Физико-химические свойства таллия и его соединений. Отравление таллием Электронная конфигурация талия

Вначале отравление таллием протекает как грипп или гастрит. Даже врачи не всегда клинически распознают болезнь. Значимые признаки появляются через 1–2 дня.

Чтобы заподозрить отравление таллием, нужно знать, какими симптомами оно проявляется; чем грозит острая и хроническая интоксикация. Следует изучить и меры первичной помощи.

Что такое таллий?

Химический элемент таллий из III группы таблицы Менделеева является представителем тяжелых металлов с порядковым номером 81, атомной массой 204, 383. Минерал встречается в земной коре и марганцевых отложениях на дне океана. В природе присутствуют радиоактивные изотопы металла.

Таллий пластичен, но обладает низкой прочностью. Содержится в калийных солях, слюде. Минерал входит в состав колчеданов и обманок железа, меди, цинка. Как побочный продукт получается при переработке медных, цинковых руд. Основной поставщик металла – Казахстан.

Таллий находит применение при производстве солей, различных сплавов с некоторыми металлами:

Таллий применяется в виде солей: нитрата, сульфата, йодида. С 1980 г. используется в медицинской диагностической аппаратуре для распознавания патологий сердца, сосудов и злокачественных опухолей. Врачи-трихологи применяют смеси с таллием для уничтожения волос при стригущем лишае.

Как влияет таллий на организм?

Сам металл и соли таллия - это вещества первого класса опасности . Как и щелочные металлы, таллий образует растворимые в воде соли: нитрат, йодид, ацетат, гидроксид, карбонат, бромид. Токсичность обусловлена возникающим дисбалансом натрия и калия в организме. Кроме того, соединения угнетают активность ферментов, расстраивают процесс окислительного фосфорилирования.

Отравление может произойти на химических заводах или при использовании в домашних условиях. Действие яда таллия на человека проявляется повреждением большинства органов:

  • периферическая нервная система - неврит нижних конечностей;
  • пищеварительный тракт – воспаление слизистой оболочки желудка и кишечника;
  • органы мочевыделения – токсическая почка;
  • нарушение функции дыхания;
  • ЦНС - галлюцинации, возбуждение или бессонница;
  • сердечно-сосудистая система – нарушение кровообращения и ритма сокращений сердца;
  • поражение кожи, глаз и костей;
  • сбой углеводного обмена выражается повышением сахара крови;
  • канцерогенное действие;
  • при большой дозе и низкой сопротивляемости организма происходит угнетение кровообращения.

По механизму действия соединения таллия напоминают и . Соединения металла обладают свойствами, которые дали ему второе название – яд отравителей.

Таллий не имеет запаха, цвета или вкуса. Человек его не чувствует. Криминальные отравления металлом описаны в детективной литературе. В жизни случаются реальные преднамеренные убийства.

Отравители приобретают яд в виде пасты и порошков, предназначенных для борьбы с крысами.

Профессиональные хронические интоксикации таллием случаются на химических предприятиях.

Таллий очень медленно выводится из организма – около 30 дней. Даже если в моче и фекалиях обнаруживается значительное содержание металла, в крови все равно остается высокий его уровень.

Симптомы отравления таллием

Опасное вещество поступает в организм человека через пищеварительную систему, неповрежденные кожные покровы, органы дыхания. После отравления реакция проявляется не сразу. Латентный период, когда еще нет никаких симптомов, длится 1–2 дня.

Воздействие яда проявляется острой, подострой или хронической интоксикацией. Клиническая картина схожа при всех формах, отличаясь только интенсивностью и скоростью возникновения проявлений. При попадании в желудок вызывает сильное воспаление.

Первоначальные симптомы отравления таллием у человека:

  • слизистые выделения из носа, головная, суставная и мышечная боль, как при гриппе. Изменяется ритм и частота дыхания.
  • Затем возникают желудочно-кишечные признаки – боли в животе, рвота, понос.
  • Через 3–4 дня болезни наступает мнимое благополучие, диарея сменяется запором. Отравившиеся страдают бессонницей, которую не снимают снотворные средства.
  • Появляется дрожание ног, боль и онемение по ходу нервов, сильная слабость икроножных мышц.
  • Через 4 – 15 дней появляется значимый симптом – выпадение волос или тотальное облысение. Одновременно возникают трещины в углах рта, сглаживаются сосочки языка.
  • Психические расстройства проявляются депрессией и психозом.
  • Со стороны глаз отмечается ухудшение зрения, воспаление зрительного нерва, опущение век, паралич глазодвигательных нервов.

Соединения металла разносятся по всему телу с током крови. Таллий в организме человека при хронической интоксикации накапливается в печени, сердце, мозге, нервных стволах. В тяжелых случаях развиваются параличи, судороги с летальным исходом.

Первая помощь при отравлении таллием

При отравлении на производстве пострадавших выводят с места поражения на чистый воздух, меняют одежду. При первых же признаках отравления вызывают “неотложку”.

Помощь заключается в очищении организма от яда, предупреждении дальнейшего всасывания металла:

  1. Промыть желудок пострадавшего теплой водой.
  2. Повторить процедуру несколько раз до получения чистой промывной жидкости.
  3. При попадании яда на кожу промыть проточной водой участки тела.
  4. В случае поражения глаз промыть струей из душа.

До приезда врачей необходимо пить больше воды. После оказания первичных мер помощи отравившийся человек доставляется в больницу.

Лечение отравления таллием

Отравление солями таллия лечится в условиях отделения токсикологии. Пострадавшему проводят реанимационные мероприятия:

После промывания желудка пациенту дают слабительное средство - цитрат магния - для очищения кишечника.

Последствия интоксикации

Таллий – высокотоксичный для человека металл. Отравление протекает волнообразно, с периодами мнимого улучшения.

Интоксикация опасна еще тем, что маскируется симптомами гриппа или пневмонии. Признаки поражения напоминают воспаление желудка и кишечника. Назначенные противогриппозные средства и антибиотики не оказывают лечебного действия.

Последствия отравления тяжелые:

  • интоксикация нервной системы проявляется галлюцинациями, полиневритом, параличом конечностей;
  • на третьи сутки выявляется отказ функции почек;
  • при большой дозе развивается отек головного мозга, от которого погибает большинство пострадавших.

Летальный исход надвигается в течение нескольких суток вследствие угнетения кровообращения, токсического шока, нарушения функций почек.

Смертельное количество таллия в соединениях для взрослого человека при пищевом пути попадания – 600 мг. Такую дозу легко выпить с растворимым кофе, другим жидким продуктом питания или водой из кулера на работе.

Профилактика

На производствах, связанных с таллием, необходимо соблюдать правила безопасности:

  • нельзя хранить и принимать пищу в помещениях, где выполняются действия с металлом;
  • работники должны иметь спецодежду, которая меняется каждую неделю;
  • соблюдать личную гигиену в столовых предприятий.

Для предупреждения отравления в быту не стоит бороться с грызунами при помощи примеси таллия. Опрыскивание растений проводить только в перчатках и маске.

Яд, который нельзя распознать органами чувств, крайне опасен. Не держите соли таллия дома. Если ваша профессиональная деятельность связана с этим металлом, проходите периодически медицинские осмотры. Хроническое отравление до какого-то времени протекает бессимптомно.

Таллий - элемент главной подгруппы третьей группы шестого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 81. Обозначается символом Tl (лат. Thallium ). Относится к группе тяжелых металлов. Простое вещество таллий - мягкий металл белого цвета с голубоватым оттенком.

История и происхождение названия

Таллий был открыт спектральным методом в 1861 году Уильямом Круксом в шламах свинцовых камер сернокислотного завода города Гарц. Чистый металлический таллий был независимо получен Круксом и французским химиком Клодом-Огюстом Лами в 1862 году.

В марте 1861 г. английский ученый Уильям Крукс исследовал пыль, которую улавливали на одном из сернокислотных производств. Крукс полагал, что эта пыль должна содержать селен и теллур – аналоги серы. Селен он нашел, а вот теллура обычными химическими методами обнаружить не смог. Тогда Крукс решил воспользоваться новым для того времени и очень чувствительным методом спектрального анализа. В спектре он неожиданно для себя обнаружил новую линию светло-зеленого цвета, которую нельзя было приписать ни одному из известных элементов. Эта яркая линия была первой «весточкой» нового элемента. Благодаря ей он был обнаружен и благодаря ей назван по-латыни thallus – «распускающаяся ветка». Спектральная линия цвета молодой листвы оказалась «визитной карточкой» таллия.

Нахождение таллия в природе

Больше 30 лет прошло после открытия Крукса, а таллий все еще оставался одним из наименее изученных элементов. Его искали в природе и находили, но, как правило, в минимальных концентрациях. Лишь в 1896 г. русский ученый И.А. Антипов обнаружил повышенное содержание таллия в силезских марказитах.

