Сколько будет деление с остатком. Деление с остатком

Деление многозначных чисел легче всего выполнять столбиком. Деление столбиком иначе называют деление уголком .

Перед тем как начать выполнение деления столбиком, рассмотрим подробно саму форму записи деления столбиком. Сначала записываем делимое и справа от него ставим вертикальную черту:

За вертикальной чертой, напротив делимого, пишем делитель и под ним проводим горизонтальную черту:

Под горизонтальной чертой поэтапно будет записываться получающееся в результате вычислений частное:

Под делимым будут записываться промежуточные вычисления:

Полностью форма записи деления столбиком выглядит следующим образом:

Как делить столбиком

Допустим, нам нужно разделить 780 на 12, записываем действие в столбик и приступаем к делению:

Деление столбиком выполняется поэтапно. Первое, что нам требуется сделать, это определить неполное делимое. Смотрим на первую цифру делимого:

это число 7, так как оно меньше делителя, то мы не можем начать деление с него, значит нужно взять ещё одну цифру из делимого, число 78 больше делителя, поэтому мы начинаем деление с него:

В нашем случае число 78 будет неполным делимым , неполным оно называется потому, что является всего лишь частью делимого.

Определив неполное делимое, мы можем узнать сколько цифр будет в частном, для этого нам нужно посчитать, сколько цифр осталось в делимом после неполного делимого, в нашем случае всего одна цифра - 0, это значит, что частное будет состоять из 2 цифр.

Узнав количество цифр, которое должно получиться в частном, на его месте можно поставить точки. Если при завершении деления количество цифр получилось больше или меньше, чем указано точек, значит где-то была допущена ошибка:

Приступаем к делению. Нам нужно определить сколько раз 12 содержится в числе 78. Для этого мы последовательно умножаем делитель на натуральные числа 1, 2, 3, …, пока не получится число максимально близкое к неполному делимому или равное ему, но не превышающее его. Таким образом мы получаем число 6, записываем его под делитель, а из 78 (по правилам вычитания столбиком) вычитаем 72 (12 · 6 = 72). После того, как мы вычли 72 из 78, получился остаток 6:

Обратите внимание, что остаток от деления показывает нам, правильно ли мы подобрали число. Если остаток равен делителю или больше него, то мы не правильно подобрали число и нам нужно взять число побольше.

К получившемуся остатку - 6, сносим следующую цифру делимого - 0. В результате, получилось неполное делимое - 60. Определяем, сколько раз 12 содержится в числе 60. Получаем число 5, записываем его в частное после цифры 6, а из 60 вычитаем 60 (12 · 5 = 60). В остатке получился нуль:

Так как в делимом больше не осталось цифр, значит 780 разделилось на 12 нацело. В результате выполнения деления столбиком мы нашли частное - оно записано под делителем:

Рассмотрим пример, когда в частном получаются нули. Допустим нам нужно разделить 9027 на 9.

Определяем неполное делимое - это число 9. Записываем в частное 1 и из 9 вычитаем 9. В остатке получился нуль. Обычно, если в промежуточных вычислениях в остатке получается нуль, его не записывают:

Сносим следующую цифру делимого - 0. Вспоминаем, что при делении нуля на любое число будет нуль. Записываем в частное нуль (0: 9 = 0) и в промежуточных вычислениях из 0 вычитаем 0. Обычно, чтобы не нагромождать промежуточные вычисления, вычисление с нулём не записывают:

Сносим следующую цифру делимого - 2. В промежуточных вычислениях вышло так, что неполное делимое (2) меньше, чем делитель (9). В этом случае в частное записывают нуль и сносят следующую цифру делимого:

Определяем, сколько раз 9 содержится в числе 27. Получаем число 3, записываем его в частное, а из 27 вычитаем 27. В остатке получился нуль:

Так как в делимом больше не осталось цифр, значит число 9027 разделилось на 9 нацело:

Рассмотрим пример, когда делимое оканчивается нулями. Пусть нам требуется разделить 3000 на 6.

Определяем неполное делимое - это число 30. Записываем в частное 5 и из 30 вычитаем 30. В остатке получился нуль. Как уже было сказано, нуль в остатке в промежуточных вычислениях записывать не обязательно:

Сносим следующую цифру делимого - 0. Так как при делении нуля на любое число будет нуль, записываем в частное нуль и в промежуточных вычислениях из 0 вычитаем 0:

Сносим следующую цифру делимого - 0. Записываем в частное ещё один нуль и в промежуточных вычислениях из 0 вычитаем 0. Так как в промежуточных вычислениях, вычисление с нулём обычно не записывают, то запись можно сократить, оставив только остаток - 0. Нуль в остатке в самом конце вычислений обычно записывают для того, чтобы показать, что деление выполнено нацело:

Так как в делимом больше не осталось цифр, значит 3000 разделилось на 6 нацело:

Деление столбиком с остатком

Пусть нам требуется разделить 1340 на 23.

