Нерешенные математические проблемы. Нерешаемые задачи: уравнения Навье-Стокса, гипотеза Ходжа, гипотеза Римана

Иногда усердное изучение точных наук может принести свои плоды - вы станете не только известны на весь мир, но и богаты. Награды даются, впрочем, не за что попало, и в современной науке очень много недоказанных теорий, теорем и задач, которые плодятся по мере развития наук, взять хотя бы Коуровские или Днестровские тетради, этакие сборники с неразрешимыми физико-математическими, и не только, задачами. Однако есть и поистине сложные теоремы, которые не могут разгадать уже не один десяток лет, и вот за них то и выставлена награда американским институтом Клэя в размере 1 млн. долларов США за каждую. До 2002 года общий джекпот равнялся 7 миллионам, так как «задач тысячелетия» было семь, однако российский математик Григорий Перельман решил гипотезу Пуанкаре, эпически отказавшись от миллиона, даже не открыв дверь математикам США, которые хотели вручить ему его честно заработанные премиальные. Итак, включаем Теорию Большого Взрыва для фона и настроения, и смотрим, за что еще можно срубить круглую сумму.

Равенство классов P и NP

Простыми словами говоря, проблема равенства P = NP состоит в следующем: если положительный ответ на какой-то вопрос можно довольно быстро проверить (за полиномиальное время), то правда ли, что ответ на этот вопрос можно довольно быстро найти (также за полиномиальное время и используя полиномиальную память)? Другими словами, действительно ли решение задачи проверить не легче, чем его отыскать? Суть здесь в том, что некоторые расчеты и вычисления легче решать по алгоритму, а не вычислять перебором, и таким образом экономить кучу времени и ресурсов.

Гипотеза Ходжа

Гипотеза Ходжа сформулирована в 1941 году и состоит в том, что для особенно хороших типов пространств, называемых проективными алгебраическими многообразиями, так называемые циклы Ходжа являются комбинациями объектов, имеющих геометрическую интерпретацию, — алгебраических циклов.

Здесь объясняя простыми словами можно сказать следующее: в 20 веке были открыты очень сложные геометрические формы, типа искривленных бутылок. Так вот, было высказано предположение, что чтобы сконструировать эти объекты для описания, надо применять совсем головоломные формы, которые не имеют геометрической сути «этакие страшные многомерные каляки-маляки» или же все - таки можно обойтись условно-стандартной алгеброй+геометрией.

Гипотеза Римана

Здесь человеческим языком объяснить довольно сложно, достаточно знать, что решение данной проблемы будет иметь далеко идущие последствия в области распределения простых чисел. Проблема настолько важна и насущна, что даже выведение контрпримера гипотезы - на усмотрение ученого совета университета, проблему можно будет считать доказанной, так что здесь можно попробовать и метод «от обратного». Даже если удастся переформулировать гипотезу в более узком смысле - и тут институт Клэя выплатит некоторую сумму денег.

Теория Янга — Миллса

Физика элементарных частиц - один из любимых разделов доктора Шелдона Купера. Тут квантовая теория двух умных дядек говорит нам о том, что для любой простой калибровочной группе в пространстве существует дефект массы отличный от нулевого. Это утверждение установлено экспериментальными данными и численному моделированию, однако доказать его пока никто не может.

Уравнения Навье-Стокса

Здесь нам наверняка бы помог Говард Воловиц, если бы существовал в реальности - ведь это загадка из гидродинамики, причем основа основ. Уравнения описывают движения вязкой ньютоновской жидкости, имеют огромное практическое значение, а главное описывают турбулентность, которую никак не удается загнать в рамки науки и предугадать ее свойства и действия. Обоснование построения этих уравнений позволило бы не тыкать пальцем в небо, а понять турбулентность изнутри и сделать самолеты и механизмы более устойчивыми.

Гипотеза Бёрча — Свиннертон-Дайера

Здесь я, правда, пытался подобрать простые слова, однако тут такая дремучая алгебра, что без глубокого погружения не обойтись. Тем же, кто не хочет нырять с аквалангом в матан, надо знать, что данная гипотеза позволяет быстро и безболезненно находить ранг эллиптических кривых, а если бы этой гипотезы не было, то для вычисления этого ранга нужна была бы простыня вычислений. Ну и естественно также надо знать, что доказательство этой гипотезы обогатит вас на миллион долларов.

Нельзя не отметить, что почти в каждой области есть уже продвижения, и даже доказаны случаи для отдельных примеров. Поэтому не стоит медлить, а то получится как с теоремой Ферма, которая поддалась Эндрю Уайлсу через 3 с лишним века в 1994 году, и принесла ему Абелевскую премию и около 6 млн. норвежских крон (50 миллионов рублей по сегодняшнему курсу).

