Как называется вещество наполняющее лазер. Квантовые приборы с оптической накачкой, работающие по "трёхуровневой схеме"

Прежде всего рассмотрим лазер, работающий по четырехуровневой схеме и имеющий для простоты лишь одну полосу поглощения накачки (полоса 3 на рис. 5.1). Впрочем, последующий анализ останется без изменения, даже если мы будем иметь дело с более чем одной полосой (или уровнем) поглощения накачки, при условии, что релаксация из этих полос на верхний лазерный уровень 2 происходит очень быстро. Обозначим

населенности четырех уровней 0, 1, 2 и 3 соответственно через Будем считать, что лазер генерирует только на одной моде резонатора. Пусть - полное число фотонов в резонаторе. Считая, что переходы между уровнями 3 и 2 и уровнями 1 и 0 являются быстрыми, можно положить . Таким образом, мы имеем следующие скоростные уравнения:

В уравнении (5.1а) величина представляет собой полное число активных атомов (или молекул). В уравнении (5.16) слагаемое учитывает накачку [см. уравнение (1.10)]. Явные выражения для скорости накачки как в случае оптической, так и электрической накачки уже были получены в гл. 3. В том же уравнении член соответствует вынужденному излучению. Скорость вынужденного излучения как показано в гл. 2, действительно пропорциональна квадрату электрического поля электромагнитной волны и, следовательно, пропорциональна Поэтому коэффициент В можно рассматривать как скорость вынужденного излучения на один фотон в моде. Величина представляет собой время жизни верхнего лазерного уровня и в общем случае определяется выражением (2.123). В уравнении (5.1 в) член соответствует скорости изменения числа фотонов вследствие вынужденного излучения. Действительно, как мы уже видели, член в уравнении (5.16) представляет собой скорость уменьшения населенности за счет вынужденного излучения. Поскольку каждый акт вынужденного излучения приводит к появлению фотона, скорость увеличения числа фотонов должна быть равна где - объем, занимаемый модой внутри активной среды (точное определение модового объема дано ниже). Наконец, член [где - время жизни фотона (см. разд. 4.3)] учитывает уменьшение числа фотонов из-за потерь в резонаторе.

Рис. 5.1. Схема энергетических уровней четырехуровиевого лазера.

Строгое определение объема моды требует подробного рассмотрения, которое приводится в приложении Б. В результате мы имеем следующее определение

где - распределение электрического поля внутри резонатора, Е - максимальное значение этого поля, а интегрирование производится по объему, занимаемому активной средой. Если рассматривается резонатор с двумя сферическими зеркалами, то отношение равно вещественной части выражения (4.95). Уместно привести в качестве примера симметричный резонатор, состоящий из двух зеркал, радиусы кривизны которых много больше, чем длина резонатора. Тогда размер пятна моды будет приблизительно постоянным по всей длине резонатора и равным значению в центре резонатора. Аналогичным образом радиус кривизны эквифазных поверхностей будет достаточно большим и волновые фронты можно считать плоскими. Тогда из выражения (4.95) для моды получаем

здесь мы положили Из выражений (5.2) и (5.3) имеем

где - длина активной среды. При выводе этого выражения мы учли тот факт, что является медленно меняющейся функцией по сравнению с так что можно положить Таким образом, появление четверки в знаменателе выражения (5.4) является результатом следующих двух обстоятельств: 1) наличие множителя 1/2 обусловлено тем, что мода имеет характер стоячей волны, так что в соответствии с приведенными выше рассуждениями ; 2) еще один множитель 1/2 появляется из-за того, что - это размер пятна для амплитуды поля Е, в то время как размер пятна для интенсивности поля (т. е. для очевидно, в раз меньше.

