффициентом преломления, изменяет свою скорость. Используемая конструкция оптики микроскопа дает возможность преобразовать не воспринимаемые глазом фазовые изменения прошедшего через неокрашенный препарат света в изменения его амплитуды, т. е. яркости получаемого изображения. Метод фазового контраста обеспечивает контрастность изучаемых неокрашенных структур за счет специальной кольцевой диафрагмы, помещаемой в конденсоре, и так называемой фазовой пластинки, находящейся в объективе. Разновидностью метода фазового контраста является метод фазово-темнопольного контраста, дающий негативное по сравнению с позитивным фазовым контрастом изображение.

Микроскопия в темном поле. В темнопольном микроскопе только свет, который дает дифракцию (огибание волнами) структур в препарате, достигает объектива. Происходит это благодаря наличию в микроскопе специального конденсора, который освещает препарат строго косым светом; лучи от осветителя направляются сбоку. Таким образом, поле выглядит темным, а мелкие частицы в препарате отражают свет, который далее попадает в объектив. В клинике этот метод применяют для изучения кристаллов в моче (мочевая кислота, оксалаты), для демонстрации спирохет, в частности Treponema pallidum, вызывающей сифилис, и др.

Интерференционная микроскопия. Разновидностями фазово-контрастного микроскопа являются интерференционный микроскоп, который предназначен для количественного определения массы ткани. Дифференциальный интерференционный микроскоп (с оптикой Номарского) используют для изучения рельефа поверхности клеток и других биологических объектов.

В интерференционном микроскопе пучок света от осветителя разделяется на два потока: один проходит через объект и изменяется по фазе колебания, второй идет, минуя объект. В призмах объектива оба пучка накладываются друг на друга. В результате строится изображение, в котором участки микрообъекта разной толщины и плотности различаются по степени контрастности. Проведя количественную оценку изменений, определяют концентрацию и массу сухого вещества.

Фазово-контрастный и интерференционный микроскопы позволяют изучать живые клетки. В них используется интерференция, возникающая при комбинации двух наборов волн и создающая изображение микроструктур. Преимуществом фазово-контрастной, интерференционной и темно-польной микроскопии является возможность наблюдать клетки в процессе движения и митоза. При этом регистрация движения клеток может производиться с помощью цейтраферной (покадровой) микровидеосъемки.

Поляризационная микроскопия. Поляризационный микроскоп является модификацией светового микроскопа, в котором установлены два поляризационных фильтра: первый (поляризатор) - между пучком света и объектом, а второй (анализатор) - между линзой объектива и глазом. Через первый фильтр свет проходит только в одном направлении, второй фильтр имеет главную ось,

которая располагается перпендикулярно первому фильтру, и он не пропускает свет. Получается эффект темного поля. Структуры, содержащие продольно ориентированные молекулы (коллаген, микротрубочки, микрофиламенты), и кристаллические структуры, обладают свойством вращать ось световых лучей, исходящих из поляризатора. При изменении оси вращения данные структуры проявляются как светящиеся на темном фоне. Способность кристаллов или паракристаллических образований к раздвоению световой волны на обыкновенную и перпендикулярную к ней называется двойным лучепреломлением. Такой способностью обладают фибриллы поперечнополосатых мышц.

Электронная микроскопия. Большим шагом вперед в развитии техники микроскопии было создание и применение электронного микроскопа (см. рис. 2.1). В электронном микроскопе используется поток электронов с волнами более короткими, чем в световом микроскопе. При напряжении 50 000 В длина волны электромагнитных колебаний, возникающих при движении потока электронов в вакууме, равна 0,0056 нм. Теоретически рассчитано, что разрешаемое расстояние в этих условиях может быть около 0,002 нм, или 0,000002 мкм, т. е. в 100 000 раз меньше, чем в световом микроскопе. Практически в современных электронных микроскопах разрешаемое расстояние составляет около 0,1-0,7 нм.

В гистологии используются трансмиссионные (просвечивающие) электронные микроскопы (ТЭМ), сканирующие (растровые) электронные микроскопы (СЭМ) и их модификации. С помощью ТЭМ можно получить лишь плоскостное изображение изучаемого микрообъекта. Для получения пространственного представления о структурах применяют СЭМ, способные создавать трехмерное изображение. Растровый электронный микроскоп работает по принципу сканирования электронным микрозондом исследуемого объекта, т. е. последовательно «ощупывает» остро сфокусированным электронным пучком отдельные точки поверхности. Такое исследование объекта называется сканированием (считыванием), а рисунок, по которому движется микрозонд, - растром. Полученное изображение выводится на телевизионный экран, электронный луч которого движется синхронно с микрозондом.

Главными достоинствами растровой электронной микроскопии являются большая глубина резкости, широкий диапазон непрерывного изменения увеличения (от десятков до десятков тысяч раз) и высокая разрешающая способность. Современными вариантами приборов для изучения поверхности объекта является атомно-силовой микроскоп и сканирующий туннельный микроскоп.