Интерес к математике обозначился у Ферма как-то неожиданно и в достаточно зрелом возрасте. В 1629 г. в его руки попадает латинский перевод работы Паппа, содержащий краткую сводку результатов Аполлония о свойствах конических сечений. Ферма, полиглот, знаток права и античной филологии, вдруг задается целью полностью восстановить ход рассуждений знаменитого ученого. С таким же успехом современный адвокат может попытаться самостоятельно воспроизвести все доказательства по монографии из проблем, скажем, алгебраической топологии. Однако, немыслимое предприятие увенчивается успехом. Более того, вникая в геометрические построения древних, он совершает удивительное открытие: для нахождения максимумов и минимумов площадей фигур не нужны хитроумные чертежи. Всегда можно составить и решить некое простое алгебраическое уравнение, корни которого определяют экстремум. Он придумал алгоритм, который станет основой дифференциального исчисления.

Он быстро продвинулся дальше. Он нашел достаточные условия существования максимумов, научился определять точки перегиба, провел касательные ко всем известным кривым второго и третьего порядка. Еще несколько лет, и он находит новый чисто алгебраический метод нахождения квадратур для парабол и гипербол произвольного порядка (то есть интегралов от функций вида y p = Cx q и y p x q = С ), вычисляет площади, объемы, моменты инерции тел вращения. Это был настоящий прорыв. Чувствуя это, Ферма начинает искать общения с математическими авторитетами того времени. Он уверен в себе и жаждет признания.

В 1636 г. он пишет первое письмо Его преподобию Марену Мерсенну: ”Святой отец! Я Вам чрезвычайно признателен за честь, которую Вы мне оказали, подав надежду на то, что мы сможем беседовать письменно; ...Я буду очень рад узнать от Вас о всех новых трактатах и книгах по Математике, которые появилась за последние пять-шесть лет. ...Я нашел также много аналитических методов для различных проблем, как числовых, так и геометрических, для решения которых анализ Виета недостаточен. Всем этим я поделюсь с Вами, когда Вы захотите, и притом без всякого высокомерия, от которого я более свободен и более далек, чем любой другой человек на свете.”

Кто такой отец Мерсенн? Это францисканский монах, ученый скромных дарований и замечательный организатор, в течении 30 лет возглавлявший парижский математический кружок, который стал подлинным центром французской науки. В последствии кружок Мерсенна указом Людовика XIV будет преобразован в Парижскую академию наук. Мерсенн неустанно вел огромную переписку, и его келья в монастыре ордена минимов на Королевской площади была своего рода “почтамтом для всех ученых Европы, начиная от Галилея и кончая Гоббсом”. Переписка заменяла тогда научные журналы, которые появились значительно позже. Сборища у Мерсенна происходили еженедельно. Ядро кружка составляли самые блестящие естествоиспытатели того времен: Робервиль, Паскаль-отец, Дезарг, Мидорж, Арди и конечно же, знаменитый и повсеместно признанный Декарт. Рене дю Перрон Декарт (Картезий), дворянская мантия, два родовых поместья, основоположник картезианства, “отец” аналитической геометрии, один из основателей новой математики, а так же друг и товарищ Мерсенна по иезуитскому колледжу. Этот замечательный человек станет кошмаром для Ферма.

Мерсенн счел результаты Ферма достаточно интересными, чтобы ввести провинциала в свой элитный клуб. Ферма тут же завязывает переписку со многими членами кружка и буквально засыпает письмами самого Мерсенна. Кроме того, он отсылает на суд ученых мужей законченные рукописи: “Введение к плоским и телесным местам”, а год спустя - “Способ отыскания максимумов и минимумов” и “Ответы на вопросы Б. Кавальери”. То, что излагал Ферма, была абсолютная новь, однако сенсация не состоялась. Современники не содрогнулись. Они мало, что поняли, но зато нашли однозначные указание на то, что идею алгоритма максимизации Ферма заимствовал из трактата Иоханнеса Кеплера с забавным названием “Новая стереометрия винных бочек”. Действительно, в рассуждения Кеплера встречаются фразы типа “Объем фигуры наибольший, если по обе стороны от места наибольшего значения убывание сначала нечувствительно”. Но идея малости приращения функции вблизи экстремума вовсе не носилась в воздухе. Лучшие аналитические умы того времени были не готовы к манипуляциям с малыми величинами. Дело в том, что в то время алгебра считалась разновидностью арифметики, то есть математикой второго сорта, примитивным подручным средством, разработанным для нужд низменной практики (“хорошо считают только торговцы”). Традиция предписывала придерживаться сугубо геометрических методов доказательств, восходящих к античной математике. Ферма первый понял, что бесконечно малые величины можно складывать и сокращать, но довольно затруднительно изображать в виде отрезков.