Таллий - рассеянный элемент. Содержится в обманках и колчеданах цинка, меди и железа, в калийных солях и слюдах. Таллий - тяжелый металл. Известно лишь семь минералов таллия (например, круксит (Cu, Tl, Ag) 2 Se, лорандит TlAsS 2 , врбаит Tl 4 Hg 3 Sb 2 As 8 S 20 , гутчинсонит (Pb, Tl)S Ag 2 S 5As 2 S 5 , авиценнит Tl 2 O 3 и другие), все они крайне редкие. Главная масса таллия связана с сульфидами и прежде всего с дисульфидами железа. В пирите он установлен в 25% проанализированных образцов. Его содержание в дисульфидах железа нередко составляет 0,1 – 0,2%, а иногда достигает 0,5%. В галените содержание таллия колеблется от 0,003 до 0,1% и редко более. Высокие концентрации таллия в дисульфидах и галенитах характерны для низкотемпературных свинцово-цинковых месторождений в известняках. Содержание таллия, достигающее 0,5% отмечается в некоторых сульфосолях. Небольшое количество таллия встречается во многих других сульфидах, например в сфалеритах и халькопиритах некоторых медноколчеданных месторождений. Его содержание колеблется от 25 до 50 г/т.

Но ни одно месторождение минералов таллия на Земле не представляет интереса для промышленности. Получают этот элемент при переработке различных веществ и руд – как побочный продукт.

Наибольшее геохимическое сходство таллий имеет с К, Rb,Cs, а также с Pb, Ag, Cu, Bi. Таллий легко мигрирует в биосфере. Из природных вод он сорбируется углями, глинами, гидроксидами марганца, накапливается при испарении воды (например, в озере Сиваш до 5·10 -8 г/л). Содержится в калиевых минералах (слюде, полевых шпатах), сульфидных рудах: галените, сфалерите, маркезите (до 0,5 %), киновари. Как примесь присутствует в природных оксидах марганца и железа.

Таллий обнаружен в растительных и животных организмах. Он содержится в табаке, корнях цикория, шпинате, древесине бука, в винограде, свекле и других растениях. Из животных больше всего таллия содержат медузы, актинии, морские звезды и другие обитатели морей. Некоторые растения аккумулируют таллий в процессе жизнедеятельности. Таллий был обнаружен в свекле, произраставшей на почве, в которой самыми тонкими аналитическими методами не удавалось обнаружить элемент.

Получение таллия

Технически чистый таллий очищают от других элементов, содержащихся в колошниковой пыли (Ni, Zn, Cd, In, Ge, Pb, As, Se, Te), растворением в теплой разбавленной кислоте с последующим осаждением нерастворимого сульфата свинца и добавлением HCl для осаждения хлорида таллия (TlCl). Дальнейшая очистка достигается электролизом сульфата таллия в разбавленной серной кислоте с использованием проволоки из платины с последующим плавлением выделившегося таллия в атмосфере водорода при 350-400° С.

Первооткрыватель таллия нашел его в летучей пыли сернокислотного завода. Сейчас кажется естественным, что таллий, по существу, нашли в дымоходе – ведь при температуре плавки руд соединения таллия становятся летучими. В пыли, уносимой в дымоход, они конденсируются, как правило, в виде окиси и сульфата. Извлечь таллий из смеси (а, пыль – это смесь многих веществ) помогает хорошая растворимость большинства соединений одновалентного таллия. Их извлекают из пыли подкисленной горячей водой. Повышенная растворимость помогает успешно очищать таллий от многочисленных примесей. После этого получают металлический таллий. Способ получения металлического таллия зависит от того, какое его соединение было конечным продуктом предыдущей производственной стадии. Если был получен карбонат, сульфат или перхлорат таллия, то из них элемент №81 извлекают электролизом; если же был получен хлорид или оксалат, то прибегают к обычному восстановлению. Наиболее технологичен растворимый в воде сульфат таллия Tl 2 SO 4 . Он сам служит электролитом, При электролизе которого на катодах из алюминия оседает губчатый таллий. Эту губку затем прессуют, плавят и отливают в форму. Следует помнить, что таллий всегда получают попутно: попутно со свинцом, цинком, кадмием и некоторыми другими элементами.

Физические и химические свойства таллия

С одной стороны, таллий сходен со щелочными металлами. И в то же время он чем-то похож на серебро, а чем-то на свинец и олово. Судите сами: подобно калию и натрию, таллий обычно проявляет валентность 1+, гидроокись одновалентного таллия TlOH – сильное основание, хорошо растворимое в воде. Как и щелочные металлы, таллий способен образовывать полииодиды, полисульфиды, алкоголяты. Зато слабая растворимость в воде хлорида, бромида и иодида одновалентного таллия роднит этот элемент с серебром. А по внешнему виду, плотности, твердости, температуре плавления – по всему комплексу физических свойств – таллий больше всего напоминает свинец.

И при этом он занимает место в III группе периодической системы, в одной подгруппе с галлием и индием, и свойства элементов этой подгруппы изменяются вполне закономерно.

Помимо валентности 1+, таллий может проявлять и естественную для элемента III группы валентность 34-. Как правило, соли трехвалентного таллия труднее растворить, чем аналогичные соли таллия одновалентного. Последние, кстати, изучены лучше и имеют большее практическое значение.

Но есть соединения, в состав которых входит и тот и другой таллий. Например, способны реагировать между собой галогениды одно- и трехвалентного таллия. И тогда возникают любопытные комплексные соединения, в частности Tl 1+ – . В нем одновалентный таллий выступает в качестве катиона, а трехвалентный входит в состав комплексного аниона.

Таллий - белый металл с голубоватым оттенком. Существует в трёх модификациях.

Низкотемпературная модификация Tl II с гексагональной решеткой, a =0,34566 нм, c =0,55248 нм. Выше 234 °C существует высокотемпературная модификация Tl I, с объёмной центрированной кубической решеткой типа α-Fe, а =0,3882 нм. При 3,67 ГПа и 25 °C - Tl III-модификация с кубической гранецентрированной решеткой, а =0,4778 нм.

Таллий диамагнитен. При температуре 2,39 К он переходит в сверхпроводящее состояние.

Влияние таллия на организм человека

Таллий относится к высокотоксичным ядам, и отравление им нередко заканчивается летальным исходом. Отравления таллием и его соединениями возможны при их получении и практическом использовании. Таллий проникает в организм через органы дыхания, неповрежденную кожу и пищеварительный тракт. Выводится из организма в течение длительного времени. Острые, подострые и хронические отравления имеют сходную клиническую картину, различаясь выраженностью и быстротой возникновения симптомов. В острых случаях через 1-2 суток появляются признаки поражения желудочно-кишечного тракта (тошнота, рвота, боли в животе, понос, запор) и дыхательных путей. Через 2-3 недели наблюдаются выпадение волос, явления авитаминоза (сглаживание слизистой оболочки языка, трещины в углах рта и т. д.). В тяжёлых случаях могут развиться полиневриты, психические расстройства, поражения зрения и др.

Для сульфата таллия летальная доза при пероральном приеме составляет для людей около 1 г. Известны случаи, когда смертельными оказывались дозы в 8 мг/кг, а также в 10-15 мг/кг. Отравление продолжаются несколько недель (2-3) недели, причем через 3-4 суток после приема яда наступает мнимое хорошее самочувствие.

Предельно допустимая концентрация в воде для таллия составляет всего лишь 0,0001 мг/м3 , в атмосферном воздухе - 0,004 мг/м3.

Существенную экологическую опасность таллий представляет также в связи с тем, что при извлечении из герметичного контейнера он быстро окисляется на открытом воздухе.

Применение таллия

В 1920 г. в Германии был получен патентованный яд против грызунов, в состав которого входил сульфат таллия Tl 2 SO 4 . Это вещество без вкуса и запаха иногда входит в состав инсектицидов и зооцидов и в наши дни.

Из него были изготовлены первые фотоэлементы, рабочим телом которых было именно это вещество. Особо чувствительными они оказались к инфракрасным лучам.

Другие соединения этого металла, в частности смешанные кристаллы бромида и йодида одновалентного таллия, хорошо пропускают инфракрасные лучи. Такие кристаллы впервые получили в годы второй мировой войны. Их выращивали в платиновых тиглях при 470°C и использовали в приборах инфракрасной сигнализации, а также для обнаружения снайперов на войне.

Соли таллия применяют, в частности, для удаления волос при стригущем лишае – соли таллия в соответствующих дозах приводят к временному облысению. Широкому применению этого металла в медицине препятствует то обстоятельство, что разница между терапевтическими и токсичными дозами этих солей невелика. Токсичность же таллия и его солей требует, чтобы с ними обращались внимательно и осторожно.