Электронная микроскопия с использованием метода замораживания - скалывания применяется для изучения деталей строения мембран и межклеточных соединений. Для изготовления сколов клетки замораживают при низкой температуре (-160 °С). При исследовании мембраны плоскость скола проходит через середину бислоя липидов. Далее на внутренние поверхности полученных половинок мембран напыляют металлы (платина, палладий, уран), изучают их с помощью ТЭМ и микрофотографии.

Метод криоэлектронной микроскопии. Быстро замороженный тонкий слой (около 100 нм) образца ткани помещают на микроскопическую решетку и исследуют в вакууме микроскопа при -160 °С.

Метод электронной микроскопии «замораживание - травление» применяют для изучения внешней поверхности мембран клеток. После быстрого замораживания клеток при очень низкой температуре блок раскалывают лезвием ножа. Образующиеся кристаллы льда удаляют путем возгонки воды в вакууме. Затем участки клеток оттеняют, напыляя тонкую пленку тяжелого металла (например, платины). Метод позволяет выявлять трехмерную организацию структур.

Таким образом, методы замораживания - скалывания и замораживания - травления позволяют изучать нефиксированные клетки без образования в них артефактов, вызываемых фиксацией.

Методы контрастирования солями тяжелых металлов позволяют исследовать в электронном микроскопе отдельные макромолекулы - ДНК, крупных белков (например, миозин). При негативном контрастировании изучают агрегаты макромолекул (рибосомы, вирусы) либо белковые филаменты (актиновые нити).

Электронная микроскопия ультратонких срезов, полученных методом криоультрамикро-томии. При этом методе кусочки тканей без фиксации и заливки в твердые среды быстро охлаждают в жидком азоте при температуре -196 °С. Это обеспечивает торможение метаболических процессов клеток и переход воды из жидкой фазы в твердую. Далее блоки режут на ультрамикротоме при низкой температуре. Такой метод приготовления срезов обычно используют для определения активности ферментов, а также для проведения иммунохимических реакций. Для выявления антигенов применяют антитела, связанные с частицами коллоидного золота, локализацию которого легко выявить на препаратах.

Методы сверхвысоковольтной микроскопии. Используют электронные микроскопы с ускоряющим напряжением до 3 000 000 В. Преимущество этих микроскопов в том, что они позволяют исследовать объекты большой толщины (1-10 мкм), так как при высокой энергии электронов они меньше поглощаются объектом. Стереоскопическая съемка позволяет получать информацию о трехмерной организации внутриклеточных структур с высоким разрешением (около 0,5 нм).

2.2. МЕТОДЫ ИССЛЕДОВАНИЯ ФИКСИРОВАННЫХ КЛЕТОК И ТКАНЕЙ

Основным объектом исследования являются гистологические препараты, приготовленные из фиксированных тканей и органов. Препарат может представлять собой мазок (например, мазок крови, костного мозга, слюны, цереброспинальной жидкости и др.), отпечаток (например, селезенки, тимуса, печени), пленку из ткани (например, брюшины, плевры, мягкой оболочки мозга), тонкий срез. Гистологические препараты могут изучаться без специальной обработки, например с применением фазово-контрастного микроскопа. Наиболее часто для световой микроскопии используются срезы ткани или органа с последующей их окраской.

Процесс изготовления гистологического препарата для световой и электронной микроскопии включает следующие основные этапы: 1) взятие материала и его фиксация; 2) уплотнение материала; 3) приготовление срезов; 4) окрашивание или контрастирование срезов. Для световой микроскопии необходим еще один этап - заключение срезов в бальзам или другие

прозрачные среды (5). Фиксация обеспечивает предотвращение процессов разложения, что способствует сохранению целостности структур. Это достигается тем, что взятый из органа маленький образец либо погружают в фиксатор (спирт, формалин, растворы солей тяжелых металлов, осмиевая кислота, специальные фиксирующие смеси), либо подвергают термической обработке. Под действием фиксатора в тканях и органах происходит необратимая коагуляция белков, вследствие которой жизнедеятельность прекращается, а структуры становятся мертвыми, фиксированными.

Уплотнение кусочков, необходимое для приготовления срезов, производится путем обезвоживания спиртами возрастающей концентрации и пропитывания парафином, целлоидином, органическими смолами. Более быстрое уплотнение достигается применением метода замораживания кусочков, например в жидкой углекислоте.

Приготовление срезов производится с помощью специальных приборов - микротомов и замораживающих микротомов, или криостатов (для световой микроскопии) и ультрамикротомов (для электронной микроскопии). Толщина среза для светооптического исследования колеблется от 5 до 20 мкм, а для электронной микроскопии - от 40 до 100 нм. Для сравнения 1 мм равен 1000 мкм и 1 000 000 нм.