Понадобилось почти столетие, чтобы Жан д’Аламбер в знаменитой “Энциклопедии” признал: “Ферма был изобретателем новых исчислений. Именно у него мы встречаем первое приложение дифференциалов для нахождения касательных”. В конце XVIII века еще более определенно выскажется Жозеф Луи граф де Лагранж: “Но геометры - современники Ферма - не поняли этого нового рода исчисления. Они усмотрели лишь частные случаи. И это изобретение, которое появилось незадолго перед “Геометрией” Декарта, оставалось бесплодным в течении сорока лет”. Лагранж имеет в виду 1674 г., когда вышли в свет “Лекции” Исаака Барроу, подробно освещавшие метод Ферма.

Кроме всего прочего быстро обнаружилось, что Ферма более склонен формулировать новые проблемы, нежели, чем смиренно решать задачи, предложенные метрами. В эпоху дуэлей обмен задачами между учеными мужами был общепринят, как форма выяснения проблем, связанных с субординацией. Однако Ферма явно не знает меры. Каждое его письмо - это вызов, содержащий десятки сложных нерешенных задач, причем на самые неожиданные темы. Вот образчик его стиля (адресовано Френиклю де Бесси): “Item, каков наименьший квадрат, который при уменьшении на 109 и прибавлении единицы даст квадрат? Если Вы не пришлете мне общего решения, то пришлите частное для этих двух чисел, которые я выбрал небольшими, чтобы Вас не очень затруднить. После того как Я получу от Вас ответ, я предложу Вам некоторые другие вещи. Ясно без особых оговорок, что в моем предложении требуется найти целые числа, поскольку в случае дробных чисел самый незначительный арифметик смог бы прийти к цели.” Ферма часто повторялся, формулируя одни и те же вопросы по несколько раз, и откровенно блефовал, утверждая, что располагает необыкновенно изящным решением предложенной задачи. Не обходилось и без прямых ошибок. Некоторые из них были замечены современниками, а кое какие коварные утверждения вводили в заблуждение читателей в течении столетий.

Кружок Мерсенна прореагировал адекватно. Лишь Робервиль, единственный член кружка, имевший проблемы с происхождением, сохраняет дружеский тон писем. Добрый пастырь отец Мерсенн пытался вразумить “тулузского нахала”. Но Ферма не намерен оправдываться: ”Преподобный отец! Вы мне пишете, что постановка моих невозможных проблем рассердила и охладила господ Сен-Мартена и Френикля и что это послужило причиной прекращения их писем. Однако я хочу возразить им, что то, что кажется сначала невозможным, на самом деле не является таковым и что есть много проблем, о которых, как сказал Архимед... ” и т.д..

Однако Ферма лукавит. Именно Френиклю он послал задачу о нахождении прямоугольного треугольника с целочисленными сторонами, площадь которого равна квадрату целого числа. Послал, хотя знал, что задача заведомо не имеет решения.

Самую враждебную позицию по отношению к Ферма занял Декарт. В его письме Мерсенну от 1938 г. читаем: “так как я узнал, что это тот самый человек который перед тем пытался опровергнуть мою “Диоптрику”, и так как Вы сообщили мне, что он послал это после того, как прочел мою “Геометрию” и в удивлении, что я не нашел ту же вещь, т. е. (как имею основание его истолковать) послал это с целью вступить в соперничество и показать, что в этом он знает больше, чем я, и так как еще из ваших писем я узнал, что за ним числится репутация весьма сведущего геометра, то я считаю себя обязанным ему ответить.” Свой ответ Декарт в последствии торжественно обозначит как “малый процесс Математики против г. Ферма”.

Легко понять, что привело в ярость именитого ученого. Во-первых, в рассуждениях Ферма постоянно фигурируют координатные оси и представление чисел отрезками - прием, который Декарт всесторонне развивает в своей только что изданной “Геометрии”. Ферма приходит к идее замены чертежа вычислениями совершенно самостоятельно, в чем-то он даже более последователен, чем Декарт. Во-вторых, Ферма блестяще демонстрирует эффективность своего метода нахождения минимумов на примере задачи о кратчайшем пути светового луча, уточняя и дополняя Декарта с его “Диоптрикой”.