Прежде чем продолжить наше рассмотрение, следует заметить, что в выражении (5.1 в) пренебрегается слагаемым, учитывающим спонтанное излучение. В действительности же, как отмечалось в гл. 1, генерация возникает за счет спонтанного излучения; поэтому следует ожидать, что уравнения (5.1) не дают правильного описания возникновения генерации. В самом деле, если в уравнении (5.1 в) положить в момент времени то мы получим , следовательно, генерация не сможет возникнуть. Для учета спонтанного излучения можно было бы снова попытаться, исходя из простого условия баланса, начать рассмотрение с члена который в уравнении (5.16) входит в слагаемое При этом может показаться,

что в уравнении (5.1в) слагаемое, учитывающее спонтанное излучение, должно было бы иметь следующий вид: Однако это неверно. На самом же деле, как показано в разд. 2.4.3 [см., в частности, выражение (2.115)], спонтанное излучение распределено в некотором частотном интервале и форма его линии описывается функцией Однако в уравнении (5.1 в) член, учитывающий спонтанное излучение, должен включать в себя лишь ту долю этого излучения, которая дает вклад в рассматриваемую моду. Правильное выражение для этого члена можно вывести только из квантовомеханического рассмотрения электромагнитного поля моды резонатора. Получаемый при этом результат является очень простым и поучительным . В случае когда учитывается спонтанное излучение, уравнение (5.1 в) преобразуется к виду

Все это выглядит так, как будто члену, отвечающему вынужденному излучению, мы добавили «дополнительный фотон». Однако ради простоты мы не будем в дальнейшем вводить такого дополнительного члена, связанного со спонтанным излучением, а вместо этого предположим, что в начальный момент времени в резонаторе уже присутствует некоторое небольшое число фотонов Как мы увидим, введение этого небольшого числа фотонов, которое необходимо лишь для возникновения генерации, в действительности никоим образом не сказывается на последующем рассмотрении.

Займемся теперь выводом явных выражений для величины В, которая входит в уравнения (5.16) и (5.1 в). Строгое выражение для этой величины выводится снова в Приложении Б. Для большинства практических целей подходит приближенное выражение, которое можно получить, исходя из простых соображений. Для этого рассмотрим резонатор длиной в котором находится активная среда длиной с показателем преломления Можно считать, что мода резонатора образована суперпозицией двух волн, распространяющихся в противоположных направлениях. Пусть I - интенсивность одной из этих волн. В соответствии с выражением (1.7) при прохождении волны через слой активной среды ее интенсивность изменяется на величину где а - сечение перехода на частоте рассматриваемой моды резонатора. Определим теперь следующие величины: и -коэффициенты пропускания двух зеркал резонатора по мощности; - соответствующие относительные коэффициенты потерь на зеркалах; 3) Г, - относительный коэффициент внутренних потерь за проход. Тогда изменение интенсивности за полный проход резонатора

Здесь и - логарифмические потери за проход, обусловленные пропусканием зеркал, а - внутренние логарифмические потери. Для краткости будем называть у, и потерями на пропускание, а - внутренними потерями. Как станет ясно в дальнейшем, благодаря экспоненциальному характеру лазерного усиления запись с помощью логарифмических потерь значительно более удобна для представления потерь в лазерах. Однако следует заметить, что, хотя для небольших значений пропускания, для больших значений пропускания это неверно. Приведем пример: если положить то получим т. е. , в то время как для имеем Следует также заметить, что с помощью выражений (5.7) можно определить полные потери за проход:

Определив логарифмические потери , подставим выражения (5.7) и (5.8) в (5.6). Вводя дополнительное условие

экспоненциальную функцию в (5.6) можно разложить в степенной ряд, и мы получаем

Разделим обе части этого выражения на интервал времени за который световая волна совершает полный проход резонатора,

т. е. на величину где определяется выражением

Используя приближение получаем

Поскольку число фотонов в резонаторе пропорционально интенсивности уравнение (5.12) можно сравнить с (5.1в). При этом получаем следующие выражения:

Величину V мы будем называть эффективным объемом моды резонатора. Заметим, что формула (5.136) обобщает полученное в разд. 4.3 выражение для времени жизни фотона. Кроме того, выражение (5.14) для объема резонатора справедливо лишь приблизительно. На самом деле в Приложении Б показано, что в (5.13а) следует использовать более строгое выражение для V, а именно

здесь первый интеграл берется по объему активной среды, а второй - по оставшемуся объему резонатора. Заметим, впрочем, что для симметричного резонатора с зеркалами большого радиуса кривизны оба выражения (5.14) и (5.15) дают

До сих пор наше рассмотрение было направлено на обоснование уравнения (5.1 в) и на вывод явных выражений для В и через измеряемые параметры лазера. Однако следует заметить, что мы указали также и на пределы применимости уравнения (5.1в). Действительно, при выводе уравнения (5.12) нам пришлось использовать приближение (5.9), согласно которому разница между усилением и потерями невелика. Для непрерывного лазера это условие всегда выполняется, поскольку в установившемся процессе (см. разд. 5.3.1). А вот для импульсного лазера условие (5.9) будет справедливо лишь тогда, когда лазер работает при малом превышении над порогом. Если условие (5.9) не выполняется, то неприменимы и уравнения

Лазер – одно из наиболее ярких и полезных изобретений XX века, открывшее перед человечеством огромное количество новых направлений деятельности.


Прежде всего, давайте разберемся, что это такое – лазер?



Лазерный луч представляет собой когерентный, монохромный, поляризованный узконаправленный световой поток. Если говорить человеческим языком, то это означает следующее:

  • Когерентный – то есть такой, где частота излучения всеми источниками синхронна (а надо понимать, что свет – это электромагнитная волна, испускаемая атомами и обладающая своей частотой).
  • Монохромный – значит сосредоточенный в узком диапазоне длинны волны.
  • Поляризованный – обладающий направленным вектором колебания электромагнитного поля (само это колебание – и есть световая волна).

Одним словом, это луч света, испускаемый мало того, что синхронными источниками, так еще и в очень узком диапазоне, причем направленно. Этакий чрезвычайно сконцентрированный световой поток.


Устройство лазера.

Толку от самого физического понятия о лазере было бы немного, если бы его не умели создавать. Основой устройства служит оптический квантовый генератор, который, используя электрическую, химическую, тепловую или какую-то другую энергию, производит лазерный луч. А производит он его посредством вынужденного или, как еще говорят, индуцированного излучения – то есть когда атом, в который попадает фотон (частица света), не поглощает его, а излучает еще один фотон, являющийся точной копией первого (когерентный). Таким образом, происходит усиление света.

Лазеры как правило состоят из трех частей:

  • Источник энергии или механизм накачки;
  • Рабочее тело;
  • Система зеркал или оптический резонатор.



За что отвечает каждая из этих частей:


Источник энергии , что очевидно из названия, подает необходимую для работы устройства энергию. Для лазеров применяются различные виды энергии, зависящие от того, что именно используется в качестве рабочего тела. Такой первоначальной энергией, в числе прочего, может выступать и другой источник света, а также электрический разряд, химическая реакция и т.д. Здесь нужно упомянуть, что свет – это передача энергии и фотон – не только частица или, говоря иначе, квант света, но и частица энергии.

Рабочее тело – это наиболее важная составляющая лазера. Оно как раз и является телом, в котором находятся атомы, излучающие когерентные фотоны. Для того, чтобы процесс излучения когерентных фотонов произошел, рабочее тело подвергается энергетической накачке, которая приводит, грубо говоря, к тому, что большая часть атомов, из которых состоит рабочее тело, перешли в возбужденное энергетическое состоянии с общим знаменателем. В этом состоянии переход к обратному – основному - не возбужденному состоянию произойдет, если через атом пройдет фотон, соответствующий по своей энергии разнице между этими двумя состояниями атома. Таким образом, возбужденный атом, при переходе в основное состояние добавляет к «пролетавшему через него» фотону его точную копию.