Окрашивание срезов (для световой микроскопии) или напыление их солями металлов (для электронной микроскопии) применяют для увеличения контрастности изображения отдельных структур. Методы окраски гистологических структур очень разнообразны и выбираются в зависимости от задач исследования. Гистологические красители подразделяют на кислые, основные и нейтральные. В качестве примера можно привести наиболее известный основной краситель гематоксилин, который окрашивает ядра в фиолетовый цвет, и кислый краситель - эозин, окрашивающий цитоплазму в розово-оранжевый цвет. Избирательное сродство структур к определенным красителям обусловлено их химическим составом и физическими свойствами. Структуры, хорошо окрашивающиеся кислыми красителями, называются оксифильными (ацидофильными, эозинофильными), а окрашивающиеся основными - базофильными. Структуры, воспринимающие как кислые, так и основные красители, являются нейтрофильными (гетерофильными). Существуют структуры клетки, которые окрашиваются в цвет, отличный от цвета используемого красителя. Это явление называется метахромазия. Окрашенные препараты обычно обезвоживают в спиртах возрастающей крепости и просветляют в ксилоле, бензоле, толуоле или некоторых маслах. Для длительного сохранения обезвоженный гистологический срез заключают между предметным и покровным стеклами в канадский бальзам или другие вещества. Готовый гистологический препарат может быть использован для изучения под микроскопом в течение многих лет. Для электронной микроскопии срезы, полученные с помощью ультрамикротома, помещают на специальные сетки, контрастируют солями свинца, кобальта, после чего просматривают в микроскопе и фотографируют. Полученные микрофотографии служат объектом изучения наряду с гистологическими препаратами.

2.3. МЕТОДЫ ИССЛЕДОВАНИЯ ЖИВЫХ КЛЕТОК

И ТКАНЕЙ

Изучение живых клеток и тканей позволяет получить наиболее полную информацию об их жизнедеятельности - проследить движение, процессы деления, разрушения, роста, дифференцировки и взаимодействия клеток, продолжительность их жизненного цикла, реактивные изменения в ответ на действие различных факторов.

Прижизненные исследования клеток в организме (in vivo). Одним из прижизненных методов исследования является наблюдение структур в живом организме. С помощью специальных просвечивающих микроскопов-иллюминаторов, например, можно изучать в динамике циркуляцию крови в микрососудах. После проведения анестезии у животного объект исследования (например, брыжейка кишки) выводят наружу и рассматривают с помощью микроскопа, при этом ткани должны постоянно увлажняться изотоническим раствором натрия хлорида. Однако длительность такого наблюдения ограничена. Лучшие результаты дает метод вживления прозрачных камер в организм животного.

Наиболее удобным органом для вживления таких камер и последующего наблюдения является ухо какого-либо животного (например, кролика). Участок уха с прозрачной камерой помещают на предметный столик микроскопа и в этих условиях изучают динамику изменения клеток и тканей в течение продолжительного времени. Так могут изучаться процессы выселения лейкоцитов из кровеносных сосудов, различные стадии образования соединительной ткани, капилляров, нервов и другие процессы. В качестве естественной прозрачной камеры можно использовать глаз экспериментальных животных. Клетки, ткани или образцы органов помещают в жидкость передней камеры глаза в угол, образованный роговицей и радужкой, и наблюдение ведут через прозрачную роговицу. Таким образом была проведена трансплантация оплодотворенной яйцеклетки и прослежены ранние стадии развития зародыша. Обезьянам были пересажены небольшие кусочки матки и изучены изменения ее слизистой оболочки в различные фазы менструального цикла.

Широкое применение нашел метод трансплантации клеток крови и костного мозга от здоровых животных-доноров животным-реципиентам, подвергнутым смертельному облучению. Животные-реципиенты после трансплантации оставались живыми вследствие приживления донорских клеток, образующих в селезенке колонии кроветворных клеток. Исследование числа колоний и их клеточного состава позволяет выявлять количество родоначальных кроветворных клеток и различные стадии их дифференцировки. С помощью метода колониеобразования установлены источники развития всех клеток крови.

Витальное и суправитальное окрашивание. При витальном (прижизненном) окрашивании клеток и тканей краситель вводят в организм животного, при этом он избирательно окрашивает определенные клетки, их органеллы или межклеточное вещество. Например, с помощью трипанового синего или литиевого кармина выявляют фагоциты, а с помощью ализарина - новообразованный матрикс кости.

Суправитальным окрашиванием называют окрашивание живых клеток, выделенных из организма. Таким способом выявляют молодые формы эритроцитов - ретикулоциты крови (краситель бриллиантовый крезиловый голубой), митохондрии в клетках (краситель зеленый янус), лизосомы (краситель нейтральный красный).

Исследования живых клеток и тканей в культуре (in vitro). Этот метод является одним из самых распространенных. Выделенные из организма человека или животных клетки, маленькие образцы тканей или органов помещают в стеклянные или пластмассовые сосуды, содержащие специальную питательную среду - плазму крови, эмбриональный экстракт, а также искусственные среды.