Определяем неполное делимое - это число 134. Записываем в частное 5 и из 134 вычитаем 115. В остатке получилось 19:

Сносим следующую цифру делимого - 0. Определяем, сколько раз 23 содержится в числе 190. Получаем число 8, записываем его в частное, а из 190 вычитаем 184. Получаем остаток 6:

Так как в делимом больше не осталось цифр, деление закончилось. В результате получилось неполное частное 58 и остаток 6:

1340: 23 = 58 (остаток 6)

Осталось рассмотреть пример деления с остатком, когда делимое меньше делителя. Пусть нам требуется разделить 3 на 10. Мы видим, что 10 ни разу не содержится в числе 3, поэтому записываем в частное 0 и из 3 вычитаем 0 (10 · 0 = 0). Проводим горизонтальную черту и записываем остаток - 3:

3: 10 = 0 (остаток 3)

Калькулятор деления столбиком

Данный калькулятор поможет вам выполнить деление столбиком. Просто введите делимое и делитель и нажмите кнопку Вычислить.

Деление с остатком - это деление одного числа на другое, при котором остаток не равен нулю.

Выполнить деление не всегда возможно, так как бывают случаи, когда одно число не делится на другое. Например, число 11 не делится на 3, так как нет такого натурального числа, при умножении которого на 3 получилось бы 11.

Когда деление невозможно выполнить условились делить не всё делимое, а только наибольшую его часть, какая только может разделиться на делитель. В данном примере наибольшая часть делимого, которая может быть разделена на 3 - это 9 (в результате получим 3), оставшаяся меньшая часть делимого - 2 не разделится на 3.

Говоря о делении 11 на 3, 11 по прежнему называется делимым, 3 - делителем, результат деления - число 3, называют неполным частным , а число 2 - остатком от деления . Само деление в этом случае называют делением с остатком.

Неполным частным называют наибольшее число, которое при умножении на делитель даёт произведение, не превосходящее делимого. Разность между делимым и этим произведением называют остатком. Остаток всегда меньше делителя, иначе его тоже можно было бы поделить на делитель.

Деление с остатком можно записывать так:

11: 3 = 3 (остаток 2)

Если при делении одного натурального числа на другое в остатке получается 0, то говорят, что первое число делится на второе нацело. Например, 4 делится на 2 нацело. Число 5 не делится на 2 нацело. Слово нацело обычно опускают для краткости и говорят: такое-то число делится на другое, например: 4 делится на 2, а 5 не делится на 2.

Проверка деления с остатком

Проверить результат деления с остатком можно следующим способом: неполное частное умножить на делитель (или наоборот) и к полученному произведению прибавить остаток. Если в результате получится число, равное делимому, то деление с остатком сделано верно:

11: 3 = 3 (остаток 2)

Статья разбирает понятие деления целых чисел с остатком. Докажем теорему о делимости целых чисел с остатком и просмотрим связи между делимыми и делителями, неполными частными и остатками. Рассмотрим правила, когда производится деление целых чисел с остатками, рассмотрев подробно на примерах. В конце решения выполним проверку.

Общее представление о делении целых чисел с остатками

Деление целых чисел с остатком рассматривается как обобщенное деление с остатком натуральных чисел. Это выполняется потому, что натуральные числа – это составная часть целых.

Деление с остатком произвольного числа говорит о том, что целое число a делится на число b , отличное от нуля. Если b = 0 , тогда не производят деление с остатком.

Также как и деление натуральных чисел с остатком, производится деление целых чисел a и b , при b отличном от нуля, на c и d . В этом случае a и b называют делимым и делителем, а d – остатком деления, с – целое число или неполное частное.

Если считать, что остаток – это целое неотрицательное число, тогда его величина не больше модуля числа b . Запишем таким образом: 0 ≤ d ≤ b . Данная цепочка неравенств используется при сравнении 3 и более количества чисел.

Если с – неполное частное, тогда d – остаток от деления целого числа a на b , кратко можно зафиксировать: a: b = c (ост. d).

Остаток при делении чисел a на b возможен нулевой, тогда говорят, что a делится на b нацело, то есть без остатка. Деление без остатка считается частным случаем деления.

Если делим ноль на некоторое число, получаем в результате ноль. Остаток деления также будет равен нулю. Это можно проследить из теории о делении нуля на целое число.

Теперь рассмотрим смысл деления целых чисел с остатком.

Известно, что целые положительные числа – натуральные, тогда при делении с остатком получится такой же смысл, как и при делении натуральных чисел с остатком.

При делении целого отрицательного числа а на целое положительное b имеется смысл. Рассмотрим на примере. Представив ситуацию, когда имеем долг предметов в количестве a , которое необходимо погасить b человек. Для этого необходимо каждому внести одинаковый вклад. Чтобы определить величину долга для каждого, необходимо обратить внимание на величину частного с. Остаток d говорит о том, что известно количество предметов после расплаты с долгами.

Рассмотрим на примере с яблоками. Если 2 человека должны 7 яблок. В случае, если посчитать, что каждый должен вернуть по 4 яблока, после полного расчета у них останется 1 яблоко. Запишем в виде равенства это: (− 7) : 2 = − 4 (о с т. 1) .

Деление любого числа а на целое не имеет смысла, но возможно как вариант.

Теорема о делимости целых чисел с остатком

Мы выявили, что а – это делимое, тогда b – это делитель, с – неполное частное, а d – остаток. Они между собой связаны. Эту связь покажем при помощи равенства a = b · c + d . Связь между ними характеризуется теоремой делимости с остатком.

Теорема

Любое целое число может быть представлено только через целое и отличное от нуля число b таким образом: a = b · q + r , где q и r – это некоторые целые числа. Тут имеем 0 ≤ r ≤ b .