Металлический таллий входит в состав некоторых сплавов, придавая им кислотостойкость, прочность, износоустойчивость. Чаще всего таллий вводят в сплавы на основе родственного ему свинца. Подшипниковый сплав – 72% Pb, 15% Sb, 5% Sn и 8% Tl превосходит лучшие оловянные подшипниковые сплавы. Сплав 70% Pb, 20% Sn и 10% Tl устойчив к действию азотной и соляной кислот.

Несколько особняком стоит сплав таллия с ртутью – амальгама таллия, содержащая примерно 8,5% элемента №81. В обычных условиях она жидкая и, в отличие от чистой ртути, остается в жидком состоянии при температуре до –60°C. Сплав используют в жидкостных затворах, переключателях, термометрах, работающих в условиях Крайнего Севера, в опытах с низкими температурами.

В химической промышленности металлический таллий, как и некоторые его соединения, используют в качестве катализатора, в частности при восстановлении нитробензола водородом.

Не остались без работы и радиоизотопы таллия. Таллий-204 (период полураспада 3,56 года) – чистый бета-излучатель. Таллий-204 используется в качестве источника бета-излучения во многих приборах для контроля и исследования производственных процессов. С помощью таких приборов автоматически измеряется, например, толщина движущейся ткани или бумаги: как только бета-лучи, проходящие через слой материала, начинают ослабевать или усиливаться (а это значит, что толщина материала соответственно увеличилась или уменьшилась), автоматическое устройство дает нужную команду и восстанавливает "статус-кво", т. е. оптимальный технологический режим. Другие приборы с радиоактивным таллием как рукой снимают вредный статический заряд, возникающий в производственных помещениях текстильной, бумажной и кинопленочной промышленности.

Изотопы таллия

У элемента два стабильных и 19 радиоактивных изотопов (с массовыми числами от 189 до 210). Последним в 1972 г. в Лаборатории ядерных проблем Объединенного института ядерных исследований в Дубне получен самый легкий изотоп этого элемента – таллий-189. Его получили, облучая мишень из дифторида свинца ускоренными протонами с энергией 660 МэВ с последующим разделением продуктов ядерных реакций на масс-сепараторе. Период полураспада самого легкого изотопа таллия оказался примерно таким же, как у самого тяжелого, он равен 1,4±0,4 минуты (у 210 Tl – 1,32 минуты).

Запасы и добыча таллия

Мировые ресурсы таллия, связанные с ресурсами цинка, насчитывают около 17 тыс. т; наибольшая их часть сосредоточена в Канаде, Европе и США. Еще 630 тыс. т связаны с мировыми ресурсами угля. Среднее содержание таллия в земной коре оценивается в 0,7 частей на миллион. Мировые запасы и базу запасов таллия, содержащегося в цинковых рудах, Геологическая служба США оценивает соответственно в 380 и 650 т, из которых на США приходится соответственно 32 и 120 т.

Добыча таллия в мире в 2006 г., по оценке, составила 10 т, не изменившись по сравнению с 2005 г. Таллий в качестве побочного продукта извлекается в ряде стран из пыли и отходов, образующихся при переработке медных, цинковых и свинцовых руд. В США этот металл не извлекается с 1981 г., несмотря на его наличие в добываемых или перерабатываемых рудах.

В России и странах СНГ работают около 10 предприятий, добывающих таллий в процессе производства.

В истории открытия химических элементов таких как таллий немало парадоксов. Случалось, что поисками еще неизвестного элемента занимался один исследователь, а находил его другой. Иногда несколько ученых «шли параллельным курсом», и тогда после открытия (а к нему всегда кто-то приходит чуть раньше других) возникали приоритетные споры. Иногда же случалось, что новый элемент давал знать о себе вдруг, неожиданно. Именно так был открыт элемент № 81 - таллий.
В марте 1861 г. английский ученый Уильям Крукс исследовал пыль, которую улавливали на одном из серно-кислотных производств. Крукс полагал, что эта пыль должна содержать селен и теллур - аналоги серы. Селен он нашел, а вот теллура обычными химическими методами обнаружить не смог. Тогда Крукс решил воспользоваться новым для того времени и очень чувствительным методом спектрального анализа. В спектре он неожиданно для себя обнаружил новую линию.ветло-зеленого цвета, которую нельзя было приписать ни одному из известных элементов. Эта яркая линия была первой «весточкой» нового элемента. Благодаря ей он был обнаружен и благодаря ей назван по-латыни thallus - «распускающаяся ветка». Спектральная линия цвета молодой листвы оказалась «визитной карточкой» таллия.

В греческом языке (а большинство названий элементов берут начало в латыни или в греческом) почти так же звучит слово, которое на русский переводится как «выскочка». действительно оказался выскочкой - его не искали, а он нашелся...
Элемент со странностями
Больше 30 лет прошло после открытия Крукса, а таллий все еще оставался одним из наименее изученных элементов. Его искали в природе и находили, но, как правило, в минимальных концентрациях. Лишь в 1896 г. русский ученый И. А. Антипов обнаружил повышенное содержание таллия в силезских марказитах .

О таллии в то время говорили как об элементе редком, рассеянном и еще - как об элементе со странностями. Почти все это справедливо и в наши дни. Только таллий не так уж редок - содержание его в земной коре 0,0003% - намного больше, чем, например, золота, серебра или . Найдены и собственные минералы этого элемента - очень редкие минералы лорандит TlASS2, врбаит Tl(As, Sb) 3 S 5 и другие. Но ни одно месторождние минералов таллия на Земле не представляет интереса для промышленности. Получают этот элемент при переработке различных веществ и руд - как побочный продукт. Он действительно оказался очень рассеян.
И странностей в его свойствах, как говорится, хоть отбавляй. С одной стороны, таллий сходен со щелочными металлами. И в то же время он чем-то похож на серебро, а чем-то на свинец и олово . Судите сами: подобно калию и натрию, таллий обычно проявляет валентность 1+, гидроокись одновалентного таллия ТЮН - сильное основание, хорошо растворимое в воде. Как и щелочные металлы, таллий способен образовывать полииодиды, полисульфиды, алкоголяты... Зато слабая растворимость в воде хлорида, бромида и иодида одновалентного таллия роднит этот элемент с серебром. А но внешнему виду, плотности, твердости, температуре плавления - по всему комплексу физических свойств - таллий больше всего напоминает свинец.
И при этом он занимает место в III группе периодической системы, в одной подгруппе с галлием и индием, и свойства элементов этой подгруппы изменяются вполне закономерно.
Помимо валентности 1+, он может проявлять и естественную для элемента III группы валентность 3+. Как правило, соли трехвалентного таллия труднее рассворить, чем аналогичные соли таллия одновалентного. Последние, кстати, изучены лучше и имеют большее практическое значение.
Но есть соединения, в состав которых входит и тот и другой таллий. Например, способны реагировать между собой галогениды одно- и трехвалентного таллия. И тогда возникают любопытные комплексные соединения, в частности Тl1+ [Тl3+Сl 2 Вг 2 ]~. В нем одновалентный таллий выступает в качестве катиона, а трехвалентный входит в состав комплексного аниона.

Подчеркивая сочетание различных свойств в этом элементе, французский химик Дюма писал: «Не будет преувеличением, если с точки зрения общепринятой классификации металлов мы скажем, что но объединяет в себе противоположные свойства, которые позволяют называть его парадоксальным металлом». Далее Дюма утверждает, что среди металлов противоречивый таллий занимает такое же место, какое занимает утконос среди животных. И в то же время Дюма (а он был одним из первых исследователей элемента № 81) верил, что «таллию суждено сделать эпоху в истории химии».
Эпохи он пока не сделал и не сделает, наверное. Но практическое применение он нашел (хотя и не сразу). Для некоторых отраслей промышленности и науки этот элемент по-настоящему важен.

Применение таллия

Таллий оставался «безработным» в течение 60 лет после открытия Крукса. Но к началу 20-х годов нашего столетия были открыты специфические свойства таллиевых препаратов, и сразу же появился спрос на них.
В 1920 г. в Германии был получен патентованный яд против грызунов, в состав которого входил сульфат таллия Tl 2 S0 4 . Это вещество без вкуса и запаха иногда входит в состав инсектицидов и зооцндов и в наши дни.
В том же 1920 г. в журнале «Physical Review» появилась статья Кейса, который обнаружил, что электропроводность одного из соединений таллия (его оксисульфида) изменяется под действием света. Вскоре были изготовлены первые фотоэлементы, рабочим телом которых было именно это вещество. Особо чувствительными они оказались к инфракрасным лучам.
Другие соединения элемента № 81, в частности смешанные кристаллы бромида и иодида одновалентного таллия, хороша пропускают инфракрасные лучи. Такие кристаллы впервые получили в годы второй мировой войны. Их выращивали в платиновых тиглях при 470° С и использовали в приборах инфракрасной сигнализации, а также для обнаружения снайперов противника. Позже ТlВг и TlI применяли в сцинтилляционных счетчиках для регистрации альфа- и бета-излучения...