Различают суспензионные культуры (клетки взвешены в среде), тканевые, органные и монослойные культуры (эксплантированные клетки образуют на стекле сплошной слой). Обеспечиваются стерильность среды и температура, соответствующая температуре тела. В этих условиях клетки в течение длительного времени сохраняют основные показатели жизнедеятельности - способность к росту, размножению, дифференцировке, движению. Такие культуры могут существовать многие дни, месяцы и даже годы, если обновлять среду культивирования и пересаживать жизнеспособные клетки в другие сосуды. Некоторые виды клеток благодаря изменениям в их геноме могут сохраняться и размножаться в культуре, образуя непрерывные клеточные линии. В разработку методов культивирования клеток и тканей большой вклад внесли А. А. Максимов, А. В. Румянцев, Н. Г. Хлопин, А. Д. Тимофеевский, Ф. М. Лазаренко. В настоящее время получены клеточные линии фибробластов, миоцитов, эпителиоцитов, макрофагов, которые существуют многие годы.

Использование метода культивирования позволило выявить ряд закономерностей дифференцировки, злокачественного перерождения клеток, взаимодействий клеток с вирусами и микробами. Особую значимость метод культивирования тканей имеет для проведения экспериментальных наблюдений. Взятые из организма человека клетки при пункции или биопсии могут в культуре тканей использоваться для определения пола, наследственных заболеваний, злокачественного перерождения, выявления действия ряда токсичных веществ.

Клеточные культуры широко применяются для гибридизации клеток.

Разработаны методы разделения тканей на клетки, выделение отдельных типов клеток и их культивирования. Вначале ткань превращают в суспензию клеток путем разрушения межклеточных контактов и внеклеточного матрикса с помощью протеолитических ферментов (трипсин, коллагеназа) и соединений, связывающих Са 2+ (с помощью ЭДТА - этилендиаминтетраацетата). Далее полученную суспензию разделяют на фракции клеток различных типов с помощью центрифугирования, позволяющего отделить более тяжелые клетки от легких, большие от малых, или путем прилипания клеток к стеклу или пластмассе, способность к которому у различных типов клеток неодинакова. Для обеспечения специфического прилипания клеток к поверхности стекла используют антитела, специфически связывающиеся с клетками одного типа. Прилипшие клетки затем отделяют, разрушая

матрикс ферментами, при этом получают взвесь однородных клеток. Более тонким методом разделения клеток является мечение антителами, связанными с флюоресцирующими красителями. Меченые клетки отделяются от немеченых с помощью сортера (электронного флюоресцентно-активируемого клеточного анализатора). Клеточный анализатор сортирует в 1 секунду около 5000 клеток. Выделенные клетки можно изучать в условиях культивирования.

Метод культивирования клеток позволяет изучать их жизнедеятельность, размножение, дифференцировку, взаимодействие с другими клетками и др.

Культуры обычно готовят из суспензии клеток, полученной вышеописанным методом диссоциации ткани. Большинство клеток не способны расти в суспензии, им необходима твердая поверхность, в качестве которой используют поверхность пластиковой культуральной чашки, иногда с компонентами внеклеточного матрикса, например коллагена. Первичными культурами называют культуры, приготовленные непосредственно после первого этапа фракционирования клеток, вторичными - культуры клеток, пересаженные из первичных культур в новую среду. Можно последовательно перевивать клетки в течение недель и месяцев, при этом клетки сохраняют характерные для них гистогенетические признаки (например, клетки эпителия образуют пласты). Исходным материалом для клеточных культур обычно служат эмбриональные ткани и ткани новорожденных.

В качестве питательных сред используют смеси солей, аминокислот, витаминов, сыворотки крови, экстракт куриных эмбрионов, эмбриональную сыворотку и др. В настоящее время разработаны специальные среды для культивирования различных типов клеток. Они содержат один или несколько белковых факторов роста, необходимых клеткам для жизнедеятельности и размножения. Например, для роста нервных клеток необходим фактор роста нервов.

У большинства клеток в культуре наблюдается определенное число делений (50-100), а затем они погибают. Иногда в культуре появляются мутантные клетки, которые размножаются бесконечно и образуют клеточную линию (фибробла-сты, эпителиоциты, миобласты и др.). Мутантные клетки отличаются от раковых клеток, также способных к непрерывному делению, но клетки растут без прикрепления к твердой поверхности. Раковые клетки в культуральных чашках образуют более плотную популяцию, чем популяции обычных клеток. Аналогичное свойство можно вызвать экспериментально у нормальных клеток путем трансформации их опухолеродными вирусами или химическими соединениями, при этом образуются неопластически трансформированные клеточные линии. Клеточные линии нетрансформированных и трансформированных клеток можно длительно сохранять при низких температурах (-70 °С). Генетическую однородность клеток усиливают клонированием, когда из одной клетки при ее последовательном делении получают большую колонию однородных клеток. Клон - это популяция клеток, происходящих из одной клетки-предшественника.

Клеточные гибриды. При слиянии двух клеток различных типов образуется гетерокарион - клетка с двумя ядрами. Для получения гетерокариона суспензию клеток обрабатывают полиэтиленгликолем или инактивирован-ными вирусами для повреждения плазмолемм клеток, после чего клетки способны к слиянию. Например, неактивное ядро эритроцита курицы становится активным (синтез РНК, репликация ДНК) при слиянии клеток и переносе в цитоплазму другой клетки, растущей в культуре ткани. Гетерокарион способен к митозу, в результате чего образуется гибридная

клетка. Оболочки ядер у гетерокариона разрушаются, и их хромосомы объединяются в одном большом ядре.

