Способы получения графена в домашних условиях. Простой способ получения высококачественного графена: две секунды в микроволновой печи

Графен является самым прочным материалом на Земле. В 300 раз прочнее стали. Лист графена площадью в один квадратный метр и толщиной, всего лишь в один атом, способен удерживать предмет массой 4 килограмма. Графен, как салфетку, можно сгибать, сворачивать, растягивать. Бумажная салфетка рвется в руках. С графеном такого не случится.

Другие формы углерода: графен, усиленный – арматурный графен , карбин, алмаз, фуллерен, углеродные нанотрубки, “вискерсы” .


Описание графена:

Графен – это двумерная аллотропная форма углерода, в которой объединённые в гексагональную кристаллическую решётку атомы образуют слой толщиной в один атом. Атомы углерода в графене соединяются между собой sp 2 -связями. Графен в буквальном смысле представляет собой материю, ткань .

Углерод имеет множество аллотропов. Некоторые из них, например, алмаз и графит , известны давно, в то время как другие открыты относительно недавно (10-15 лет назад) – фуллерены и углеродные нанотрубки . Следует отметить, что известный многие десятилетия графит представляет собой стопку листов графена, т.е. содержит несколько графеновых плоскостей.

На основе графена получены новые вещества: оксид графена, гидрид графена (называемый графан) и флюорографен (продукт реакции графена со фтором).

Графен обладает уникальными свойствами, что позволяет его использовать в различных сферах.

Свойства и преимущества графена:

– графен является самым прочным материалом на Земле. В 300 раз прочнее стали . Лист графена площадью в один квадратный метр и толщиной, всего лишь в один атом, способен удерживать предмет массой 4 килограмма. Графен, как салфетку, можно сгибать, сворачивать, растягивать. Бумажная салфетка рвется в руках. С графеном такого не случится,

благодаря двумерной структуре графена, он является очень гибким материалом, что позволит использовать его, например, для плетения нитей и других верёвочных структур. При этом тоненькая графеновая «верёвка» по прочности будет аналогична толстому и тяжёлому стальному канату,

– в определённых условиях у графена активируется ещё одна способность, которая позволяет ему «залечивать» «дырки» в своей кристаллической структуре в случае её повреждений,

графен обладает более высокой электропроводностью. Графен практически не имеет сопротивления. У графена в 70 раз мобильность электронов выше, чем у кремния . Скорость электронов в графене составляет 10 000 км/с, хотя в обычном проводнике скорость электронов порядка 100 м/с.

– обладает высокой электроемкостью. Удельная энергоемкость графена приближается к 65 кВт*ч/кг. Данный показатель в 47 раз превышает тот, который имеют столь распространенные ныне литий-ионные аккумуляторы ,

обладает высокой теплопроводностью. Он в 10 раз теплопроводнее меди ,

– характерна полная оптическая прозрачность. Он поглощает всего 2,3% света,

графеновая плёнка пропускает молекулы воды и при этом задерживает все остальные, что позволяет использовать ее как фильтр для воды,

– самый легкий материал. В 6 раз легче пера,

инертность к окружающей среде,

– впитывает радиоактивные отходы,

благодаря Броуновскому движению (тепловым колебаниям) атомов углерода в листе графена последний способен «производить» электрическую энергию,

– является основой для сборки различных не только самостоятельных двумерных материалов, но и многослойных двумерных гетероструктур.

Физические свойства графена*:

* при комнатной температуре.

Получение графена:

Основными способами получения графена считаются:

микромеханическое отшелушивание слоев графита (метод Новоселова – метод скотча). Образец графита помещали между лентами скотча и последовательно отшелушивали слои, пока не остался последний тонкий слой, состоящий из графена,

диспергирование графита в водных средах,

механическая эксфолиация;

эпитаксиальный рост в вакууме;

химическое парофазное охлаждение (CVD-процесс),

метод “выпотевания” углерода из растворов в металлах или при разложении карбидов.

Получение графена в домашних условиях:

Необходимо взять кухонный блендер мощностью не менее 400 Вт. В чашу блендера выливают 500 мл воды, добавляя в жидкость 10-25 миллилитров любого моющего вещества и 20-50 грамм толченого грифеля от карандаша. Далее блендер должен поработать от 10 минут до получаса вплоть до появления взвеси из чешуек графена. Полученный материал будет обладать высокой проводимостью, что позволит использовать его в электродах фотоэлементов. Также произведенный в бытовых условиях графен способен улучшить свойства пластика.