Общеизвестно, что загар на нашей коже появляется главным образом благодаря ультрафиолетовым лучам и что эти лучи обладают к тому же бактерицидным действием. Однако, как установлено, не все лучи ультрафиолетовой части спектра одинаково эффективны. Медики выделяют излучения эритемального, или эритемного (от латинского, aeritema - «покраснение»), действия - подлинные «лучи загара». И, конечно, материалы, способные преобразовывать первичное ультрафиолетовое излучение в лучи эритемального действия, очень важны для физиотерапии. Такими материалами оказались некоторые силикаты и фосфаты щелочноземельных металлов, активированные талием.
Медицина использует и другие соединения элемента № 81. Их применяют, в частности, для удаления волос при стригущем лишае - соли таллия в соответствующих дозах приводят к временному облысению. Широкому применению солей таллия в медицине препятствует то обстоятельство, что разница между терапевтическими и токсичными дозами этих солей невелика. Токсичность же таллия и его солей требует, чтобы с ними обращались внимательно и осторожно.
До сих пор, рассказывая о практической пользе таллия, мы касались лишь его соединений. Можно добавить, что карбонат таллия Тl 2 С0 3 используют для получения стекла с большим коэффициентом преломления световых лучей, д что же сам таллий? Его тоже применяют, хотя, может быть, не так широко, как соли. Металлический таллий входит в состав некоторых сплавов, придавая им кислотостойкость, прочность, износоустойчивость. Чаще всего таллии вводят в сплавы на основе родственного ему свинца. Подшипниковый сплав - 72% РЬ, 15%Sb, 5% Sn и 8% Тl превосхбдит лучшие оловянные подшипниковые сплавы. Сплав 70% РЬ, 20% Sn и 10% Т1 устойчив к действию азотной и соляной кислот.
Несколько особняком стоит его сплав с ртутью - амальгама таллия, содержащая примерно 8,5% элемента № 81. В обычных условиях она жидкая и, в отличие от чистой ртути, остается в жидком состоянии при температуре до -60° С. Сплав используют в жидкостных затворах, переключателях, термометрах, работающих в условиях Крайнего Севера, в опытах с низкими температурами.
В химической промышленности металлический таллий, как и некоторые его соединения, используют в качестве катализатора, в частности при восстановлении нитробензола водородом.

Не остались без работы и радиоизотопы таллия. Таллий-204 (период полураспада 3,56 года) - чистый бета- излучатель. Его используют в контрольно-измерительной аппаратуре, предназначенной для измерения толщины покрытий и тонкостенных изделий. Подобными установками с радиоактивным таллием снимают заряды статического электричества с готовой продукции в бумажной и текстильной промышленности.
Думаем, что уже приведенных примеров вполне достаточно, чтобы считать безусловно доказанной полезность элемента № 81. А о том, что таллий сделает эпоху в химии, мы не говорили - это все Дюма. Не Александр Дюма, правда (что при его фантазии было бы вполне объяснимо) , а Жан Батист Андрэ Дюма - однофамилец писателя, вполне серьезный химик.
Но, заметим, что и химикам фантазия приносит больше пользы, чем вреда...
ЕЩЕ НЕМНОГО ИСТОРИИ. Французский химик Лами открыл таллий независимо от Крукса. Он обнаружил зеленую спектральную линию, исследуя шламы другого сернокислотного завода. Он же первым получил немного элементарного таллия, установил его металлическую природу и изучил некоторые свойства. Крукс опередил Лами всего на несколько месяцев.

Минералы талия

В некоторых редких минералах - лорандите, врбаите, гутчинсоните, крукезите - содержание элемента № 81 очень велико - от 16 до 80%. Жаль только, что все эти минералы очень редки. Последний минерал таллия, представляющий почти чистую окись трехвалентного таллия ТlОз (79,52% Тl), найден в 1956 г. на территории Узбекскистана. Этот минерал назван авиценнитом - в честь мудреца, врача и философа Авиценны, или правильнее Абу Али ибн Сины.

Таллий в живой природе

Таллий обнаружен в растительных и животных организмах. Он содержится в табаке , корнях цикория , шпинате , древесине бука , в винограде , свекле и других растениях. Из животных больше всего таллия содержат медузы, актинии, морские звезды и другие обитатели морей. Некоторые растения аккумулируют таллий в процессе жизнедеятельности. Таллий был обнаружен в свекле, произраставшей на почве, в которой самыми тонкими аналитическими методами не удавалось обнаружить элемент № 81. Позже было установлено, что даже при минимальной концентрации таллия в почве свекла способна концентрировать и накапливать его.
НЕ ТОЛЬКО ИЗ ДЫМОХОДОВ. Первооткрыватель химического элемента нашел его в летучей пыли сернокислотного завода. Сейчас кажется естественным, что таллий, по существу, нашли в дымоходе - ведь при температуре плавки руд соединения таллия становятся летучими. В пыли, уносимой в дымоход, они конденсируются, как правило, в виде окиси и сульфата. Извлечь таллий из смеси (а, пыль - это смесь многих веществ) помогает хорошая растворимость большинства соединений одновалентного таллия. Их извлекают из пыли подкисленной горячей водой. Повышенная растворимость помогает успешно очищать таллий от многочисленных примесей. После этого получают металлический таллий. Способ получения металлического таллия зависит от того, какое его соединение было конечным продуктом предыдущей производственной стадии. Если был получен карбонат, сульфат или перхлорат таллия, то из них элемент № 81 извлекают электролизом; если же был получен хлорид или оксалат, то прибегают к обычному восстановлению. Наиболее технологичен растворимый в воде сульфат таллия Tl 2 S0 4 . Он сам служит электролитом, при электролизе которого на катодах из алюминия оседает губчатый таллий. Эту губку затем прессуют, плавят и отливают в форму. Следует помнить, что таллий всегда получают попутно: попутно со свинцом, и некоторыми другими элементами. Таков удел рассеянных...

Самый легкий изотоп талия

У элемента № 81 два стабильных и 19 радиоактивных изотопов (с массовыми числами от 189 до 210). Последним в 1972 г. в Лаборатории ядерных проблем Объединенного института ядерных исследований в Дубне получен самый легкий изотоп этого элемента - таллий-189. Его получили, облучая мишень из дифторида свинца ускоренными протонами с энергией 660 Мэв с последующим разделением продуктов ядерных реакций на масс-сепараторе. Период полураспада самого легкого изотопа таллия оказался примерно таким же, как у самого тяжелого, он равен 1,4±0,4 минуты (у 210 Тl -1,32 минуты).

Таллий

ТА́ЛЛИЙ -я; м. [от греч. thallos - молодая зелёная ветвь, побег] Химический элемент (Тl), серебристо-белый с сероватым оттенком металл, мягкий и легкоплавкий (применяется как компонент сплавов, для амальгам).

Та́ллиевый, -ая, -ое.

та́ллий

(лат. Thallium), химический элемент III группы периодической системы. Название от греческого thallós - зелёная ветка (по ярко-зелёной линии спектра). Серебристо-белый металл с сероватым оттенком, мягкий и легкоплавкий; плотность 11,849 г/см 3 , t пл 303,6°C. На воздухе легко окисляется. В природе рассеян, добывают из сульфидных руд. Компонент сплавов, главным образом с оловом и свинцом (кислотоупорные, подшипниковые и др.). Амальгама таллия - жидкость для низкотемпературных термометров. Соединения таллия (TlCl, TlBr, TlI) - оптические материалы для ИК-техники.