Клонирование гибридных клеток приводит к образованию гибридных клеточных линий, которые используются для изучения генома. Например, в гибридной клеточной линии «мышь-человек» установлена роль хромосомы 11 человека в синтезе инсулина.

Гибридомы. Клеточные линии гибридом используют для получения моно-клональных антител. Антитела вырабатываются плазмоцитами, которые образуются из В-лимфоцитов при иммунизации. Определенный вид антител получают при иммунизации мышей конкретными антигенами. Если клонировать такие иммунизированные лимфоциты, то можно получить большое количество однородных антител. Однако время жизни В-лимфоцитов в культуре ограничено. Поэтому производят их слияние с «бессмертными» опухолевыми клетками (В-лимфомы). В результате образуются гибридомы (гибрид-клетка с геномом от двух разных клеток; ома - окончание в названиях опухолей). Такие гибридомы способны размножаться длительно в культуре и синтезировать антитела определенного вида. Каждый клон гибридомы является источником моноклональных антител. Все молекулы антител данного вида обладают одинаковой специфичностью связывания антигенов. Можно получать моноклональные антитела против любого белка, содержащегося в клетке, и использовать их для установления локализации белков в клетке, а также для выделения белка из смеси (очистка белков), что позволяет исследовать структуру и функцию белков. Моноклональные антитела применяют также в технологии клонирования генов.

Антитела можно использовать для изучения функции различных молекул, вводя их через плазмолемму непосредственно в цитоплазму клеток тонкой стеклянной пипеткой. Например, введение антител к миозину в цитоплазму оплодотворенной яйцеклетки морского ежа останавливает разделение цитоплазмы.

Технология рекомбинантных ДНК. Классические генетические методы позволяют изучать функцию генов, анализируя фенотипы мутантных организмов и их потомства. Технология рекомбинантных ДНК дополняет эти методы, позволяет проводить детальный химический анализ генетического материала и получать в больших количествах клеточные белки.

Методы гибридизации широко используют в современной биологии для изучения структуры генов и их экспрессии.

2.4 МЕТОДЫ ИССЛЕДОВАНИЯ ХИМИЧЕСКОГО СОСТАВА И МЕТАБОЛИЗМА КЛЕТОК И ТКАНЕЙ

Для изучения химического состава биологических структур - локализации веществ, их концентрации и динамики в процессах метаболизма применяют специальные методы исследования.

Цито- и гистохимические методы. Эти методы позволяют выявлять локализацию различных химических веществ в структурах клеток, тканей и орга-

нов - ДНК, РНК, белков, углеводов, липидов, аминокислот, минеральных веществ, витаминов, активность ферментов. Эти методы основаны на специфичности реакции между химическим реактивом и субстратом, входящим в состав клеточных и тканевых структур, и окрашивании продуктов химических реакций. Для контроля специфичности реакции часто применяют соответствующие ферменты. Например, для выявления в клетках рибонуклеиновой кислоты (РНК) часто используют галлоцианин - краситель с основными свойствами, а наличие РНК подтверждают контрольной обработкой рибонуклеазой, расщепляющей РНК. Галлоцианин окрашивает РНК в сине-фиолетовый цвет. Если срез предварительно обработать рибонуклеазой, а затем окрасить галлоцианином, то отсутствие окрашивания подтверждает наличие в структуре рибонуклеиновой кислоты. Описание многочисленных цито- и гистохимических методов дается в специальных руководствах.

Сочетание гистохимических методов с методом электронной микроскопии привело к развитию нового перспективного направления - электронной гистохимии. Этот метод позволяет изучать локализацию различных химических веществ не только на клеточном, но и на субклеточном и молекулярном уровнях. Для изучения макромолекул клеток используют очень чувствительные методы с применением радиоактивных изотопов и антител, позволяющие обнаружить даже небольшое содержание молекул (менее

1000).

Радиоактивные изотопы при распаде ядра испускают заряженные частицы (электроны) или излучение (например, гамма-лучи), которые можно зарегистрировать специальными приборами. Радиоактивные изотопы используют в методе радиоавтографии. Например, с помощью радиоизотопов 3 Н-тимидина исследуют ДНК ядра, с помощью 3 Н-уридина - РНК.

Метод радиоавтографии. Этот метод дает возможность наиболее полно изучить обмен веществ в разных структурах. В основе метода лежит использование радиоактивных элементов (например, фосфора 32 Р, углерода 14 С, серы 35 S, водорода 3 Н) или меченных ими соединений. Радиоактивные вещества в гистологических срезах обнаруживают с помощью фотоэмульсии, которую наносят на препарат и затем проявляют. В участках препарата, где фотоэмульсия соприкасается с радиоактивным веществом, происходит фотореакция, в результате которой образуются засвеченные участки (треки). Этим методом можно определять, например, скорость включения меченых аминокислот в белки, образование нуклеиновых кислот, обмен йода в клетках щитовидной железы и др.