Докажем возможность существования a = b · q + r .

Доказательство

Если существуют два числа a и b , причем a делится на b без остатка, тогда из определения следует, что имеется число q , что будет верно равенство a = b · q . Тогда равенство можно считать верным: a = b · q + r при r = 0 .

Тогда необходимо взять q такое, чтобы данное неравенством b · q < a < b · (q + 1) было верным. Необходимо вычесть b · q из всех частей выражения. Тогда придем к неравенству такого вида: 0 < a − b · q < b .

Имеем, что значение выражения a − b · q больше нуля и не больше значения числа b, отсюда следует, что r = a − b · q . Получим, что число а можем представить в виде a = b · q + r .

Теперь необходимо рассмотреть возможность представления a = b · q + r для отрицательных значений b .

Модуль числа получается положительным, тогда получим a = b · q 1 + r , где значение q 1 – некоторое целое число, r – целое число, которое подходит условию 0 ≤ r < b . Принимаем q = − q 1 , получим, что a = b · q + r для отрицательных b .

Доказательство единственности

Допустим, что a = b · q + r , q и r являются целыми числами с верным условием 0 ≤ r < b , имеется еще одна форма записи в виде a = b · q 1 + r 1 , где q 1 и r 1 являются некоторыми числами, где q 1 ≠ q , 0 ≤ r 1 < b .

Когда из левой и правых частей вычитается неравенство, тогда получаем 0 = b · (q − q 1) + r − r 1 , которое равносильно r - r 1 = b · q 1 - q . Так как используется модуль, получим равенство r - r 1 = b · q 1 - q .

Заданное условие говорит о том, что 0 ≤ r < b и 0 ≤ r 1 < b запишется в виде r - r 1 < b . Имеем, что q и q 1 – целые, причем q ≠ q 1 , тогда q 1 - q ≥ 1 . Отсюда имеем, что b · q 1 - q ≥ b . Полученные неравенства r - r 1 < b и b · q 1 - q ≥ b указывают на то, что такое равенство в виде r - r 1 = b · q 1 - q невозможно в данном случае.

Отсюда следует, что по-другому число a быть представлено не может, кроме как такой записью a = b · q + r .

Связь между делимым, делителем, неполным частным и остатком

При помощи равенства a = b · c + d можно находить неизвестное делимое a , когда известен делитель b с неполным частным c и остатком d .

Пример 1

Определить делимое, если при деление получим - 21 , неполное частное 5 и остаток 12 .

Решение

Необходимо вычислить делимое a при известном делителе b = − 21 , неполным частным с = 5 и остатком d = 12 . Нужно обратиться к равенству a = b · c + d , отсюда получим a = (− 21) · 5 + 12 . При соблюдении порядка выполнения действий умножим - 21 на 5 , после этого получаем (− 21) · 5 + 12 = − 105 + 12 = − 93 .

Ответ: - 93 .

Связь между делителем и неполным частным и остатком можно выразить при помощи равенств: b = (a − d) : c , c = (a − d) : b и d = a − b · c . С их помощью мы можем вычислить делитель, неполное частное и остаток. Это сводится к постоянному нахождению остатка от деления целого целых чисел a на b с известным делимым, делителем и неполным частным. Применяется формула d = a − b · c . Рассмотрим решение подробно.

Пример 2

Найти остаток от деления целого числа - 19 на целое 3 при известном неполном частном равном - 7 .

Решение

Чтобы вычислить остаток от деления, применим формулу вида d = a − b · c . По условию имеются все данные a = − 19 , b = 3 , c = − 7 . Отсюда получим d = a − b · c = − 19 − 3 · (− 7) = − 19 − (− 21) = − 19 + 21 = 2 (разность − 19 − (− 21) . Данный пример вычислен по правилу вычитания целого отрицательного числа.

Ответ: 2 .

Все целые положительные числа являются натуральными. Отсюда следует, что деление выполняется по всем правилам деления с остатком натуральных чисел. Скорость выполнения деления с остатком натуральных чисел важна, так как на нем основано не только деление положительных, но и правила деления целых произвольных.

Самый удобный метод деления – это столбик, так как проще и быстрее получить неполное или просто частное с остатком. Рассмотрим решение более подробно.

Пример 3

Произвести деление 14671 на 54 .

Решение

Данное деление необходимо выполнять столбиком:

То есть неполное частное получается равным 271 , а остаток – 37 .

Ответ: 14 671: 54 = 271 . (ост. 37)

Правило деления с остатком целого положительного числа на целое отрицательное, примеры

Чтобы выполнить деление с остатком положительного числа на целое отрицательное, необходимо сформулировать правило.

Определение 1

Неполное частное от деления целого положительного a на целое отрицательное b получаем число, которое противоположно неполному частному от деления модулей чисел a на b . Тогда остаток равен остатку при делении a на b .

Отсюда имеем, что неполное частное от деления целого полодительного числа на целое отрицательное число считают целым неположительным числом.

Получим алгоритм:

  • делить модуль делимого на модуль делителя, тогда получим неполное частное и
  • остаток;
  • запишем число противоположное полученному.

Рассмотрим на примере алгоритма деления целого положительного числа на целое отрицательное.

Пример 4

Выполнить деление с остатком 17 на - 5 .