ТАЛЛИЙ

ТА́ЛЛИЙ (лат. Tallium, от греческого «таллос» - зеленая ветвь), Tl (читается «таллий»), химический элемент с атомным номером 81, атомная масса 204,383. Природный таллий состоит из двух стабильных изотопов: 205 Tl (содержание 70,5% по массе) и 203 Tl (29,5%). В ничтожных количествах встречаются радиоактивные изотопы таллия: 208 Tl (Т 1/2 3,1 мин, исторический символ ThC), 210 Tl (Т 1/2 1,32 мин, исторический символ RaC) и 206 Tl (Т 1/2 4,19 мин, исторический символ RaЕ) и 207 Tl (Т 1/2 4,78 мин, исторический символ АсC).
Рaсположен в IIIA группе в 6 периоде периодической системы. Конфигурация внешней электронной оболочки 6s 2 p 1 . Степени окисления +1 (наиболее характерна) и +3 (валентности I, III).
Радиус атома 0,171 нм. Радиус иона Tl + 0,164 нм (координационное число 6), 0,173 (8), 0,184 нм (12); иона Tl 3+ 0,089 нм (4), 0,103 нм (6), 0,112 нм (8). Энергии последовательной ионизации 6,108, 20,428, 29,83 и 50,8 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,8.
История открытия
Таллий был открыт спектральным методом в 1861 английским ученым У. Круксом (см. КРУКС Уильям) в шламах свинцовых камер сернокислотного завода города Гарц. Название элемент получил по характерным зеленым линиям своего спектра и зеленой окраске пламени.
Нахождение в природе
Содержание таллия в земной коре 3·10 –4 % по массе. Рассеянный элемент. Содержится a обманках (см. ОБМАНКИ) и колчеданах (см. КОЛЧЕДАНЫ) цинка (см. ЦИНК (химический элемент)) , меди (см. МЕДЬ) и железа (см. ЖЕЛЕЗО) , в калийных солях и слюдах (см. СЛЮДЫ) . Таллий - тяжелый металл, одновременно относится к щелочным металлам.
Собственных минералов таллия известно около 30, например: aрсеносульфид таллия TlAsS 2 (лорандит), крукезит TlCu 7 Se 4 , авиценнит Tl 2 O 3 Содержится в калиевых минералах (слюде, полевых шпатах (см. ПОЛЕВЫЕ ШПАТЫ) ), сульфидных рудах: галените (см. ГАЛЕНИТ) , сфалерите (см. СФАЛЕРИТ) (до 0,1%), маркезите, (до 0,5%), киновари (см. КИНОВАРЬ) . Как примесь присутствует в природных оксидах марганца (см. МАРГАНЕЦ (химический элемент)) и железа (см. ЖЕЛЕЗО) .
Получение
Основное сырье для получения таллия - пыль, образующаяся при обжиге колчедана или обманок, содержащих таллий. Пыль промывают горячей водой и осаждают таллий цинком:
Tl 2 SO 4 +Zn=ZnSO 4 +2Tl.
или соляной кислотой:
Tl 2 SO 4 +2NaCl=2TlCl+Na 2 SO 4 .
Для очистки таллий снова переводят в сульфат и после повторного (или многократного) осаждения в виде хлорида металл выделяют электролитически из сернокислого раствора.
Технический таллий очищают от примеси свинца (см. СВИНЕЦ) растворением металла в азотной кислоте с последующим осаждением свинца сероводородом (см. СЕРОВОДОРОД) .
Физические и химические свойства
Тaллий - белый металл с голубоватым оттенком. Существует в трех модификациях. Низкотемпературная модификация Tl II с гексагональной решеткой, a =0,34566 нм, c =0,55248 нм. Выше 234°C существует высокотемпературная модификация Tl I, с объемной центрированной кубической решеткой типа a-Fe, а =0,3882 нм. При 3,67 ГПа и 25°C - Tl III-модификация с кубической гранецентрированной решеткой, а =0,4778 нм.
Температура плавления 303°C, кипения 1475°C. Плотность 11,849 г/см 3 . Таллий диамагнитен. При температуре 2,39К он переходит в сверхпроводящее состояние.
Стандартный электродный потенциал пары Tl 3+ /Tl 0 +0,72 B, пары Tl +/ Tl 0 –0,34 B.
На воздухе таллий покрывается черной пленкой оксидов Tl 2 O и Tl 2 O 3 . С водой, не содержащей кислорода (см. КИСЛОРОД) , таллий не реагирует. В присутствии кислорода образуется гидроксид TlOH:
4Tl+2H 2 O+O 2 =4TlOH.
Озон окисляет таллий до Tl 2 O 3 .
С этанолом (см. ЭТИЛОВЫЙ СПИРТ) таллий взаимодействует, образуя алкоголят:
2Tl+2C 2 H 5 OH=2C 2 H 5 OTl+H 2 ,
если реакцию вести в струе воздуха, образуются вода и алкоголят.
В соляной кислоте (см. СОЛЯНАЯ КИСЛОТА) таллий пассивируется, так как образуется нерастворимый хлорид TlCl. Таллий взаимодействует с азотной (см. АЗОТНАЯ КИСЛОТА) и серной (см. СЕРНАЯ КИСЛОТА) кислотами.
Со щелочами без окислителей не взаимодействует.
При комнатной температуре реагирует с галогенами (см. ГАЛОГЕНЫ) . С фосфором (см. ФОСФОР) , мышьяком (см. МЫШЬЯК) , серой (см. СЕРА) реагирует при нагревании. С водородом (см. ВОДОРОД) , азотом (см. АЗОТ) , аммонием (см. АММОНИЙ (в химии)) , углеродом (см. УГЛЕРОД) , кремнием (см. КРЕМНИЙ) , бором (см. БОР (химический элемент)) и сухим оксидом углерода (см. УГЛЕРОДА ОКСИД) таллий не взаимодействует.
Соединения таллия (I) по своему химическому поведению напоминают соединения калия, серебра (см. СЕРЕБРО) и свинца. Соединения Tl (III) - сильные окислители, неустойчивы к нагреванию и подвергаются гидролизу. Их получают, окисляя соединения Tl (I) сильными окислителями (персульфатом калия K 2 S 2 O 8 , броматом калия KBrO 3 или бромной водой).
Получены тригалогениды таллия со F 2 , Cl 2 и Br 2 . TlI 3 является полииодидом Tl (I) и содержит трииодид-ион I 3 – .
Оксид таллия(III) образуется при осторожном термическом разложении нитрата Tl(NO 3) 3:
2Tl(NO 3)=Tl 2 O 3 +NO 2 +NO
Выше 500°C на воздухе Tl 2 O 3 переходит в Tl 2 O.
Оксид таллия (I) получают обезвоживанием гидроксида таллия (I):
2TlOH=Tl 2 O+H 2 O.
Этот оксид проявляет свойства оксидов щелочных металлов.
Большинство соединений Tl(I) обладают светочувствительностью.
В конце 20 века синтезированы сложные слоистые оксиды TlBa 2 Ca n–1 Cu n O 2n+3 , обладающие высокотемпературной сверхпроводимостью (температура перехода 100К).
Применение
Тaллий используют при изготовлении подшипников и кислотоустойчивых сплавов (на основе свинца и олова). Амальгаму таллия применяют в термометрах для измерения низких температур. Сульфиды, селениды и теллуриды таллия используются a полупроводниковой технике. Соединения таллия применяются в фотографии.
Физиологическое действие
Таллий и его соединения высокотоксичны вследствие того, что катион Tl + образует прочные соединения с серосодержащими лигандами:
Tl + +R–SH=R–S–TI+Н +
Поэтому соединения Tl + подавляют активность ферментов, содержащих тиогруппы SH.
Вследствие близости радиусов K + и Tl + эти ионы обладают сходными свойствами и способны замещать друг друга в ферментах. Попадание в организм даже очень незначительных количеств соединений Tl + вызывает выпадение волос, поражение нервной системы, почек, желудка.
ПДК в воде 0,0001 мг/л, для соединений таллия в воздухе рабочих помещений 0,01 мг/м 3 , в атмосферном воздухе 0.004 мг/м 3 . В качестве противоядия используют серосодержащую aминокислоту цистеин HS–CH 2 CH(NH 2)COOH.

Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "таллий" в других словарях:

    Металл, открытый посредством спектрального анализа, похож на свинец, наход. в сером колчедане и медн. рудах. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ТАЛЛИЙ металл, во многом напоминает свинец, обладает… … Словарь иностранных слов русского языка

    - (символ Тl), блестящий металлический элемент III группы периодической таблицы. Открыт в 1861 г. Мягкий и пластичный, добывается как побочный продукт переработки свинцовых или цинковых руд. Используется в электронике, инфракрасных датчиках, при… … Научно-технический энциклопедический словарь

    - (Tallium), Tl, химический элемент III группы периодической системы, атомный номер 81, атомная масса 204,283; металл. Открыт в 1861 У. Круксом (Великобритания), получен тогда же К. Лами (Франция) … Современная энциклопедия

ТАЛЛИЙ - (лат. - Thallium, символ Tl) - элемент 13-й (IIIa) группы периодической системы, атомный номер 81, относительная атомная масса 204,38. Природный таллий состоит из двух стабильных изотопов: 203 Tl(29,524 ат.%) и 205 Tl (70,476 ат.%), а всего известно 35 изотопов с массовыми числами от 176 до 210. В химических соединениях таллий проявляет степени окисления +1 и +3, в природе встречается в основном в степени окисления +1, трехвалентный таллий распространен гораздо меньше.