Заслуги Декарта как мыслителя и новатора огромны, но откроем современную “Математическую энциклопедию” и просмотрим список терминов связанных с его именем: “Декартовы координаты” (Лейбниц, 1692) , “Декартов лист”, “Декарта овалы ”. Ни одно из его рассуждений не вошло в историю как “Теорема Декарта”. Декарт в первую очередь идеолог: он основатель философской школы, он формирует понятия, совершенствует систему буквенных обозначений, но в его творческом наследии мало новых конкретных приемов. В противоположность ему Пьер Ферма мало пишет, но по любому поводу может придумать массу остроумных математических трюков (см. там же “Теорема Ферма”, ”Принцип Ферма”, ”Метод бесконечного спуска Ферма”). Вероятно, они вполне справедливо завидовали друг другу. Столкновение было неизбежно. При иезуитском посредничестве Мерсенна разгорается война, длившаяся два года. Впрочем, Мерсенн и здесь оказался прав перед историей: яростная схватка двух титанов, их напряженная, мягко говоря, полемика способствовала осмыслению ключевых понятий математического анализа.

Первым теряет интерес к дискуссии Ферма. По-видимому, он напрямую объяснился с Декартом и больше никогда не задевал соперника. В одной из своих последних работ “Синтез для рефракции”, рукопись которой он послал де ла Шамбру, Ферма через слово поминает “ученейшего Декарта” и всячески подчеркивает его приоритет в вопросах оптики. Между тем именно эта рукопись содержала описание знаменитого “принципа Ферма”, который обеспечивает исчерпывающее объяснение законов отражения и преломления света. Реверансы в сторону Декарта в работе такого уровня были совершенно излишни.

Что же произошло? Почему Ферма, отложив в сторону самолюбие, пошел на примирение? Читая письма Ферма тех лет (1638 - 1640 гг.), можно предположить самое простое: в этот период его научные интересы резко изменились. Он забрасывает модную циклоиду, перестает интересоваться касательными и площадями, и на долгие 20 лет забывает о своем методе нахождения максимума. Имея огромные заслуги в математике непрерывного, Ферма целиком погружается в математику дискретного, оставив опостылевшие геометрические чертежи своим оппонентам. Его новой страстью становятся числа. Собственно говоря, вся “Теория чисел”, как самостоятельная математическая дисциплина, своим появлением на свет целиком обязана жизни и творчеству Ферма.

<…> После смерти Ферма его сын Самюэль издал в 1670 г. принадлежащий отцу экземпляр “Арифметики” под названием “Шесть книг арифметики александрийца Диофанта с комментариями Л. Г. Баше и замечаниями П. де Ферма, тулузского сенатора”. В книгу были включены также некоторые письма Декарта и полный текст сочинения Жака де Бильи “Новое открытие в искусстве анализа”, написанное на основе писем Ферма. Издание имело невероятный успех. Перед изумленными специалистами открылся невиданный яркий мир. Неожиданность, а главное доступность, демократичность теоретико-числовых результатов Ферма породили массу подражаний. В то время мало кто понимал как вычисляется площадь параболы, но каждый школяр мог осознать формулировку Великой теоремы Ферма. Началась настоящая охота за неизвестными и утерянными письмами ученого. До конца XVII в. было издано и переиздано каждое найденное его слово. Но бурная история развития идей Ферма только начиналась.

- » Задачи человечества

ЗАДАЧИ МАТЕМАТИКИ, НЕ РЕШЕННЫЕ ЧЕЛОВЕЧЕСТВОМ

Задачи Гильберта

23 важнейших проблем математики были представлены величайшим немецким математиком Давидом Гильбертом на Втором Международном конгресе математиков в Париже в 1990 году. Тогда эти проблемы (охватывающие основания математики, алгебру, теорию чисел, геометрию, топологию, алгебраическую геометрию, группы Ли, вещественный и комплексный анализ, дифференциальные уравнения, математическую физику, вариационное исчисление и теорию вероятностей, не были решены. На данный момент решены 16 проблем из 23. Ещё 2 не являются корректными математическими проблемами (одна сформулирована слишком расплывчато, чтобы понять, решена она или нет, другая, далёкая от решения, — физическая, а не математическая). Из оставшихся 5 проблем две не решены никак, а три решены только для некоторых случаев

Задачи Ландау

До сих пор существует много открытых вопросов, связанных с простыми числами (простое число - это число, которое имеет отлько два делителя: единицу и само это число). Наиболее важные вопросы были перечислены Эдмундом Ландау на Пятом Междунанародном математическом конгресе:

Первая проблема Ландау (проблема Гольдбаха): верно ли, что каждое чётное число, большее двух, может быть представлено в виде суммы двух простых чисел, а каждое нечётное число, большее 5, может быть представлено в виде суммы трёх простых чисел?