Решение

Применим алгоритм деления с остатком целого положительного числа на целое отрицательное. Необходимо разделить 17 на - 5 по модулю. Отсюда получим, что неполное частное равно 3 , а остаток равен 2 .

Получим, что искомое число от деления 17 на - 5 = - 3 с остатком равным 2 .

Ответ: 17: (− 5) = − 3 (ост. 2).

Пример 5

Необходимо разделить 45 на - 15 .

Решение

Необходимо разделить числа по модулю. Число 45 делим на 15 , получим частное 3 без остатка. Значит, число 45 делится на 15 без остатка. В ответе получаем - 3 , так как деление производилось по модулю.

45: (- 15) = 45: - 15 = - 45: 15 = - 3

Ответ: 45: (− 15) = − 3 .

Формулировка правила деления с остатком выглядит следующим образом.

Определение 2

Для того, чтобы получить неполное частное с при делении целого отрицательного   a на положительное b , нужно применить противоположное данному числу и вычесть из него 1 , тогда остаток d будет вычисляться по формуле: d = a − b · c .

Исходя из правила можно сделать вывод, что при делении получим целое неотрицательное число. Для точности решения применяют алгоритм деления а на b с остатком:

  • найти модули делимого и делителя;
  • делить по модулю;
  • записать противоположное данному число и вычесть 1 ;
  • использовать формулу для остатка d = a − b · c .

Рассмотрим на примере решения, где применяется данный алгоритм.

Пример 6

Найти неполное частное и остаток от деления - 17 на 5 .

Решение

Делим заданные числа по модулю. Получаем, что при делении частное равно 3 , а остаток 2 . Так как получили 3 , противоположное - 3 . Необходимо отнять 1 .

− 3 − 1 = − 4 .

Искомое значение полчаем равное - 4 .

Чтобы вычислить остаток, необходимо a = − 17 , b = 5 , c = − 4 , тогда d = a − b · c = − 17 − 5 · (− 4) = − 17 − (− 20) = − 17 + 20 = 3 .

Значит, неполным частным от деления является число - 4 с остатком равным 3 .

Ответ: (− 17) : 5 = − 4 (ост. 3).

Пример 7

Разделить целое отрицательное число - 1404 на положительное 26 .

Решение

Необходимо произвести деление столбиком и по мудулю.

Мы получили деление модулей чисел без остатка. Это значит, что деление выполняется без остатка, а искомое частное = - 54 .

Ответ: (− 1 404) : 26 = − 54 .

Правило деления с остатком целых отрицательных чисел, примеры

Необходимо сформулировать правило деления с остатком целых отрицательных чисел.

Определение 3

Для получения неполного частного с от деления целого отрицательного числа a на целое отрицательное b , необходимо произвести вычисления по модулю, после чего прибавить 1 , тогда сможем произвести вычисления по формуле d = a − b · c .

Отсюда следует, что неполное частное от деления целых отрицательных чисел будет число положительное.

Сформулируем данное правило в виде алгоритма:

  • найти модули делимого и делителя;
  • разделить модуль делимого на модуль делителя с получением неполного частного с
  • остатком;
  • прибавление 1 к неполному частному;
  • вычисление остатка, исходя из формулы d = a − b · c .

Данный алгоритм рассмотрим на примере.

Пример 8

Найти неполное частное и остаток при делении - 17 на - 5 .

Решение

Для правильности решения применим алгоритм для деления с остатком. Для начала раздели числа по модулю. Отсюда получим, что неполное частное = 3 , а остаток равен 2 . По правилу необходимо сложить неполное частное и 1 . Получим, что 3 + 1 = 4 . Отсюда получим, что неполное частное от деления заданных чисел равно 4 .

Для вычисления остатка мы применим формулу. По условию имеем, что a = − 17 , b = − 5 , c = 4 , тогда, используя формулу, получим d = a − b · c = − 17 − (− 5) · 4 = − 17 − (− 20) = − 17 + 20 = 3 . Искомый ответ, то есть остаток, равен 3 , а неполное частное равно 4 .

Ответ: (− 17) : (− 5) = 4 (ост. 3).

Проверка результата деления целых чисел с остатком

После выполнение деления чисел с остатком необходимо выполнять проверку. Данная проверка подразумевает 2 этапа. Вначале идет проверка остатка d на неотрицательность, выполнение условия 0 ≤ d < b . При их выполнении разрешено выполнять 2 этап. Если 1 этап не выполнился, значит вычисления произведены с ошибками. Второй этап состоит из того, что равенство a = b · c + d должно быть верным. Иначе в вычисления имеется ошибка.

Рассмотрим на примерах.

Пример 9

Произведено деление - 521 на - 12 . Частное равно 44 , остаток 7 . Выполнить проверку.

Решение

Так как остаток – это число положительное, то его величина является меньше, чем модуль делителя. Делитель равен - 12 , значит, его модуль равен 12 . Можно переходить к следующему пункту проверки.

По условию имеем, что a = − 521 , b = − 12 , c = 44 , d = 7 . Отсюда вычислим b · c + d , где b · c + d = − 12 · 44 + 7 = − 528 + 7 = − 521 . Отсюда следует, что равенство верное. Проверка пройдена.

Пример 10

Выполнить проверку деления (− 17) : 5 = − 3 (ост. − 2). Верно ли равенство?