В начале 1850-х молодой английский химик Уильям Крукс (William Crookes, 1832-1919) занимался проблемами выделения селена из пыли, которую улавливали на сернокислотном производстве в Тилькероде (Северная Германия). Он предполагал, что в отходах, остававшихся после извлечения селена, есть теллур, но, проведя химический анализ, не смог его обнаружить. Тем не менее, Крукс решил сохранить изученные образцы в своей лаборатории. В 1861 у Крукса появилась возможность проводить спектральный анализ и в марте того же года он решил воспользоваться спектроскопом, чтобы установить, содержится ли в отходах теллур. Внеся отходы в пламя горелки, Крукс с изумлением обнаружил ярко-зеленую быстроисчезающую линию. Повторив опыт несколько раз и исследовав спектры элементов, которые содержались в образцах (сурьмы, мышьяка, осмия, селена и теллура) он убедился, что зеленая линия принадлежит неизвестному элементу. Из остававшихся у него небольших количеств отходов Крукс смог даже выделить очень незначительное количество обнаруженного элемента, который он предложил назвать таллием от греческого слова qallóV, означающего «молодая зеленая ветвь».

Примерно в то же время, что и Крукс, новый элемент независимо обнаружил французский химик Клод Лями (Claude Auguste Lamy, 1800-1884), изучая шлам сернокислотного производства в Лоосе. Присутствие в образцах таллия было зафиксировано им также с помощью спектроскопа. Располагая большими количествами шлама, Лями удалось выделить 14 грамм таллия и подробно описать его свойства. Лями показал, что таллий является металлом, а не аналогом селена, как полагал Крукс (статья Крукса называлась О существовании нового элемента, принадлежащего к группе серы ).Сообщение Лями появилось в 1862 - на несколько месяцев позже, чем у первооткрывателя (30 марта 1861).

Таллий в природе. Кларк таллия в земной коре составляет около 7·10 -5 %, что более чем в 100 раз превышает содержание золота и в 10 раз - серебра. В отличие от них, таллий является рассеянным элементом - собственные минералы таллия встречаются очень редко, однако он входит в состав большого количества других минералов в качестве изоморфной примеси, замещая медь, серебро и мышьяк в сульфидных рудах, а калий, рубидий и, реже, другие щелочные металлы в алюмосиликатах и хлоридах.

Возможность изоморфного замещения обеспечивается близостью радиуса иона одновалентного таллия (1,49Å) и ионных радиусов калия (1,33Å) и рубидия (1,49Å). В первые годы после открытия таллия изоморфизм его галогенидов и галогенидов калия и рубидия привел к тому, что таллий считали щелочным металлом. Вследствие равенства ионных радиусов таллия и рубидия хлорид таллия часто кристаллизуется совместно с хлоридом рубидия, поэтому таллий является обычным спутником рубидия в соляных месторождениях и минеральных водах. Таллий часто обнаруживается в лейците KAlSi2O6, ортоклазе KAlSi3O8. В лепидолитеK2Li1,5Al1,5 2 и циннвальдите KLiFeAl 2 содержание таллия составляет 10 -3 -10 -1 %. Относительно высокое содержание таллия - 10 -2 % - обнаружено в поллуците (Cs, Na).

В состав различных сульфидных минералов таллий чаще всего входит в концентрациях порядка 10 -3 %. Таллий был найден во многих месторождениях цинковой обманки (сфалерита), галенита (свинцового блеска). В гидротермальных колчеданных, полиметаллических и свинцово-цинковых рудах может превышать 0,1%. Особенно благоприятны для накопления таллия низкотемпературные гидротермальные марказитовые и пиритовые месторождения. Именно в них в незначительном количестве обнаруживаются собственные минералы таллия. Крукесит Cu15Tl2Se9 - найден в 1860-х в Швеции и назван в честь первооткрывателя таллия. Позднее крукесит обнаружен в Башкирии и на Урале; врбаит Tl(As, Sb) 3 S5, лорандит TlAsS2 и хатчинсонит (Cu, Ag, Tl)PbAs4S8 присутствуют в некоторых мышьяковистых рудах. В 1956 в Узбекистане был найден новый минерал таллия - авиценнит, представляющий собой оксид трёхвалентного таллия - Tl2O3.

В почвах среднее содержание таллия составляет 10 -5 %, в морской воде - 10-9%, в организмах животных - 4·10-5%. Многие живые организмы: свекла, виноград, дуб, бук, морские животные и растения - способны накапливать таллий из окружающей среды. С этим связано повышенное содержание таллия в золе каменных углей - 10 -3 -10 -2 %.

Мировые ресурсы таллия, содержащиеся в цинковых месторождениях, по данным United States Geological Surveys на конец 2004 составляют 17 тысяч тонн, большинство из них расположено в Канаде, Европе и США. Кроме того, запасы таллия в мировых ресурсах угля - 630 тысяч тонн.

Производство и рынок. Промышленное производство таллия началось только в 1920-х и сейчас источником таллия являются сульфидные металлические руды. При обогащении таких руд таллий переходит в медные, цинковые и, особенно, свинцовые, концентраты. Таллий способен изоморфно входить в состав как сульфидных руд, так и силикатных минералов, поэтому степень извлечения таллия в концентраты колеблется от 10 до 80%, часть таллия всегда остается в пустой силикатной породе. Содержание таллия в обогащенных продуктах составляет около 10 -3 %, поэтому такие концентраты не могут служить непосредственным сырьем для его промышленного получения. Источником таллия являются отходы медного цинкового, свинцового и сернокислотного производства - колошниковая пыль, образующаяся при обжиге сульфидных руд, и шлаки, собираемые при выплавке металлов.

В связи с тем, что таллий из перерабатываемых продуктов извлекается обычно в комплексе с рядом других элементов, действующие схемы комплексной переработки металлических руд включают в себя большое количество пиро- и гидрометаллургических операций, являются достаточно сложными и постоянно видоизменяются на предприятиях в зависимости от изменения состава перерабатываемого сырья.

Для получения богатых таллием концентратов пользуются методом возгонки. Таллий может улетучиваться при обжиге как в окислительной, так и в восстановительной атмосфере. Это дает возможность сочетать получение обогащённых таллием возгонов с процессами извлечения других ценных элементов. Особенно высокое обогащение таллием получается при применении хлорирующего обжига - с добавкой хлористого натрия или сильвинита. Равновесие обменной реакции 2NaCl + Tl2SO4 = 2TlCl + Na2SO4 сдвинуто в сторону образования хлорида таллия, который при температуре свыше 600° C обладает хорошей летучестью и почти полностью возгоняется. При окислительном обжиге концентратов, кроме хлорида, возгоняется оксид таллия Tl2O и механически захватывается потоком газа пылевидные частицы сульфата, сульфида и силиката таллия. В пыли и возгонах, получаемых при восстановительных процессах, часть таллия может находиться в виде металла.

Следующей стадией выделения таллия является цикличное выщелачивание возгонов водой, которое нужно проводить при нагревании, так как растворимость таллия сильно зависит от температуры. Иногда вместо водного выщелачивания применяют выщелачивание слабыми содовыми растворами. Это предотвращает переход в раствор хлоридов других металлов, например кадмия. Если основная часть таллия присутствует в виде труднорастворимых соединений, то применяется выщелачивание разбавленной серной кислотой.

Из водных растворов от выщелачивания таллий по разным технологическим схемам выделяют в виде хлорида, сульфида, иодида, хромата, гидроксида трёхвалентного таллия или в виде металлического таллия цементацией - осаждением цинковой пылью или амальгамой.

При осаждении таллия в виде сульфида (горячим раствором сульфида натрия) достигается полное извлечение металла из раствора, но этот способ осаждения не является селективным, так как все металлы-спутники таллия также образуют нерастворимые сульфиды, поэтому этот способ применяют только к растворам с низким содержанием примесей. Сульфидный таллиевый концентрат выщелачивают раствором сульфата цинка, при этом в раствор переходит сульфат таллия: Tl2S + ZnSO4 = Tl2SO4 + ZnS. Из полученного раствора металлический таллий выделяют цементацией.

Сейчас время для очистки таллия используют экстракцию из сульфатсодержащих растворов раствором иода в смеси 50% трибутилфосфата и 50% керосина. После этого таллий экстрагируют из органической фазы серной кислотой (300г/л) с добавкой перекиси водорода.