Волокна графена под сканирующим электронным микроскопом. Чистый графен восстановлен из оксида графена (GO) в микроволновой печи. Масштаб 40 мкм (слева) и 10 мкм (справа). Фото: Jieun Yang, Damien Voiry, Jacob Kupferberg / Rutgers University

Графен - 2D-модификация углерода, образованная слоем толщиной в один атом углерода. Материал обладает высокой прочностью, высокой теплопроводностью и уникальными физико-химическими свойствами. Он демонстрирует максимальную подвижность электронов среди всех известных материалов на Земле. Это делает графен практически идеальным материалом в самых различных приложениях, в том числе в электронике, катализаторах, элементах питания, композитных материалах и т.д. Дело за малым - научиться получать качественные слои графена в промышленных масштабах.

Химики из Ратгерского университета (США) нашли простой и быстрый метод производства высококачественного графена путём обработки оксида графена в обычной микроволновой печи . Метод на удивление примитивный и эффективный.

Оксид графита - соединение углерода, водорода и кислорода в различных соотношениях, которое образуется при обработке графита сильными окислителями. Чтобы избавиться от оставшегося кислорода в оксиде графита, а затем получить чистый графен в двумерных листах, нужно приложить значительные усилия.

Оксид графита смешивают с сильными щелочами и ещё дальше восстанавливают материал. В результате получаются мономолекулярные листы с остатками кислорода. Эти листы принято называть оксидом графена (GO). Химики испробовали разные способы удаления лишнего кислорода из GO ( , , , ), но восстановленный такими способами GO (rGO) остаётся сильно неупорядоченным материалом, который далёк по своим свойствам от настоящего чистого графена, полученного методом химического осаждения из газовой фазы (ХОГФ или CVD).

Даже в неупорядоченной форме rGO потенциально может быть полезен для энергоносителей ( , , , , ) и катализаторов ( , , , ), но для извлечения максимальной выгоды от уникальных свойств графена в электронике нужно научиться получать чистый качественный графен из GO.

Химики из Ратгерского университета предлагают простой и быстрый способ восстановления GO до чистого графена, используя 1-2-секундные импульсы микроволнового излучения. Как видно на графиках, графен, полученный «микроволновым восстановлением» (MW-rGO) по своим свойствам намного ближе к чистейшему графену, полученному с помощью ХОГФ.


Физические характеристики MW-rGO, по сравнению с нетронутым оксидом графена GO, восстановленным оксидом графена rGO и графеном, полученным методом химического осаждения из газовой фазы (CVD). Показаны типичные хлопья GO, осаждённые на кремниевую подложку (А); рентгеновская фотоэлектронная спектроскопия (B); рамановская спектроскопия и соотношение размера кристаллов (L a) к отношению пиков l 2D /l G в рамановском спектре для MW-rGO, GO и ХОГФ (CVD).


Электронные и электрокаталитические свойства MW-rGO, по сравнению с rGO. Иллюстрации: Rutgers University

Техпроцесс получения MW-rGO состоит из нескольких этапов.

  1. Окисление графита модифицированным методом Хаммерса и растворение его до однослойных хлопьев оксида графена в воде.
  2. Отжиг GO, чтобы материал стал более восприимчив к микроволновому облучению.
  3. Облучение хлопьев GO в обычной микроволновой печи мощностью 1000 Вт на 1-2 секунды. Во время этой процедуры GO быстро нагревается до высокой температуры, происходит десорбция кислородных групп и великолепная структуризация углеродной решётки.
Съёмка просвечивающим электронным микроскопом показывает, что после обработки СВЧ-излучателем образуется высокоупорядоченная структура, в которой кислородные функциональные группы практически полностью уничтожены.


На изображениях с просвечивающего электронного микроскопа показана структура листов графена со шкалой 1 нм. Слева - однослойный rGO, на котором много дефектов, в том числе функциональные группы кислорода (синяя стрелка) и дыры в углеродном слое (красная стрелка). По центру и справа - отлично структурированный двуслойный и трёхслойный MW-rGO. Фото: Rutgers University

Великолепные структурные свойства MW-rGO при использовании в полевых транзисторах позволяют увеличить максимальную подвижность электронов примерно до 1500 см 2 /В·с, что сравнимо с выдающимися характеристиками современных транзисторов с высокой подвижностью электронов.