Решение

Смысл первого этапа заключается в том, что необходимо проверить деление целых чисел с остатком. Отсюда видно, что действие произведено неверно, так как дан остаток, равный - 2 . Остаток не является отрицательным числом.

Имеем, что второе условие выполненное, но недостаточное для данного случая.

Ответ: нет.

Пример 11

Число - 19 разделили на - 3 . Неполное частное равно 7 , а остаток 1 . Проверить, верно ли выполнено данное вычисление.

Решение

Дан остаток, равный 1 . Он положительный. По величине меньше модуля делителя, значит, первый этап выполняется. Перейдем ко второму этапу.

Вычислим значение выражения b · c + d . По условию имеем, что b = − 3 , c = 7 , d = 1 , значит, подставив числовые значения, получим b · c + d = − 3 · 7 + 1 = − 21 + 1 = − 20 . Следует, что a = b · c + d равенство не выполняется, так как в условии дано а = - 19 .

Отсюда следует вывод, что деление произведено с ошибкой.

Ответ: нет.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Прочитайте тему урока: «Деление с остатком». Что вы уже знаете по этой теме?

Можете ли вы разложить 8 слив поровну на две тарелки (рис. 1)?

Рис. 1. Иллюстрация к примеру

В каждую тарелку можно положить по 4 сливы (рис. 2).

Рис. 2. Иллюстрация к примеру

Действие, которое мы выполнили, можно записать так.

8: 2 = 4

Как вы думаете, можно ли 8 слив поровну разложить на 3 тарелки (рис. 3)?

Рис. 3. Иллюстрация к примеру

Будем действовать так. Сначала в каждую тарелку положим по одной сливе, потом по второй сливе. У нас останется 2 сливы, но 3 тарелки. Значит, дальше поровну мы разложить не можем. Мы положили в каждую тарелку по 2 сливы, и 2 сливы у нас осталось (рис. 4).

Рис. 4. Иллюстрация к примеру

Продолжим наблюдение.

Прочитайте числа. Среди данных чисел найдите те, которые делятся на 3.

11, 12, 13, 14, 15, 16, 17, 18, 19

Проверьте себя.

Остальные числа (11, 13, 14, 16, 17, 19) на 3 не делятся, или говорят «делятся с остатком».

Найдем значение частного.

Узнаем, сколько раз по 3 содержится в числе 17 (рис. 5).

Рис. 5. Иллюстрация к примеру

Мы видим, что поместилось по 3 овала 5 раз и 2 овала осталось.

Выполненное действие можно записать так.

17: 3 = 5 (ост. 2)

Можно записать и в столбик (рис. 6)

Рис. 6. Иллюстрация к примеру

Рассмотрите рисунки. Объясните подписи к этим рисункам (рис. 7).

Рис. 7. Иллюстрация к примеру

Рассмотрим первый рисунок (рис. 8).

Рис. 8. Иллюстрация к примеру

Мы видим, что 15 овалов разделили по 2. По 2 повторилось 7 раз, в остатке - 1 овал.

Рассмотрим второй рисунок (рис. 9).

Рис. 9. Иллюстрация к примеру

На этом рисунке 15 квадратов разделили по 4. По 4 повторилось 3 раза, в остатке - 3 квадрата.

Рассмотрим третий рисунок (рис. 10).

Рис. 10. Иллюстрация к примеру

Можно сказать, что 15 овалов разделили по 3. По 3 повторилось 5 раз поровну. В таких случаях говорят, что остаток - 0.

Выполним деление.

Семь квадратов разделим по три. Получим две группы, и один квадрат останется. Запишем решение (рис. 11).

Рис. 11. Иллюстрация к примеру

Выполним деление.

Узнаем, сколько раз по четыре содержится в числе 10. Видим, что в числе 10 по четыре содержится 2 раза и 2 квадрата остаются. Запишем решение (рис. 12).

Рис. 12. Иллюстрация к примеру

Выполним деление.

Узнаем, сколько раз по два содержится в числе 11. Видим, что в числе 11 по два содержится 5 раз и 1 квадрат остается. Запишем решение (рис. 13).

Рис. 13. Иллюстрация к примеру

Сделаем вывод. Разделить с остатком - значит узнать, сколько раз делитель содержится в делимом и сколько единиц останется.

Деление с остатком можно выполнить и на числовом луче.

На числовом луче отметим отрезки по 3 деления и увидим, что по три деления оказалось три раза и одно деление осталось (рис. 14).

Рис. 14. Иллюстрация к примеру

Запишем решение.

10: 3 = 3 (ост.1)

Выполним деление.

На числовом луче отметим отрезки по 3 деления и увидим, что по три деления оказалось три раза и два деления осталось (рис. 15).

Рис. 15. Иллюстрация к примеру

Запишем решение.

11: 3 = 3 (ост.2)

Выполним деление.

На числовом луче отметим отрезки по 3 деления и увидим, что получили ровно 4 раза, остаток отсутствует (рис. 16).

Рис. 16. Иллюстрация к примеру

Запишем решение.

12: 3 = 4

Сегодня на уроке мы познакомились с делением с остатком, научились выполнять названное действие с помощью рисунка и числового луча, потренировались в решении примеров по теме урока.