Окончательное выделение таллия из очищенных растворов чаще всего производится путем цементации на цинковых пластинах, при этом получается губчатый металл, который прессуют в брикеты и переплавляют под слоем щелочи при температуре 350-400° C. Реже для получения таллия используют электролиз растворов сульфата таллия на алюминиевом катоде. Получаемый этими способами технический таллий содержит 0,05% процента примесей: свинца, меди, кадмия, цинка и железа. Для получения металла высокой чистоты проводят электролитическое рафинирование с растворимым анодом из чернового таллия и катодом из очищенного таллия, электролитами служат соли таллия: сульфат или перхлорат. Таким путем получают таллий с суммарным содержанием примесей меньше 10 -4 %. Наиболее чистый металл (99,9999%), который требуется для полупроводниковой техники, получают очисткой кристаллофизическими методами: зонной плавкой или методом Чохральского. Мировая добыча таллия практически не изменяется со временем (начиная с 1990) и составляет 15 тонн в год. Поставщиками таллия на мировой рынок являются Бельгия, Канада, Франция, Германия, Россия, Великобритания. Изменения стоимости металлического таллия с течением времени могут служить иллюстрацией зависимости цены продукта от потребительского спроса: c 1950-х в структуре потребления таллия происходили сдвиги, связанные с появлением новых областей использования элемента № 81 и его соединений.

Простое вещество. Таллий - тяжелый (плотность 11,849 г/см3) мягкий серовато-белый металл, пластичен и легко режется ножом. При сгибании палочек из таллия слышится легкий треск. Температура плавления - 303,6° C; температура кипения - 1457° C. металлический таллий имеет две кристаллические модификации: ниже 225° C устойчива гексагональная a-модификация, при более высоких температурах - объемноцентрированная кубическая b-модификация. Ни один металл не образует с таллием непрерывных твердых растворов. Значительной растворимостью в твердом таллии обладают его ближайшие соседи по группе и по периоду: индий, ртуть, свинец, олово, кадмий, а также некоторые щелочные и щелочноземельные металлы: литий, натрий, магний и кальций.

По химическим свойствам таллий частично сходен со щелочными металлами (легко окисляется, гидроксид таллия растворим в воде и является сильным основанием) и серебром (низкая растворимость хлорида, бромида и иодида в воде). Внешним видом и другими физическими свойствами таллий напоминает свинец. Французский химик Жан Батист Дюма (Jean-Baptiste Dumas), который одним из первых исследовал свойства таллия, так охарактеризовал его: «Не будет преувеличением, если с точки зрения общепринятой классификации металлов мы скажем, что таллий объединяет в себе противоположные свойства, которые позволяют называть его парадоксальным металлом». Место таллия среди металлов он сравнил с положением утконоса среди животных (утконос относится к классу млекопитающих, но откладывает яйца как рептилии или птицы, кожа утконоса покрыта настоящей шерстью, но его морда имеет форму утиного клюва).

На воздухе поверхность металлического таллия быстро окисляется и тускнеет, покрываясь затем черной коркой низшего оксида Tl2O, которая замедляет дальнейшее окисление:

4Tl + O2 = 2Tl2O

В присутствии кислорода таллий растворяется в воде с образованием растворимого гидроксида одновалентного таллия, а со спиртами образует соответствующие алкоголяты:

4Tl + 2H2O + O2 = 4TlOH

4Tl + 4C2H5OH + O2 = 4TlOC2H5 + 2Н 2 О

Чтобы избежать окисления, слитки таллия хранят под слоем дистиллированной прокипяченной (содержащей меньше растворенного кислорода) воды.

При комнатной температуре таллий непосредственно реагирует с галогенами, азотной и серной кислотами с образованием соединений одновалентного таллия, при нагревании - с серой и фосфором:

Tl + Cl 2 = 2TlCl;

2Tl + S = Tl 2 S; Tl + S = TlS;

Tl + 5P = TlP 5 ; Tl + 3P = TlP 3

Таллий не растворяется в соляной кислоте из-за образования на поверхности металла пленки нерастворимого хлорида.

Соединения. Наиболее устойчивая положительная степень окисления таллия - +1, соединения трехвалентного таллия менее стабильны. Одновалентный таллий может быть окислен в растворе только сильными окислителями: пероксидом водорода, персульфатами, перманганатом калия, бромом или хлором (элементарные галогены окисляют таллий только до одновалентного состояния). Для таллия характерно образование соединений с формально промежуточной степенью окисления, в которых часть атомов таллия имеет степень окисления +1, а другая часть - +3. Обычно трехвалентный таллий в них входит в состав комплексного аниона, например, один из хлоридов таллия - Tl2Cl4 является тетрахлороталлатом (III) таллия (I): Tl +1 .

Кислородные соединения таллия и соли кислородсодержащих кислот. С кислородом таллий образует оксиды Tl 2 O, Tl 2 O 3 и Tl 4 O 3 . Оксид таллия (I) Tl 2 O - черное кристаллическое, вещество, легко растворимое в воде с образованием гидроксида TlOH. TlOH - желтое кристаллическое вещество, проявляющее свойства сильного основания подобно гидроксидам щелочных металлов. При действии CO 2 на раствор TlOH можно получить карбонат таллия:

Tl 2 O + H 2 O = 2TlOH; 2TlOH + CO 2 = Tl 2 CO 3 + H 2 O

Tl2CO3 хорошо растворим в воде, применяется для получения других соединений таллия и входит в состав стекол с большой плотностью и большим коэффициентом преломления (имитирующих драгоценные камни).

Сульфат таллия (I) Tl2SO4 представляет собой белый порошок, хорошо растворимый в воде. Он является полупродуктом в процессе получения металлического таллия. Химически чистый Tl2SO4 получают растворением металлического таллия в разбавленной серной кислоте.

При нагревании Tl2O на воздухе можно получить оксид таллия (III) Tl2O3 - чёрное вещество, обладающее сильной окислительной способностью.

Tl 2 O + O 2 = Tl 2 O 3

Галогениды таллия . Известны все галогениды одно- и трехвалентного таллия, а также несколько комплексных галогенидов с формально промежуточной степенью окисления таллия. Подобно галогенидам серебра, фторид таллия TlF хорошо растворим в воде, а хлорид TlCl, бромид TlBr и иодид TlI - плохо. При длительном хранении на свету или при выдержке в расплавленном состоянии TlCl, TlBr и TlI темнеют из-за частичного разложения:

2TlI = 2Tl + I 2 .

Осаждение хлорида или иодида таллия используется для выделения таллия из растворов. Галогениды таллия (III) образуются при взаимодействии галогенидов (I) c элементарным галогеном. Все они легко растворяются в воде, неустойчивы и при нагревании разлагаются.

Галогениды таллия (I) - используются в производстве изделий для инфракрасной оптики, газоразрядных ламп и детекторов излучений.

Сульфид таллия (I ) Tl 2 S - черное кристаллическое вещество, нерастворимое в воде, промежуточный продукт при получении таллия. Сульфид таллия почти количественно осаждается из растворов солей таллия сероводородом или сульфидом аммония в слабокислой, нейтральной и щелочной среде. Он может быть получен и прямым синтезом из элементов при повышенной температуре.

Применение таллия и его соединений. В течение почти половины века после открытия Крукса таллий не находил практического применения. Лишь в 1907 Клеричи предложил использовать водный раствор хорошо растворимых органических солей таллия для разделения минералов по плотности. Известно, что больше половины всех минералов, в том числе все породообразующие, имеют плотность от 2 до 4 г/см 3 , а многие промышленно важные металлические руды (галенит, пирит, циркон, золото) - более высокую. При использовании тяжелых жидкостей для их сепарации от пустой породы специальная аппаратура не требуется, что особенно важно в полевых условиях. В геолого-минералогических исследованиях и сейчас используется жидкость Клеричи - насыщенный раствор смеси равных по массе количеств формиата HCOOTl и малонатаCH2(COOTl) 2 таллия, имеющий плотность 4,32 г/см 3 , которую упариванием в вакууме при 80° C можно повысить до 5,09 г/см 3 . Достоинствами этой жидкости являются прозрачность, хорошая текучесть, химическая инертность по отношению к разделяемым минералам, легкость приготовления и регенерации, а основным недостатком - высокая токсичность соединений таллия.

В 1920 в Германии был запатентован родентицид (ядовитое вещество, используемое для борьбы с грызунами), содержащий сульфат таллия. Это вещество входило в состав ядов до 1965, когда американское правительство запретило его использование вследствие чрезвычайно высокой токсичности для людей и домашних животных.

В том же 1920 было обнаружено, что электропроводность оксисульфида таллия (таллофида) изменяется под действием инфракрасного излучения. Это свойство таллофида вскоре нашло применение в фотоэлементах, используемых в приемных устройствах систем сигнализации в темноте и тумане, инфракрасных локаторов, радиометрах, и фотоэкспонометрах для съемки в инфракрасных лучах. Во время Второй мировой войны таллофидные фотоэлементы использовались для обнаружения снайперов противника.