Кроме электроники, MW-rGO пригодится в производстве катализаторов: он показал исключительно маленькое значение коэффициента Тафеля при использовании в качестве катализатора при реакции выделения кислорода: примерно 38 мВ на декаду. Катализатор на MW-rGO также сохранил стабильность в реакции выделения водорода, которая продолжалась более 100 часов.

Всё это предполагает отличный потенциал для использования восстановленного в микроволновом излучении графена в промышленности.

Научная статья "High-quality graphene via microwave reduction of solution-exfoliated graphene oxide" опубликована 1 сентября 2016 года в журнале Science (doi: 10.1126/science.aah3398).

Сравнительно недавно в науке и технике появилась новая область, которую назвали нанотехнологией. Перспективы данной дисциплины не просто обширны. Они грандиозны. Частица, именуемая «нано», представляет собой величину, равную одной миллиардной доле от какого-либо значения. Подобные размеры можно сравнить только с размерами атомов и молекул. Например, нанометром называют одну миллиардную долю метра.

Основное направление новой области науки

Нанотехнологиями называют те, которые манипулируют веществом на уровне молекул и атомов. В связи с этим данную область науки называют еще и молекулярной технологией. Что же явилось толчком к ее развитию? Нанотехнологии в современном мире появились благодаря лекции В ней ученый доказал, что не существует никаких препятствий для создания вещей непосредственно из атомов.

Средство для эффективного манипулирования мельчайшими частицами назвали ассемблером. Это молекулярная наномашина, с помощью которой можно выстроить любую структуру. Например, природным ассемблером можно назвать рибосому, синтезирующую белок в живых организмах.

Нанотехнологии в современном мире являются не просто отдельной областью знаний. Они представляют собой обширную сферу исследований, непосредственно связанную со многими фундаментальными науками. В их числе находятся физика, химия и биология. По мнению ученых, именно эти науки получат наиболее мощный толчок к развитию на фоне грядущей нанотехнической революции.

Область применения

Перечислить все сферы деятельности человека, где на сегодняшний день используются нанотехнологии, невозможно из-за весьма внушительного перечня. Так, при помощи данной области науки производятся:

Устройства, предназначенные для сверхплотной записи любой информации;
- различная видеотехника;
- сенсоры, полупроводниковые транзисторы;
- информационные, вычислительные и информационные технологии;
- наноимпринтинг и нанолитография;
- устройства, предназначенные для хранения энергии, и топливные элементы;
- оборонные, космические и авиационные приложения;
- биоинструментарий.

На такую научную область, как нанотехнологии, в России, США, Японии и ряде европейских государств с каждым годом выделяется все больше финансирования. Это связано с обширными перспективами развития данной сферы исследований.

Нанотехнологии в России развиваются согласно целевой Федеральной программе, которая предусматривает не только большие финансовые затраты, но и проведение большого объема конструкторских и научно-исследовательских работ. Для реализации поставленных задач происходит объединение усилий различных научно-технологических комплексов на уровне национальных и транснациональных корпораций.

Новый материал

Нанотехнологии позволили ученым изготовить углеродную пластину более твердую, чем алмаз, толщина которой составляет всего один атом. Состоит она из графена. Это самый тонкий и прочный материал во всей Вселенной, который пропускает электричество намного лучше кремния компьютерных чипов.

Открытие графена считается настоящим революционным событием, которое позволит многое изменить в нашей жизни. Этот материал обладает настолько уникальными физическими свойствами, что в корне меняет представление человека о природе вещей и веществ.

История открытия

Графен представляет собой двухмерный кристалл. Его структура является гексагональной решеткой, состоящей из атомов углерода. Теоретические исследования графена начались задолго до получения его реальных образцов, так как данный материал является базой для построения трехмерного кристалла графита.