Вторая проблема Ландау : бесконечно ли множество «простых близнецов» — простых чисел, разность между которыми равна 2?
Третья проблема Ландау (гипотеза Лежандра): верно ли, что для всякого натурального числа n между и всегда найдётся простое число?
Четвёртая проблема Ландау : бесконечно ли множество простых чисел вида , где n — натуральное число?

Задачи тысячелетия (Millennium Prize Problems)

Это семь математических задач, з а решение каждой из которых инcтитут Клея предложил приз в 1 000 000 долларов США. Вынося на суд математиков эти семь задач, иститут Клея сравнил их с 23 задачами Д.Гильберта, которые оказали большое влияние на на математику ХХ века. Из 23 проблем Гильберта большинство уже решены, и только одна — гипотеза Римана — вошла в список задач тысячелетия. По состоянию на декабрь 2012 года только одна из семи проблем тысячелетия (гипотеза Пуанкаре) решена. Приз за её решение присуждён российскому математику Григорию Перельману, который от него отказался.

Вот список этих семи задач :

№1. Равенство классов P и NP

Если положительный ответ на какой-то вопрос можно быстро проверить (используя некоторую вспомогательную информацию, называемую сертификатом), то верно ли, что и сам ответ (вместе с сертификатом) на этот вопрос можно быстро найти? Задачи первого типа относятся к классуц NP, второго — классу Р. Проблема равенства этих классов является одной из важнейших проблем теории алгоритмов.

№2. Гипотеза Ходжа

Важная проблема алгебраической геометрии. Гипотеза описывает классы комогологий на комплексных проективных многообразиях, реализуемые алгебраическими подмногообразиями.

№3. Гипотеза Пуанкаре (доказана Г.Я.Перельманом)

Cчитается наиболее известной проблемой топологии. Говоря более просто, она утверждает, что всякий 3D «объект», обладающий некоторыми свойствами трёхмерной сферы (например, каждая петля внутри него должна быть стягиваема), обязан быть сферой с точностью до деформации. Премия за доказательство гипотезы Пуанкаре присуждена российскому математику Г.Я.Перельману, опубликовавшему в 2002 году серию работ, из которых следует справедливость гипотезы Пуанкаре.

№4. Гипотеза Римана

Гипотеза гласит, что все нетривиальные (то есть имеющие ненулевую мнимую часть) нули дзета-функции Римана имеют действительную часть 1/2. Гипотеза Римана была восьмой в списке проблем Гильберта.

№5. Теория Янга — Миллса

Задача из области физики элементарных частиц. Требуется доказать, что для любой простой компактной калибровочной группы G квантовая теория Янга — Миллса для четырехмарного пространства существует и имеет ненулевой дефект массы. Это утверждение соответствует экспериментальным данным и численному моделированию, однако доказать его до сих пор не удалось.

№6. Существование и гладкость решений уравнений Навье — Стокса

Уравнения Навье — Стокса описывают движение вязкой жидкости. Одна из важнейших задач гидродинамики.

№7. Гипотеза Бёрча — Свиннертон-Дайера

Гипотеза связана с уравнениями эллиптических кривых и множеством их рациональных решений.

Нерешаемые задачи — это 7 интереснейших математических проблем. Каждая из них была предложена в свое время известными учеными, как правило, в виде гипотез. Вот уже много десятилетий над их решением ломают головы математики во всем мире. Тех, кто добьется успеха, ждет вознаграждение в миллион американских долларов, предложенное институтом Клэйя.

Институт Клэйя

Под таким названием известна частная некоммерческая организация, штаб-квартира которой находится в Кембридже, штат Массачусетс. Она была основана в 1998 году гарвардским математиком А. Джеффи и бизнесменом Л. Клэйем. Целью деятельности института является популяризация и развитие математических знаний. Для ее достижения организация выдает премии ученым и спонсирует многообещающие исследования.

В начале 21 столетия Математический институт Клэйя предложил премию тем, кто решит проблемы, которые известны, как самые сложные нерешаемые задачи, назвав свой список Millennium Prize Problems. Из «Списка Гильберта» в него вошла только гипотеза Римана.

Задачи тысячелетия

В список института Клэйя изначально входили:

  • гипотеза о циклах Ходжа;
  • уравнения квантовой теории Янга — Миллса;
  • гипотеза Пуанкаре;
  • проблема равенства классов Р и NP;
  • гипотеза Римана;
  • о существовании и гладкости его решений;
  • проблема Берча — Свиннертон-Дайера.

Эти открытые математические проблемы представляют огромный интерес, так как могут иметь множество практических реализаций.