Методы иммунофлюоресцентного и иммуноцитохимического анализа. Применение антител. Антитела - защитные белки, вырабатываемые плаз-моцитами (производными В-лимфоцитов) в ответ на действие чужеродных веществ (антигенов). Количество различных форм антител достигает миллиона. Каждое антитело имеет участки для «узнавания» молекул, вызвавших синтез этого антитела. В связи с высокой специфичностью антител в отношении антигенов они могут быть использованы для выявления любых белков клетки. Метод основан на реакциях антиген-антитело. Каждая клетка организма имеет специфический антигенный состав, который глав-

ным образом определяется белками. Для усиления специфичности реакции применяют моноклональные антитела, образуемые линией клеток, - клонами (одна линия - один клон), полученной методом гибридом из одной клетки. Метод гибридом позволяет получать моноклональные антитела с одинаковой специфичностью и в неограниченных количествах. Антитела можно использовать для изучения антигенов как на световом, так и на ультраструктурном уровнях с помощью электронного микроскопа. В клинической диагностике широкое применение получили методы иммуногистохимии на парафиновых срезах. Предложено большое количество молекулярных маркеров и методов обнаружения белков промежуточных филаментов, пролиферативных, дифференцировочных и апоптозных белков в клетках. Для стандартизации обработки препаратов используется иммуностейнер - устройство, с помощью которого все операции проводятся без вмешательства со стороны исследователя.

Методы иммунофлюоресцентного и иммуногистохимического анализов широко и эффективно используются в научных исследованиях и в лабораторной диагностике. Продукты реакции можно окрашивать флюоресцирующими красителями и выявлять в люминесцентном микроскопе или использовать специальные наборы реактивов, которые окрашивают исследуемые белки, и анализировать препараты с помощью светового микроскопа. Эти методы применяются для изучения процессов дифференцировки клеток, выявления в них специфических химических соединений и структур. Методы позволяют с высокой точностью охарактеризовать функциональное состояние клеток, выявить гистогенетическую принадлежность и трансформацию клетки при онкологических заболеваниях.

Фракционирование клеточного содержимого. Фракционировать структуры и макромолекулы клеток можно различными методами - ультрацентрифугированием, хроматографией, электрофорезом. Подробнее эти методы описаны в учебниках биохимии.

Ультрацентрифугирование. С помощью этого метода клетки можно разделить на органеллы и макромолекулы. Вначале разрушают клетки осмотическим шоком, ультразвуком или механическим воздействием. При этом мембраны (плазмолемма, эндоплазматическая сеть) распадаются на фрагменты, из которых формируются мельчайшие пузырьки, а ядра и органеллы (митохондрии, комплекс Гольджи, лизосомы и пероксисомы) сохраняются интактными и находятся в образующей суспензии.

Для разделения вышеуказанных компонентов клетки применяют высокоскоростную центрифугу (80 000-150 000 об./мин). Вначале оседают (седи-ментируются) на дне пробирки более крупные части (ядра, цитоскелет). При дальнейшем увеличении скоростей центрифугирования надосадоч-ных фракций последовательно оседают более мелкие частицы - сначала митохондрии, лизосомы и пероксисомы, затем микросомы и мельчайшие пузырьки и, наконец, рибосомы и крупные макромолекулы. При центрифугировании различные фракции оседают с различной скоростью, образуя в пробирке отдельные полосы, которые можно выделить и исследовать. Фракционированные клеточные экстракты (бесклеточные системы) широ-

ко используют для изучения внутриклеточных процессов, например для изучения биосинтеза белка, расшифровки генетического кода и др.

Хроматография широко используется для фракционирования белков.

Электрофорез позволяет разделить белковые молекулы с различным зарядом при помещении их водных растворов (или в твердом пористом матрик-се) в электрическом поле.

Методы хроматографии и электрофореза применяют для анализа пептидов, получаемых при расщеплении белковой молекулы, и получения так называемых пептидных карт белков. Подробно эти методы описаны в учебниках биохимии.

Изучение химического состава живых клеток. Для изучения распределения веществ и их метаболизма в живых клетках используют методы ядерного магнитного резонанса и микроэлектродную технику.

Ядерный магнитный резонанс позволяет изучать малые молекулы низкомолекулярных веществ. Образец ткани содержит атомы, которые характеризуются способностью поглощать энергию на различных резонансных частотах. Диаграмма поглощения на резонансных частотах для данного образца составит его спектр ЯМР. В биологии сигнал ЯМР от протонов (ядер водорода) широко используется для изучения белков, нуклеиновых кислот и др. Для изучения макромолекул внутри живой клетки часто применяют изотопы 3 Н, 14 С, 32 Р для получения сигнала ЯМР и слежения за его изменением в процессе жизнедеятельности клетки. Так, изотоп фосфора используется для изучения мышечного сокращения - изменений содержания в тканях АТФ и неорганического фосфата. Изотоп углерода позволяет с помощью ЯМР исследовать многие процессы, в которых участвует глюкоза. Использование ЯМР ограничено его низкой чувствительностью: в 1 г живой ткани должно содержаться не менее 0,2 ммоль исследуемого вещества. Преимуществом метода является его безвредность для живых клеток.