Еще в 1947 г. П. Воллес указал на некоторые свойства графена, доказав, что его структура аналогична металлам, и некоторые характеристики подобны тем, которыми обладают ультрарелятивистские частицы, нейтрино и безмассовые фотоны. Однако у нового материала есть и определенные существенные отличия, делающие его уникальным по своей природе. Но подтверждение этим выводам было получено только в 2004 г., когда Константином Новоселовым и впервые был получен углерод в свободном состоянии. Это новое вещество, которое назвали графеном, и стало крупным открытием ученых. Найти этот элемент можно в карандаше. Его графитовый стержень состоит из множества слоев графена. Каким образом карандаш оставляет след на бумаге? Дело в том, что, несмотря на прочность составляющих стержень слоев, между ними существуют весьма слабые связи. Они очень легко распадаются при соприкосновении с бумагой, оставляя след при письме.

Использование нового материала

По мнению ученых, сенсоры, созданные на основе графена, смогут анализировать прочность и состояние самолета, а также предсказывать землетрясения. Но только тогда, когда материал с такими потрясающими свойствами покинет стены лабораторий, станет понятно, в каком направлении пойдет развитие практического применения данного вещества. На сегодняшний физики, а также инженеры-электронщики уже заинтересовались уникальными возможностями графена. Ведь всего несколькими граммами этого вещества можно покрыть территорию, равную футбольному полю.

Графен и его применение потенциально рассматриваются в производстве легковесных спутников и самолетов. В этой сфере новый материал способен заменить в Нановещество может быть использовано вместо кремния в транзисторах, а его внедрение в пластмассу придаст ей электропроводность.

Графен и его применение рассматриваются и в вопросах изготовления датчиков. Эти устройства, выполненные на основе новейшего материала, будут способны обнаруживать самые опасные молекулы. А вот использование пудры из нановещества при производстве электрических аккумуляторов в разы увеличит их эффективность.

Графен и его применение рассматриваются в оптоэлектронике. Из нового материала получится очень легкий и прочный пластик, контейнеры из которого позволят в течение нескольких недель сохранять продукты в свежем состоянии.

Использование графена предполагается и для изготовления прозрачного токопроводящего покрытия, необходимого для мониторов, солнечных батарей и более крепких и устойчивых к механическим воздействиям ветряных двигателей.

На основе наноматериала получатся лучшие спортивные снаряды, медицинские имплантаты и суперконденсаторы.

Также графен и его применение актуальны для:

Высокочастотных высокомощных электронных устройств;
- искусственных мембран, разделяющих две жидкости в резервуаре;
- улучшения свойства проводимости различных материалов;
- создания дисплея на органических светодиодах;
- освоения новой техники ускоренного секвенирования ДНК;
- улучшения жидкокристаллических дисплеев;
- создания баллистических транзисторов.

Использование в автомобилестроении

Согласно данным исследователей, удельная энергоемкость графена приближается к 65 кВт*ч/кг. Данный показатель в 47 раз превышает тот, который имеют столь распространенные ныне литий-ионные аккумуляторы. Этот факт ученые использовали для создания зарядных устройств нового поколения.

Графен-полимерный аккумулятор - прибор, при помощи которого максимально эффективно удерживается электрическая энергия. В настоящее время работа над ним ведется исследователями многих стран. Значительных успехов достигли в этом вопросе испанские ученые. Графен-полимерный аккумулятор, созданный ими, имеет энергоемкость, в сотни раз превышающую подобный показатель у уже существующих батарей. Используют его для оснащения электромобилей. Машина, в которой установлен может проехать без остановки тысячи километров. На подзарядку электромобиля при исчерпании энергоресурса понадобится не более 8 минут.

Сенсорные экраны

Ученые продолжают исследовать графен, создавая при этом новые и не имеющие аналогов вещи. Так, углеродный наноматериал нашел свое применение в производстве, выпускающем сенсорные дисплеи с большой диагональю. В перспективе может появиться и гибкое устройство подобного типа.

Ученые получили графеновый лист прямоугольной формы и превратили его в прозрачный электрод. Он-то и участвует в работе сенсорного дисплея, отличаясь при этом долговечностью, повышенной прозрачностью, гибкостью, экологичностью и низкой стоимостью.

Получение графена

Начиная с 2004 г., когда был открыт новейший наноматериал, ученые освоили целый ряд методов его получения. Однако самыми основными из них считаются способы:

Механической эксфолиации;
- эпитаксиального роста в вакууме;
- химического перофазного охлаждения (CVD-процесс).