Что доказал Григорий Перельман

В 1900 году известный ученый-философ Анри Пуанкаре предположил, что всякое односвязное компактное 3-мерное многообразие без края гомеоморфно 3-мерной сфере. Ее доказательство в общем случае не находилось в течение века. Лишь в 2002-2003 годах петербургский математик Г. Перельман опубликовал ряд статей с решением проблемы Пуанкаре. Они произвели эффект разорвавшейся бомбы. В 2010 году гипотеза Пуанкаре была исключена из списка «Нерешенные задачи» института Клэйя, а самому Перельману было предложено получить полагающееся ему немалое вознаграждение, от которого последний отказался, не объяснив причин своего решения.

Самое понятное объяснение того, что удалось доказать российскому математику, можно дать, представив, что на бублик (тор), натягивают резиновый диск, а затем пытаются стянуть края его окружности в одну точку. Очевидно, что это невозможно. Другое дело, если произвести этот эксперимент с шаром. В таком случае вроде бы трехмерная сфера, получившаяся из диска, окружность которого стянули в точку гипотетическим шнуром, будет трехмерной в понимании обычного человека, но двумерной с точки зрения математики.

Пуанкаре предположил, что трехмерная сфера является единственным трехмерным «предметом», поверхность которой можно стянуть в одну точку, а Перельману удалось это доказать. Таким образом, список «Нерешаемые задачи» сегодня состоит из 6 проблем.

Теория Янга-Миллса

Эта математическая проблема была предложена ее авторами в 1954-м году. Научная формулировка теории имеет следующий вид: для любой простой компактной калибровочной группы квантовая пространственная теория, созданная Янгом и Милльсом, существует, и при этом имеет нулевой дефект массы.

Если говорить на языке, понятном для обычного человека, взаимодействия между природными объектами (частицами, телами, волнами и пр.) делятся на 4 типа: электромагнитное, гравитационное, слабое и сильное. Уже много лет физики пытаются создать общую теорию поля. Она должна стать инструментом для объяснения всех этих взаимодействий. Теория Янга-Миллса — это математический язык, с помощью которого стало возможно описать 3 из 4-х основных сил природы. Она не применима к гравитации. Поэтому нельзя считать, что Янгу и Миллсу удалось создать теорию поля.

Кроме того, нелинейность предложенных уравнений делает их крайне сложными для решения. При малых константах связи их удается приближенно решить в виде ряда теории возмущений. Однако пока непонятно, как можно решить эти уравнения при сильной связи.

Уравнения Навье-Стокса

С помощью этих выражений описываются такие процессы, как воздушные потоки, течение жидкостей и турбулентность. Для некоторых частных случаев аналитические решения уравнения Навье-Стокса уже были найдены, однако сделать это для общего пока никому не удалось. В то же время, численное моделирование для конкретных значений скорости, плотности, давления, времени и так далее позволяет добиться прекрасных результатов. Остается надеяться, что у кого-нибудь получится применить уравнения Навье-Стокса в обратном направлении, т. е. вычислить с их помощью параметры, либо доказать, что метода решения нет.

Задача Берча — Свиннертон-Дайера

К категории «Нерешенные задачи» относится и гипотеза, предложенная английскими учеными из Кембриджского университета. Еще 2300 лет назад древнегреческий ученый Эвклид дал полное описание решений уравнения x2 + y2 = z2.

Если для каждого из простых чисел посчитать количество точек на кривой по его модулю, получится бесконечный набор целых чисел. Если конкретным образом «склеить» его в 1 функцию комплексной переменной, тогда получится дзета-функция Хассе-Вейля для кривой третьего порядка, обозначаемая буквой L. Она содержит информацию о поведении по модулю всех простых чисел сразу.

Брайан Берч и Питер Свиннертон-Дайер выдвинули гипотезу относительно эллиптических кривых. Согласно ей, структура и количество множества ее рациональных решений связаны с поведением L-функции в единице. Недоказанная на данный момент гипотеза Берча — Свиннертон-Дайера зависит от описания алгебраических уравнений 3 степени и является единственным сравнительно простым общим способом расчета ранга эллиптических кривых.

Чтобы понять практическую важность этой задачи, достаточно сказать, что в современной криптографии на эллиптических кривых основан целый класс асимметричных систем, и на их применении основаны отечественные стандарты цифровой подписи.