С инфракрасными (ИК) лучами связано практическое использование и некоторых других соединений таллия: кристаллы бромида и иодида таллия прозрачны в этой области спектра. Поэтому важнейшая область применения галогенидов таллия - оптические среды. Впервые монокристаллы твердых растворов галогенидов таллия TlBr-TlJ (KPC-5) TlCl-TlBr (KPC-6) и были выращены для изготовления оптических деталей знаменитой немецкой фирмой Цейсс в 1941, они получили фирменное название «кристаллы из расплава» (Kristalle aus Schmelzfluss). Высокое и равномерное спектральное пропускание в широком диапазоне длин волн от видимой до далекой инфракрасной областей спектра, повышенная устойчивость во влажной атмосфере, большая фотоупругость, малое поглощение лазерного излучения, акустооптическая добротность и другие свойства кристаллов KPC-5 и KPC-6 предопределили их широкое использование в оптическом приборостроении. Приборы с оптическими элементами из кристаллов галогенидов таллия предназначены для обнаружения и измерения энергии электромагнитного излучения (они установлены, например, на метеорологических спутниках для измерения теплового излучения земной атмосферы). Способность кристаллов галогенидов таллия к пластическим деформациям позволила разработать поликристаллические световоды для ИК-диапазона. Новые возможности применения открылись перед галогенидами таллия с появлением инфракрасного CO2-лазера, оптические элементы которого сейчас изготовляются из кристаллов KPC-5 и KPC-6.

В современной технике широко применяются приборы для обнаружения и измерения радиоактивных излучений - сцинтилляционные счетчики. Такой счетчик состоит из двух основных частей: люминесцентного кристалла-сцинтиллятора и фотоэлектронного умножителя. Когда на кристалл попадают кванты g-излучения или ионизирущие частицы, в этом месте возникает вспышка света, которая в фотоумножителе преобразуется в электрический ток, его сила служит характеристикой интенсивности падающего на кристалл излучения. В качестве материалов для сцинтиллятора наиболее широко применяются монокристаллы иодидов щелочных металлов (натрия, калия, цезия), активированные таллием. Именно примеси таллия создают в кристаллах центры люминесценции. В качестве сцинтиллятора можно использовать и монокристалл хлорида таллия, активированный иодом и бериллием. Этот сцинтиллятор отличается меньшим, чем у активированного таллием иодида натрия, световым выходом, и быстрым затуханием люминесценции, что позволяет использовать его для регистрации формы импульса радиоактивного излучения. По сходным принципам устроены и детекторы заряженных частиц, в которых для регистрации используется излучение Вавилова - Черенкова. В качестве детекторов этого излучения используются свинцовые стекла или монокристаллы хлорида таллия.

Применение элемента № 81 в оптических устройствах не ограничивается инфракрасным диапазоном. Аргоном и парами таллия заполняют зелёные газоразрядные лампы. Таллиевые лампы широко применяются в световых рекламах, а также для градуировки спектральных приборов. Иодид таллия вводят во ртутные газоразрядные лампы высокого давления для улучшения их световых параметров и срока службы. Соли таллия входят в состав некоторых типов зеленых сигнальных ракет.

Традиционной областью применения таллия является и производство полупроводников. Таллий входит в состав материалов на основе селена, из которых изготовляют полупроводниковые выпрямителя тока. Современные полупроводники не обязательно являются кристаллическими веществами. Известны аморфные и стеклообразные полупроводники, которые характеризуются наличием ближнего порядка в расположении атомов и отсутствием дальнего. Такая частично разупорядоченная структура приводит к тому, что вместо четкой границы запрещенной зоны, которая характерна для кристаллических полупроводников, появляются дополнительные разрешенные электронные состояния - «хвосты», размывающие границу и проникающие в глубину запрещенной зоны. Для многих аморфных полупроводников характерны эффекты быстрого (за время 10 -10 с) переключения из низкоомного в высокоомное состояние под действием сильного электрического поля и фотопроводимости - изменения сопротивления под действием электромагнитного излучения. В состав стеклообразных полупроводников наряду с селеном, теллуром и мышьяком входит таллий (пример химического состава - TlAsSe2). Полупроводники этого типа используются преимущественно в оптических устройствах: электрофотографии, телевизионных передающих трубках, светорегистрирующих средах для голографии, фоторезистивных материалах и фотошаблонах. Эффект быстрого переключения позволяет использовать их для создания переключателей и матриц памяти.

Практическое применение находят не только соединения таллия, но и сам металл. Таллий вводят в состав сплавов (чаще всего на основе свинца) для придания им кислотоупорных свойств, повышения прочности и износостойкости. Сплав 70% свинца, 20% олова и 10% таллия устойчив к действию азотной и соляной кислот. В подшипниках используется сплав 72% свинца, 15% сурьмы, 5% олова и 8% таллия. В процессе их работы таллий, плавясь, образует смазку, увеличивающую срок службы подшипников. Как и сам таллий, многие его сплавы имеют низкую температуру плавления. Амальгама таллия (сплав со ртутью), содержащая 8,5% Tl затвердевает только при -59° C, поэтому ее используют в низкотемпературных термометрах, жидкостных затворах и переключателях, работающих в условиях Крайнего Севера, Антарктиды или стратосферных исследований.

Долгую историю имеет применение таллия в медицине. С 1912 по 1930 соединения таллия широко использовались для терапии туберкулеза и дизентерии, но из-за их высокой токсичности и небольшой разницы между терапевтической и токсической дозами постепенно круг использования таллия ограничился удалением волос при лечении стригущего лишая - соли таллия в небольших дозах приводят к временному облысению. С начала 1980-х неуклонно возрастает применение радиоактивного изотопа 201 Tl (период полураспада 72,912 ч) для диагностики болезней сердечно-сосудистой системы и онкологических заболеваний.

В промышленности используется другой радиоизотоп таллия - b-излучатель 204 Tl (период полураспада 3,78 года). Его применяют в контрольно-измерительной аппаратуре для слежения за толщиной различных материалов. Для этого регистрируют ослабление b-лучей, прошедших через движущуюся тканевую или бумажную ленту, которое зависит от её толщины. При изменении интенсивности излучения аппаратура корректирует технологический режим производства по принципу обратной связи. b-Лучи таллия-204 используют также для снятия заряда статического электричества с готовой бумажной, текстильной и киноплёночной продукции.

Сейчас ведутся исследования и разработки, посвященные совершенствованию и расширению сфер использования таллия: улучшение высокотемпературных сверхпроводящих материалов для формирования изображений при исследовании методом магнитного резонанса, сохранения магнитной энергии, генерирования и передачи электроэнергии. Наиболее важными в 2004 оказались результаты в области передачи электроэнергии - получение более эффективной, компактной, легкой и менее дорогостоящей сверхпроводящей проволоки или ленты из металлоксидной керамики на основе сложных фаз Hg-Tl-Ba-Ca-Cu-O.

В химической промышленности оксиды и сульфиды таллия входят в состав некоторых катализаторов синтеза органических соединений.

Биологическое действие. Металлический таллий и его соединения являются высокотоксичными веществами и требуют строгого контроля над их применением и утилизацией отходов. Соединения таллия умеренно токсичны для растений и высоко токсичны для млекопитающих и человека. Токсичность таллия связана с нарушением баланса ионов натрия и калия. Одновалентный таллий образует прочные соединения с серосодержащими белками и подавляет активность ферментов, содержащих тиольные группы. Таллий нарушает функционирование различных ферментных систем, ингибирует их и препятствует синтезу белков, токсичность его соединений для человека выше, чем свинца и ртути.

Среднее поступление таллия в организм человека с пищей и водой составляет 1,6 мкг/сутки, с воздухом - 0,5 мкг/сутки. Таллий проникает даже через неповрежденную кожу, всасывается в желудочно-кишечном тракте и накапливается в селезенке и мышцах. Смертельная доза таллия в зависимости от индивидуальной чувствительности колеблется от 6 до 40 мг/кг веса. Острые и хронические отравления таллием имеют сходную клиническую картину и отличаются степенью выраженности и быстротой проявления симптомов: поражения желудочно-кишечного тракта (тошнота, боли в животе) и дыхательных путей, выпадения волос, поражения зрения и психических расстройств. При отравлении таллием часто ставятся неправильные первичные диагнозы: грипп или желудочно-кишечная инфекция.

Так как по поведению в организме таллий похож на щелочные металлы, то в качестве антидота (противоядия) при отравлении таллием применяется феррацин, - вещество, используемое для выведения из организма радиоактивного цезия.

Юрий Крутяков

Фигуровский Н.А. Открытие элементов и происхождение их названий . М., Наука, 1970
Химия и технология редких и рассеянных элементов , т. 1. Под. ред. К.А.Большакова. М., 1976
Федоров П.А., Мохосоев М.В., Алексеев Ф.П. Химия галлия, индия и таллия . Новосибирск, Наука, 1977
Популярная библиотека химических элементов . М., Наука, 1983
U.S. Geological Survey, Mineral Commodity Summaries , January 2005