Список литературы

  1. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 1. - М.: «Просвещение», 2012.
  2. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 2. - М.: «Просвещение», 2012.
  3. М.И. Моро. Уроки математики: Методические рекомендации для учителя. 3 класс. - М.: Просвещение, 2012.
  4. Нормативно-правовой документ. Контроль и оценка результатов обучения. - М.: «Просвещение», 2011.
  5. «Школа России»: Программы для начальной школы. - М.: «Просвещение», 2011.
  6. С.И. Волкова. Математика: Проверочные работы. 3 класс. - М.: Просвещение, 2012.
  7. В.Н. Рудницкая. Тесты. - М.: «Экзамен», 2012.
  1. Nsportal.ru ().
  2. Prosv.ru ().
  3. Do.gendocs.ru ().

Домашнее задание

1. Выпиши числа, которые делятся на 2 без остатка.

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19

2. Выполни деление с остатком с помощью рисунка.

3. Выполни деление с остатком с помощью числового луча.

4. Составь задание для своих товарищей по теме урока.


В этой статье мы разберем деление целых чисел с остатком . Начнем с общего принципа деления целых чисел с остатком, сформулируем и докажем теорему о делимости целых чисел с остатком, проследим связи между делимым, делителем, неполным частным и остатком. Дальше озвучим правила, по которым проводится деление целых чисел с остатком, и рассмотрим применение этих правил при решении примеров. После этого научимся выполнять проверку результата деления целых чисел с остатком.

Навигация по странице.

Общее представление о делении целых чисел с остатком

Деление целых чисел с остатком мы будем рассматривать как обобщение деления с остатком натуральных чисел . Это обусловлено тем, что натуральные числа являются составной частью целых чисел .

Начнем с терминов и обозначений, которые используются при описании.

По аналогии с делением натуральных чисел с остатком будем считать, что результатом деления с остатком двух целых чисел a и b (b не равно нулю) являются два целых числа c и d . Числа a и b называются делимым и делителем соответственно, число d – остатком от деления a на b , а целое число c называется неполным частным (или просто частным , если остаток равен нулю).

Условимся считать, что остаток есть целое неотрицательное число , и его величина не превосходит b , то есть, (подобные цепочки неравенств мы встречали, когда говорили о сравнении трех и большего количества целых чисел).

Если число c является неполным частным, а число d – остатком от деления целого числа a на целое число b , то этот факт мы будем кратко записывать как равенство вида a:b=c (ост. d) .

Отметим, что при делении целого числа a на целое число b остаток может быть равным нулю. В этом случае говорят, что a делится на b без остатка (или нацело ). Таким образом, деление целых чисел без остатка является частным случаем деления целых чисел с остатком.

Также стоит сказать, что при делении нуля на некоторое целое число мы всегда имеем дело с делением без остатка, так как в этом случае частное будет равно нулю (смотрите раздел теории деление нуля на целое число), и остаток также будет равен нулю.

С терминологией и обозначениями определились, теперь разберемся со смыслом деления целых чисел с остатком.

Делению целого отрицательного числа a на целое положительное число b тоже можно придать смысл. Для этого рассмотрим целое отрицательное число как долг . Представим такую ситуацию. Долг, который составляет предметов, должны погасить b человек, внеся одинаковый вклад. Абсолютная величина неполного частного c в этом случае будет определять величину долга каждого из этих людей, а остаток d покажет, какое количество предметов останется после уплаты долга. Приведем пример. Допустим 2 человека должны 7 яблок. Если считать, что каждый из них должен по 4 яблока, то после уплаты долга у них останется 1 яблоко. Этой ситуации отвечает равенство (−7):2=−4 (ост. 1) .

Делению с остатком произвольного целого числа a на целое отрицательное число мы не будем придавать никакого смысла, но оставим за ним право на существование.

Теорема о делимости целых чисел с остатком

Когда мы говорили о делении натуральных чисел с остатком, то выяснили, что делимое a , делитель b , неполное частное c и остаток d связаны между собой равенством a=b·c+d . Для целых чисел a , b , c и d характерна такая же связь. Эта связь утверждается следующей теоремой о делимости с остатком .

Теорема.

Любое целое число a возможно представить единственным образом через целое и отличное от нуля число b в виде a=b·q+r , где q и r – некоторые целые числа, причем .

Доказательство.

Сначала докажем возможность представления a=b·q+r .

Если целые числа a и b такие, что a делится на b нацело, то по определению существует такое целое число q , что a=b·q . В этом случае имеет место равенство a=b·q+r при r=0 .

Теперь будем считать, что b – целое положительное число. Выберем целое число q таким образом, чтобы произведение b·q не превышало числа a , а произведение b·(q+1) было уже больше, чем a . То есть, возьмем q таким, чтобы выполнялись неравенства b·q

Осталось доказать возможность представления a=b·q+r для отрицательных b .

Так как модуль числа b в этом случае является положительным числом, то для имеет место представление , где q 1 – некоторое целое число, а r – целое число, удовлетворяющее условиям . Тогда, приняв q=−q 1 , получаем нужное нам представление a=b·q+r для отрицательных b .

Переходим к доказательству единственности.

Предположим, что помимо представления a=b·q+r , q и r – целые числа и , существует еще одно представление a=b·q 1 +r 1 , где q 1 и r 1 – некоторые целые числа, причем q 1 ≠q и .