Равенство классов p и np

Если остальные «Задачи тысячелетия» относятся к чисто математическим, то эта имеет отношение к актуальной теории алгоритмов. Проблема, касающаяся равенства классов р и np, известная также, как проблема Кука-Левина, понятным языком может быть сформулирована следующим образом. Предположим, что положительный ответ на некий вопрос можно проверить достаточно быстро, т. е. за полиномиальное время (ПВ). Тогда правильно ли утверждение, что ответ на него можно довольно быстро отыскать? Еще проще звучит так: действительно ли решение задачи проверить не труднее, чем его найти? Если равенство классов р и np будет когда-либо доказано, то все проблемы подбора можно будет решать за ПВ. На данный момент многие специалисты сомневаются в истинности этого утверждения, хотя не могут доказать обратное.

Гипотеза Римана

Вплоть до 1859 года не было выявлено какой-либо закономерности, которая описывала бы, как распределяются простые числа среди натуральных. Возможно, это было связано с тем, что наука занималась другими вопросами. Однако к середине 19 столетия ситуация изменилась, и они стали одними из наиболее актуальных, которыми начала заниматься математика.

Гипотеза Римана, появившаяся в этот период — это предположение о том, что в распределении простых чисел существует определенная закономерность.

Сегодня многие современные ученые считают, что если она будет доказана, то придется пересмотреть многие фундаментальные принципы современной криптографии, составляющие основу значительной части механизмов электронной коммерции.

Согласно гипотезе Римана, характер распределения простых чисел, возможно, существенно отличается от предполагаемого на данный момент. Дело в том, что до сих пока не было обнаружено какой-либо системы в распределения простых чисел. Например, существует проблема «близнецов», разность между которыми равна 2. Этими числами являются 11 и 13, 29. Другие простые числа образуют скопления. Это 101, 103, 107 и др. Ученые давно подозревали, что подобные скопления существуют и среди очень больших простых чисел. Если их найдут, то стойкость современных криптоключей окажется под вопросом.

Гипотеза о циклах Ходжа

Эта нерешенная до сих пор задача сформулирована в 1941 году. Гипотеза Ходжа предполагает возможность аппроксимации формы любого объекта путем «склеивания» вместе простых тел большей размерности. Этот способ был известен и успешно применяется достаточно давно. Однако не известно, до какой степени можно производить упрощение.

Теперь вы знаете, какие нерешаемые задачи существуют на данный момент. Они являются предметом исследования тысяч ученых во всем мире. Остается надеяться, что в ближайшее время они будут решены, а их практическое применение поможет человечеству выйти на новый виток технологического развития.

"Я знаю только то, что ничего не знаю, но другие не знают и этого"
(Сократ, древнегреческий философ)

НИКОМУ не дано владеть вселенским разумом и знать ВСЁ. Тем не менее, у большинства ученых, да и тех, кто просто любит размышлять и исследовать, всегда есть стремление узнать больше, разгадать загадки. Но остались ли еще неразгаданные темы у человечества? Ведь, кажется, все уже ясно и нужно только применять полученные веками знания?

НЕ стоит отчаиваться! Еще остались нерешенные проблемы из области математики, логики, которые в 2000 году эксперты Математического института Клэя в Кембридже (Массачусетс, США) объединили в список, так называемые, 7 загадок тысячелетия (Millennium Prize Problems). Эти проблемы волнуют ученых всей планеты. С тех пор и по сей день любой человек может заявить, что нашел решение одной из задач, доказать гипотезу и получить от бостонского миллиардера Лэндона Клэя (в честь которого и назван институт) премию. Он уже выделил на эти цели 7 миллионов долларов. К слову сказать, на сегодняшний день одна из проблем уже решена.

Итак, вы готовы узнать о математических загадках?
Уравнения Навье - Стокса (сформулированы в 1822 году)
Область: гидроаэродинамика

Уравнения о турбулентных, воздушных потоках, а также течении жидкостей известны как уравнения Навье - Стокса. Если, к примеру, плыть по озеру на чем-либо, то неизбежно вокруг возникнут волны. Это касается и воздушного пространства: при полете на самолете в воздухе также будут образовываться турбулентные потоки.
Данные уравнения как раз производят описание процессов движения вязкой жидкости и являются стержневой задачей всей гидродинамики. Для некоторых частных случаев уже найдены решения, в которых части уравнений отбрасываются, как не влияющие на конечный результат, но в общем виде решения этих уравнений не найдены.
Необходимо найти решение уравнениям и выявить гладкие функции.

Гипотеза Римана (сформулирована в 1859 году)
Область: теория чисел

Известно, что распределение простых чисел (Которые делятся только на себя и на единицу: 2,3,5,7,11…) среди всех натуральных чисел не подчиняется никакой закономерности.
Над этой проблемой задумался немецкий математик Риман, который сделал свое предположение, теоретически касающееся свойств имеющейся последовательности простых чисел. Уже давно известны так называемые парные простые числа - простые числа-близнецы, разность между которыми равна 2, например 11 и 13, 29 и 31, 59 и 61. Иногда они образуют целые скопления, например, 101, 103, 107, 109 и 113.
Если такие скопления будут найдены и выведен определенный алгоритм, то это приведет к революционному изменению наших знаний в области шифрования и к невиданному прорыву в области безопасности Интернета.