Микроэлектродная техника. Микроэлектроды представляют собой стеклянные трубочки, заполненные электропроводящим раствором (обычно раствор КС1 в воде), диаметр конца которых измеряется долями микрометра. Кончик такой трубочки можно вводить в цитоплазму клетки через плазмолемму и определять концентрацию ионов Н+, Na+, К+, С1 - , Са 2 +, Mg 2 +, разность потенциалов на плазмолемме, а также производить инъекцию молекул в клетку. Для определения концентрации конкретного иона используют ионселективные электроды, которые заполняют ионообменной смолой, проницаемой только для данного иона. Микроэлектродную технику применяют для изучения транспорта ионов через специальные ионные каналы (специализированные белковые каналы) в плазмолемме. При этом используют микроэлектрод, который плотно прижимают к соответствующему участку плазмолеммы. Этот метод позволяет исследовать функцию одиночной белковой молекулы. Изменение концентрации ионов внутри клетки можно определить с помощью люминесцирующих индикаторов. Например, для изучения внутриклеточной концентрации Са 2+ используют люминесцентный белок акварин (выделен из медузы), который излучает свет в присутствии ионов Са 2+ и реагирует на изменение концентрации последнего в пределах 0,5-10 мкмоль. Синтезированы также флюоресцентные индикаторы, прочно связывающиеся с Са 2+ . Создание различных новых типов внутриклеточных индикаторов и современных способов анализа изображений позволяет точно и быстро определять внутриклеточную концентрацию многих низкомолекулярных веществ.

2.5. КОЛИЧЕСТВЕННЫЕ МЕТОДЫ

В настоящее время наряду с качественными методами разработаны и применяются количественные гистохимические методы определения содержания различных веществ в клетках и тканях. Особенность количественных гистохимических (в отличие от биохимических) методов исследования заключается в возможности изучения концентрации химических компонентов в конкретных структурах клеток и тканей.

Цитоспектрофотометрия - метод изучения химического состава клетки, основанный на избирательном поглощении теми или иными веществами лучей с определенной длиной волны. По интенсивности поглощения монохроматического света, которая зависит от концентрации вещества, производится определение его содержания в клетке. Так, например, определяется содержание ДНК в ядре, РНК и суммарного белка в цитоплазме и др.

Цитоспектрофлюориметрия - метод количественного изучения внутриклеточных веществ по спектрам их флюоресценции или по интенсивности флюоресценции при облучении препарата заранее выбранной длиной световой волны (цитофлюориметрия). При этом используются флюорохромы, количественно связывающиеся с веществами клетки (ДНК, РНК, белками и др.).

Современные микроскопы - цитофлюориметры позволяют обнаружить в различных структурах малые количества вещества (до 10 -14 -10 -16 г) и оценить локализацию исследуемых веществ в микроструктурах.

Интерферометрия. Этот метод позволяет оценить сухую массу и концентрацию плотных веществ в живой и фиксированной клетках. С помощью этого метода, например, можно установить суммарное содержание белков в живых и фиксированных клетках.

2.6. МЕТОДЫ АНАЛИЗА ИЗОБРАЖЕНИЯ КЛЕТОЧНЫХ И ТКАНЕВЫХ СТРУКТУР

Полученные изображения микрообъектов в микроскопе, на экране дисплея, на электронных микрофотографиях могут подвергаться специальному анализу - выявлению морфометрических, денситометрических параметров и их статистической обработке. Морфометрические методы позволяют определять с помощью специальных сеток (Е. Вейбеля, А. А. Глаголева, С. Б. Стефанова) число любых структур, площади их сечений, диаметры и др. В частности в клетках могут быть измерены площади ядер, цитоплазмы, их диаметры, ядерно-цитоплазматические отношения и др. Существуют ручная морфометрия и автоматизированная морфометрия, при которой все параметры измеряются и регистрируются в приборе автоматически.

Все большее распространение получают автоматизированные системы обработки изображений (АСОИз), позволяющие наиболее эффективно реализовать перечисленные выше количественные методы для изучения клеток и тканей. При этом аналитические возможности количественной микроскопии дополняются методами анализа и распознавания образцов, основан-

ными на обработке с помощью электронно-вычислительных машин (ЭВМ) информации, извлекаемой из изображений клеток и тканей. По существу можно говорить об устройствах, не только усиливающих оптические возможности зрительного анализатора человека, но и многократно расширяющих его аналитические возможности. Это позволяет получать новую информацию о не выявляемых ранее процессах, моделировать и прогнозировать их развитие в клетках и тканях.

Вместе с тем участие в эксперименте ЭВМ требует от исследователя нового подхода к его проведению, владения навыками составления алгоритмов процесса исследования, точности рассуждений и в конечном итоге повышения научно-методического уровня исследования.

Таким образом, применение новых методов исследований в гистологии, цитологии и эмбриологии позволяет выяснить общие закономерности организации тканей и клеток, структурные основы биохимических процессов, определяющих функцию конкретных структурных компонентов клетки.