После вычитания из левой и правой части первого равенства соответственно левой и правой части второго равенства, получаем 0=b·(q−q 1)+r−r 1 , которое равносильно равенству r−r 1 =b·(q 1 −q) . Тогда должно быть справедливо и равенство вида , а в силу свойств модуля числа - и равенство .

Из условий и можно сделать вывод, что . Так как q и q 1 – целые и q≠q 1 , то , откуда заключаем, что . Из полученных неравенств и следует, что равенство вида невозможно при нашем предположении. Поэтому, не существует другого представления числа a , кроме a=b·q+r .

Связи между делимым, делителем, неполным частным и остатком

Равенство a=b·c+d позволяет находить неизвестное делимое a , если известны делитель b , неполное частное c и остаток d . Рассмотрим пример.

Пример.

Чему равно делимое, если при его делении на целое число −21 получилось неполное частное 5 и остаток 12 ?

Решение.

Нам требуется вычислить делимое a , когда известен делитель b=−21 , неполное частное c=5 и остаток d=12 . Обратившись к равенству a=b·c+d , получаем a=(−21)·5+12 . Соблюдая , сначала проводим умножение целых чисел −21 и 5 по правилу умножения целых чисел с разными знаками , после чего выполняем сложение целых чисел с разными знаками : (−21)·5+12=−105+12=−93 .

Ответ:

−93 .

Связи между делимым, делителем, неполным частным и остатком также выражаются равенствами вида b=(a−d):c , c=(a−d):b и d=a−b·c . Эти равенства позволяют вычислять делитель, неполное частное и остаток соответственно. Нам часто придется находить остаток от деления целого числа a на целое число b , когда известны делимое, делитель и неполное частное, используя формулу d=a−b·c . Чтобы в дальнейшем не возникало вопросов, разберем пример вычисления остатка.

Пример.

Найдите остаток от деления целого числа −19 на целое число 3 , если известно, что неполное частное равно −7 .

Решение.

Для вычисления остатка от деления воспользуемся формулой вида d=a−b·c . Из условия имеем все необходимые данные a=−19 , b=3 , c=−7 . Получаем d=a−b·c=−19−3·(−7)= −19−(−21)=−19+21=2 (разность −19−(−21) мы вычисляли по правилу вычитания целого отрицательного числа).

Ответ:

Деление с остатком целых положительных чисел, примеры

Как мы уже не раз отмечали, целые положительные числа представляют собой натуральные числа. Поэтому деление с остатком целых положительных чисел проводится по всем правилам деления с остатком натуральных чисел. Очень важно уметь с легкостью выполнять деление с остатком натуральных чисел , так как именно оно лежит в основе деления не только целых положительных чисел, но и в основе всех правил деления с остатком произвольных целых чисел.

С нашей точки зрения наиболее удобно выполнять деление столбиком , этот способ позволяет получить и неполное частное (или просто частное) и остаток. Рассмотрим пример деления с остатком целых положительных чисел.

Пример.

Выполните деление с остатком числа 14 671 на 54 .

Решение.

Выполним деление данных целых положительных чисел столбиком:

Неполное частное получилось равным 271 , а остаток равен 37 .

Ответ:

14 671:54=271 (ост. 37) .

Правило деления с остатком целого положительного числа на целое отрицательное, примеры

Сформулируем правило, позволяющее выполнять деление с остатком целого положительного числа на целое отрицательное число.

Неполное частное от деления целого положительного числа a на целое отрицательное число b представляет собой число, противоположное неполному частному от деления a на модуль числа b , а остаток от деления a на b равен остатку от деления на .

Из этого правила следует, что неполное частное от деления целого положительного числа на целое отрицательное число является целым неположительным числом .

Переделаем озвученное правило в алгоритм деления с остатком целого положительного числа на целое отрицательное:

  • Делим модуль делимого на модуль делителя, получаем неполное частное и остаток. (Если при этом остаток получился равным нулю, то исходные числа делятся без остатка, и по правилу деления целых чисел с противоположными знаками искомое частное равно числу, противоположному частному от деления модулей.)
  • Записываем число, противоположное полученному неполному частному, и остаток. Эти числа являются соответственно искомым частным и остатком от деления исходного целого положительного числа на целое отрицательное.

Приведем пример использования алгоритма деления целого положительного числа на целое отрицательное.

Пример.

Выполните деление с остатком целого положительного числа 17 на целое отрицательное число −5 .

Решение.

Воспользуемся алгоритмом деления с остатком целого положительного числа на целое отрицательное.

Разделив

Число, противоположное числу 3 , - это −3 . Таким образом, искомое неполное частное от деления 17 на −5 равно −3 , а остаток равен 2 .

Ответ:

17 :(−5)=−3 (ост. 2) .

Пример.

Разделите 45 на −15 .

Решение.

Модули делимого и делителя равны 45 и 15 соответственно. Число 45 делится на 15 без остатка, частное при этом равно 3 . Следовательно, целое положительное число 45 делится на целое отрицательное число −15 без остатка, частное при этом равно числу, противоположному 3 , то есть, −3 . Действительно, по правилу деления целых чисел с разными знаками имеем .

Ответ:

45:(−15)=−3 .

Деление с остатком целого отрицательного числа на целое положительное, примеры

Дадим формулировку правила деления с остатком целого отрицательного числа на целое положительное.