Проблема Пуанкаре (сформулирована в 1904 году. Решена в 2002 году.)
Область: топология или геометрия многомерных пространств

Суть проблемы заключается в топологии и состоит в том, что если натягивать резиновую ленту, к примеру, на яблоко (сферу), то будет теоретически возможным сжать ее до точки, медленно перемещая без отрыва от поверхности ленту. Однако если эту же ленту натянуть вокруг бублика (тора), то сжать ленту без разрыва ленты или разлома самого бублика не представляется возможным. Т.е. вся поверхность сферы односвязна, в то время как тора – нет . Задача состояла в том, чтобы доказать, что односвязной является только сфера.

Представитель ленинградской геометрической школы Григорий Яковлевич Перельман является лауреатом премии тысячелетия математического института Клэя (2010 г.) за решение проблемы Пуанкаре. От знаменитой Фильдсовской премии он отказался.

Гипотеза Ходжа (сформулирована в 1941 году)
Область: алгебраическая геометрия

В реальности существуют множество как простых, так и куда более сложных геометрических объектов. Чем сложнее объект, тем труднее его изучать. Сейчас учеными придуман и вовсю применяется подход, основанный на использовании частей одного целого ("кирпичики") для изучения этого объекта, как пример - конструктор. Зная свойства «кирпичиков», становится возможным подступиться и к свойствам самого объекта. Гипотеза Ходжа в данном случае связана с некоторыми свойствами как «кирпичиков», так и объектов.
Это очень серьезная проблема алгебраической геометрии: найти точные пути и методы анализа сложных объектов с помощью простых "кирпичиков".

Уравнения Янга - Миллса (сформулированы в 1954 году)
Область: геометрия и квантовая физика

Физики Янг и Миллс описывают мир элементарных частиц. Они, обнаружив связь между геометрией и физикой элементарных частиц, написали свои уравнения в области квантовой физики. Тем самым был найден путь к объединению теорий электромагнитного, слабого и сильного взаимодействий.
На уровне микрочастиц возникает «неприятный» эффект: если на частицу действуют несколько полей сразу, их совокупный эффект уже нельзя разложить на действие каждого из них поодиночке. Это происходит по причине того, что в этой теории друг к другу притягиваются не только частицы материи, но и сами силовые линии поля.
Хотя и уравнения Янга - Миллса приняты всеми физиками мира, экспериментально теория, касающаяся предсказывания массы элементарных частиц, не доказана.

Гипотеза Берча и Свиннертон-Дайера (сформулирована в 1960 году)
Область: алгебра и теория чисел

Гипотеза связана с уравнениями эллиптических кривых и множеством их рациональных решений . В доказательстве теоремы Ферма эллиптические кривые заняли одно из важнейших мест. А в криптографии они образуют целый раздел имени себя, и на них основаны некоторые российские стандарты цифровой подписи.
Задача в том, что нужно описать ВСЕ решения в целых числах x, y, z алгебраических уравнений, то есть уравнений от нескольких переменных с целыми коэффициентами.

Проблема Кука (сформулирована в 1971 году)
Область: математическая логика и кибернетика

Ее еще называют "Равенство классов P и NP", и она является одной из наиболее важных задач теории алгоритмов, логики и информатики.
Может ли процесс проверки правильности решения какой-либо задачи длиться дольше, чем время, затраченное на само решение этой задачи (независимо от алгоритма проверки)?
На решение одной и той же задачи, порой, нужно разное количество времени, если изменить условия и алгоритмы. К примеру: в большой компании вы ищете знакомого. Если вы знаете, что он сидит в углу или за столиком - то вам понадобится доли секунд, чтобы его увидеть. Но если вы не будете знать точно, где находится объект, то затратите больше времени на его поиски, обходя всех гостей.
Основным вопросом является: все или не все задачи, которые можно легко и быстро проверить, можно также легко и быстро решить?

Математика, как может показаться многим, не так далека от реальности. Она является тем механизмом, с помощью которого можно описать наш мир и многие явления. Математика всюду. И прав был В.О. Ключевский, который изрек: «Не цветы виноваты, что слепой их не видит» .

И в заключение….
Одну из самых популярных теорем математики - Великую (Последнюю) теорему Ферма: аn + bn = cn - не могли доказать 358 лет! И только в 1994 году британец Эндрю Уайлз смог дать ей решение.