Контрольные вопросы

1. Каковы основные принципы изготовления препаратов для световой микроскопии? С помощью каких методов можно диагностировать функциональное состояние клетки?

2. Какие структуры клетки можно обнаружить с помощью различных методов микроскопии?

3. Назовите основные группы гистологических красителей. Что означают термины «оксифилия», «базофилия», «метахромазия»?

Гистология, эмбриология, цитология: учебник / Ю. И. Афанасьев, Н. А. Юрина, Е. Ф. Котовский и др.. - 6-е изд., перераб. и доп. - 2012. - 800 с. : ил.

Основными Объектами исследования являются гистологические препараты, а главным методом исследования - микроскопирование.

Гистологический препарат должен быть достаточно прозрачным (тонким) и контрастным. Он изготавливается как из живых, так и из мёртвых (фиксированных) структур. Препарат может представлять собой взвесь клеток, мазок, отпечаток, плёнку, тотальный препарат и тонкий срез.

Процесс изготовления гистологических препаратов для микроскопических исследований включает в себя следующие основные этапы: 1) взятие материала и его фиксация; 2) уплотнение материала; 3) приготовление срезов; 4)окрашивание, или контрастирование срезов; 5) заключение срезов.

Для окрашивания применяются специальные гистологические красители с различным значением рН: кислые, нейтральные и основные. Структуры, окрашивающиеся ими, соответственно, называются оксифильными, нейтрофильными (гетерофильными) и базофильными.

Какими же методами пользуется гистологическая наука? Они довольно многочисленны и разнообразны:

Микроскопирование.

Световая микроскопия. Современные микроскопы обладают высокоразрешающей способностью. Разрешающая способность определяется наименьшим расстоянием (d) между двумя рядом расположенными точками, которые можно видеть раздельно. Это расстояние зависит от длины световой волны (λ) и выражается формулой: d = 1/2 λ.

Минимальная длина волны видимой части спектра 0,4 мкм. Следовательно, разрешающая способность светового микроскопа составляет 0,2 мкм, а общее увеличение достигает 2500 раз.

Ультрафиолетовая микроскопия . Длина волны ультрафиолетового света – 0,2 мкм, следовательно, разрешающая способность ультрафиолетового микроскопа 0,1 мкм, но так как ультрафиолетовое излучение является невидимым, то для наблюдения исследуемого объекта необходим люминесцентный экран.

Флюоресцентная (люминесцентная) микроскопия. Коротковолновое (невидимое) излучение, поглощаясь рядом веществ, возбуждает их электроны, которые излучают свет с большей длиной волны, становясь видимой частью спектра. Таким образом, добиваются повышения разрешающей способности микроскопа.

Фазовоконтрастная микроскопия позволяет излучать неокрашенные объекты.

Поляризационная микроскопия применяется для изучения архитектоники гистологических структур, например, коллагенового волокна.

Электронная микроскопия даёт возможности изучать объекты, увеличенные в десятки тысяч раз.

Микрофотосъёмка и микрокиносъёмка . Эти методы позволяют изучать фиксированные объекты на фотографиях и живые микроскопические объекты в движении.

Методы качественных и количественных исследований.

Гисто и цитохимия , в том числе количественная, позволяет проводить качественный анализ исследуемых объектов на тканевом, клеточном и субклеточном уровнях.

Цитоспектрофотометрия Даёт возможность изучать количественное содержание тех или иных биологических веществ в клетках и тканях на основе поглощения света определённой длины волны связанным ими красителем.

Дифференциальное центрифугирование позволяет разделять содержимое клеток, отличающихся между собой своей массой.

Радиография Основана на включении радиоактивной метки (например, радиоактивного йода, Н³-тимидина и др.) в обменный процесс.

Морфометрия позволяет производить измерение площадей и объёмов клеток, их ядер и органелл с помощью окуляр - и объект-микрометров и специальных сеток.

Применение ЭВМ для автоматической обработки цифрового материала.

Метод культуры тканей представляет собой поддержание жизнеспособности и деления клеток и тканей вне организма. Для этого используют специальные контейнеры с питательной средой, в которых создаются все необходимые условия для жизнедеятельности клеток. С помощью этого метода можно изучать дифференцировку и функциональное становление клеток, закономерности их злокачественного перерождения и развития опухолевого процесса, межклеточное взаимодействие, поражение клеток и тканей вирусами и микроорганизмами, влияние лекарственных препаратов на обменные процессы в клетках и тканях и т. д.

Прижизненное (витальное) окрашивание используется для изучения явлений фагоцитоза и активности макрофагов, фильтрационной способности почечных канальцев и др.

Метод трансплантации тканей . Этот метод применяют с целью изучения поведения клеток и их морфофункционального состояния при их пересадке в другой организм. К примеру, этот метод используется для поддержания жизни животных, подверженных облучению смертельной дозой.

Микроманипуляции. Данный метод получил применение в молекулярной биологии, генной инженерии, а также при клонировании, когда с помощью микроманипулятора удаляют ядро из яйцеклетки с гаплоидным набором хромосом и пересаживают в неё ядро соматической клетки с диплоидным набором хромосом.