Первый из этих трех методов является наиболее простым. Производство графена при механической эксфолиации представляет собой нанесение специального графита на клейкую поверхность изоляционной ленты. После этого основу, подобно листу бумаги, начинают сгибать и разгибать, отделяя нужный материал. При применении данного способа графен получается самого высокого качества. Однако подобные действия не годятся для массового производства данного наноматериала.

При использовании метода эпитаксиального роста применяют тонкие кремниевые пластины, поверхностный слой которых является карбидом кремния. Далее этот материал нагревают при очень высокой температуре (до 1000 К). В результате химической реакции происходит отделение атомов кремния от атомов углерода, первые из которых испаряются. В результате на пластинке остается чистый графен. Недостатком подобного метода является необходимость использования очень высоких температур, при которых может произойти сгорание атомов углерода.

Самым надежным и простым способом, применяемым для массового производства графена, является CVD-процесс. Он представляет собой метод, при котором протекает химическая реакция между металлическим покрытием-катализатором и углеводородными газами.

Где производится графен?

На сегодняшний день крупнейшая компания, изготавливающая новый наноматериал, находится в Китае. Название этого производителя - Ningbo Morsh Technology. Производство графена начато им в 2012 году.

Главным потребителем наноматериала выступает компания Chongqing Morsh Technology. Графен используется ею для производства проводящих прозрачных пленок, которые вставляют в сенсорные дисплеи.

Сравнительно недавно известная компания Nokia оформила патент на светочувствительную матрицу. В составе этого столь необходимого для оптических приборов элемента находится несколько слоев графена. Такой материал, использованный на датчиках камер, в значительной мере увеличивает их светочувствительность (до 1000 раз). При этом наблюдается и снижение потребления электроэнергии. Хорошая камера для смартфона также будет содержать графен.

Получение в бытовых условиях

Можно ли изготовить графен в домашних условиях? Оказывается, да! Необходимо просто взять кухонный блендер мощностью не менее 400 Вт, и следовать методике, разработанной ирландскими физиками.

Как же изготовить графен в домашних условиях? Для этого в чашу блендера выливают 500 мл воды, добавляя в жидкость 10-25 миллилитров любого моющего вещества и 20-50 грамм толченого грифеля. Далее прибор должен поработать от 10 минут до получаса, вплоть до появления взвеси из чешуек графена. Полученный материал будет обладать высокой проводимостью, что позволит использовать его в электродах фотоэлементов. Также произведенный в бытовых условиях графен способен улучшить свойства пластика.

Оксиды наноматериала

Ученые активно исследуют и такую структуру графена, которая внутри или по краям углеродной сетки имеет присоединенные кислородосодержащие функциональные группы или (и) молекулы. Это оксид самого твердого нановещества, который является первым двумерным материалом, дошедшим до стадии коммерческого производства. Из нано- и микрочастиц этой структуры ученые изготовили сантиметровые образцы.

Так, оксид графена в сочетании с диофилизированным углеродом был недавно получен китайскими учеными. Это весьма легкий материал, сантиметровый кубик которого удерживается на лепестках небольшого цветка. Но при этом новое вещество, в котором находится оксид графена, является одним из самых твердых в мире.

Биомедицинское применение

Оксид графена обладает уникальным свойством селективности. Это позволит данному веществу найти биомедицинское применение. Так, благодаря работам ученых стало возможным использование оксида графена для диагностики раковых заболеваний. Обнаружить злокачественную опухоль на ранних стадиях ее развития позволяют уникальные оптические и электрические свойства наноматериала.

Также оксид графена позволяет производить адресную доставку лекарственных и диагностических средств. На основе данного материала создаются сорбционные биодатчики, указывающие на молекулы ДНК.

Индустриальное применение

Различные сорбенты на основе оксида графена могут быть применены для дезакцивации зараженных техногенных и природных объектов. Крое того, данный наноматериал способен переработать подземные и поверхностные воды, а также почвы, очистив их от радионуклидов.

Фильтры из оксидов графена могут обеспечить суперчистотой помещения, где производятся электронные компоненты специального назначения. Уникальные свойства данного материала позволят проникнуть в тонкие технологии химической сферы. В частности, это может быть извлечение радиоактивных, рассеянных и редких металлов. Так, использование оксида графена позволит добыть золото из бедных руд.