Чтобы получить неполное частное c от деления целого отрицательного числа a на целое положительное число b нужно взять число, противоположное неполному частному от деления модулей исходных чисел и вычесть из него единицу, после чего остаток d вычислить по формуле d=a−b·c .

Из данного правила деления с остатком следует, что неполное частное от деления целого отрицательного на целое положительное число является целым отрицательным числом.

Из озвученного правила вытекает алгоритм деления с остатком целого отрицательного числа a на целое положительное b :

  • Находим модули делимого и делителя.
  • Делим модуль делимого на модуль делителя, получаем неполное частное и остаток. (Если остаток равен нулю, то исходные целые числа делятся без остатка, и искомое частное равно числу, противоположному частному от деления модулей.)
  • Записываем число, противоположное полученному неполному частному и вычитаем из него число 1 . Вычисленное число является искомым неполным частным c от деления исходного целого отрицательного числа на целое положительное.

Разберем решение примера, в котором воспользуемся записанным алгоритмом деления с остатком.

Пример.

Найдите неполное частное и остаток от деления целого отрицательного числа −17 на целое положительное число 5 .

Решение.

Модуль делимого −17 равен 17 , а модуль делителя 5 равен 5 .

Разделив 17 на 5 , получаем неполное частное 3 и остаток 2 .

Число, противоположное 3 , есть −3 . Вычитаем из −3 единицу: −3−1=−4 . Итак, искомое неполное частное равно −4 .

Осталось вычислить остаток. В нашем примере a=−17 , b=5 , c=−4 , тогда d=a−b·c=−17−5·(−4)= −17−(−20)=−17+20=3 .

Таким образом, неполное частное от деления целого отрицательного числа −17 на целое положительное число 5 равно −4 , а остаток равен 3 .

Ответ:

(−17):5=−4 (ост. 3) .

Пример.

Разделите целое отрицательное число −1 404 на целое положительное число 26 .

Решение.

Модуль делимого равен 1 404 , модуль делителя равен 26 .

Разделим 1 404 на 26 столбиком:

Так как модуль делимого разделился на модуль делителя без остатка, то исходные целые числа делятся без остатка, причем искомое частное равно числу, противоположному 54 , то есть, −54 .

Ответ:

(−1 404):26=−54 .

Правило деления с остатком целых отрицательных чисел, примеры

Сформулируем правило деления с остатком целых отрицательных чисел.

Чтобы получить неполное частное c от деления целого отрицательного числа a на целое отрицательное число b , нужно вычислить неполное частное от деления модулей исходных чисел и прибавить к нему единицу, после этого остаток d вычислить по формуле d=a−b·c .

Из этого правила следует, что неполное частное от деления целых отрицательных чисел является целым положительным числом.

Перепишем озвученное правило в виде алгоритма деления целых отрицательных чисел:

  • Находим модули делимого и делителя.
  • Делим модуль делимого на модуль делителя, получаем неполное частное и остаток. (Если остаток равен нулю, то исходные целые числа делятся без остатка, и искомое частное равно частному от деления модуля делимого на модуль делителя.)
  • К полученному неполному частному прибавляем единицу, это число есть искомое неполное частное от деления исходных целых отрицательных чисел.
  • Вычисляем остаток по формуле d=a−b·c .

Рассмотрим применение алгоритма деления целых отрицательных чисел при решении примера.

Пример.

Найдите неполное частное и остаток от деления целого отрицательного числа −17 на целое отрицательное число −5 .

Решение.

Воспользуемся соответствующим алгоритмом деления с остатком.

Модуль делимого равен 17 , модуль делителя равен 5 .

Деление 17 на 5 дает неполное частное 3 и остаток 2 .

К неполному частному 3 прибавляем единицу: 3+1=4 . Следовательно, искомое неполное частное от деления −17 на −5 равно 4 .

Осталось вычислить остаток. В этом примере a=−17 , b=−5 , c=4 , тогда d=a−b·c=−17−(−5)·4= −17−(−20)=−17+20=3 .

Итак, неполное частное от деления целого отрицательного числа −17 на целое отрицательное число −5 равно 4 , а остаток равен 3 .

Ответ:

(−17):(−5)=4 (ост. 3) .

Проверка результата деления целых чисел с остатком

После того, как выполнено деление целых чисел с остатком, полезно выполнить проверку полученного результата. Проверка проводится в два этапа. На первом этапе проверяется, является ли остаток d неотрицательным числом, а также проверяется выполнение условия . Если все условия первого этапа проверки выполнены, то можно приступать ко второму этапу проверки, в противном случае можно утверждать, что при делении с остатком где-то была допущена ошибка. На втором этапе проверяется справедливость равенства a=b·c+d . Если это равенство справедливо, то деление с остатком было проведено верно, в противном случае – где-то была допущена ошибка.

Рассмотрим решения примеров, в которых выполняется проверка результата деления целых чисел с остатком.

Пример.

При делении числа −521 на −12 было получено неполное частное 44 и остаток 7 , выполните проверку результата.

Решение. −2 при b=−3 , c=7 , d=1 . Имеем b·c+d=−3·7+1=−21+1=−20 . Таким образом, равенство a=b·c+d – неверное (в нашем примере a=−19 ).

Следовательно, деление с остатком было проведено неверно.