Именно рабочее тело определяет все наиболее важные характеристика лазера, такие как мощность, диапазон и т.п. Выбор рабочего тела производится из соображений, диктуемых нам тем, что мы хотим получить от этого лазера.


Ну и, соответственно, вариантов тут очень много: все агрегатные состояний (газ, твердое, жидкость и даже плазма), всевозможные материалы, используются также и полупроводники (например, в CD приводах).


Оптический резонатор – это обыкновенная система зеркал, расположенных вокруг рабочего тела, ведь оно излучает свет во всех направлениях, а нам нужно собрать в один узкий пучок. Для этой цели и служит оптический резонатор.




Применение лазер находит всюду, лишь бы хватило инженерной мысли додуматься как в тех или иных случаях применить эту технологию. Им есть место и в медицине, и в промышленности, и в быту, и в военном деле, и даже для передачи информации.

Лазер обязательно состоит из трех основных компонент:

1) активной среды , в которой создаются состояния с инверсией населенностей;

2) системы накачки − устройства для создания инверсии в активной среде;

3) оптическог о резонатора − устройства, формирующего направление пучка фотонов.

Кроме этого оптический резонатор предназначен для многократного усиления лазерного излучения.

В настоящее время в качестве активной (рабочей) среды лазера используются различные агрегатные состояния вещества: твёрдое, жидкое, газообразное, плазма .

Для создания инверсной населённости среды лазера используются различные методы накачки . Накачка лазера может осуществляться как непрерывно, так и импульсно. При длительном (непрерывном) режиме вводимая в активную среду мощность накачки ограничена перегревом активной среды и связанными с ним явлениями. В режиме одиночных импульсов возможно введение в активную среду значительно большей энергии, чем за то же время в непрерывном режиме. Это обусловливает большую мощность одиночного импульса.

Первым принцип действия лазера, физика которого основывалась на законе излучения Планка, теоретически обосновал Эйнштейн в 1917 году. Он описал поглощение, спонтанное и вынужденное электромагнитное излучение с помощью вероятностных коэффициентов (коэффициенты Эйнштейна).

Первопроходцы

Теодор Мейман был первым, кто продемонстрировал принцип действия основанный на оптической накачке с помощью лампы-вспышки синтетического рубина, производившего импульсное когерентное излучение с длиной волны 694 нм.

В 1960 г. иранские ученые Джаван и Беннетт создали первый газовый квантовый генератор с использованием смеси газов He и Ne в соотношении 1:10.

В 1962 году Р. Н. Холл продемонстрировал первый из арсенида галлия (GaAs), излучавший на длине волны 850 нм. Позже в том же году Ник Голоняк разработал первый полупроводниковый квантовый генератор видимого света.

Устройство и принцип действия лазеров

Каждая лазерная система состоит из активной среды, помещенной между парой оптически параллельных и высокоотражающих зеркал, одно из которых полупрозрачное, и источника энергии для ее накачки. В качестве среды усиления может выступать твердое тело, жидкость или газ, которые обладают свойством усиливать амплитуду световой волны, проходящей через него, вынужденным излучением с электрической или оптической накачкой. Вещество помещается между парой зеркал таким образом, что свет, отражающийся в них, каждый раз проходит через него и, достигнув значительного усиления, проникает сквозь полупрозрачное зеркало.

Двухуровневые среды

Рассмотрим принцип действия лазера с активной средой, атомы которой имеют только два уровня энергии: возбужденный E 2 и базовый Е 1 . Если атомы с помощью любого механизма накачки (оптического, электрического разряда, пропускания тока или бомбардировки электронами) возбуждаются до состояния E 2 , то через несколько наносекунд они вернутся в основное положение, излучая фотоны энергии hν = E 2 - E 1 . Согласно теории Эйнштейна, эмиссия производится двумя различными способами: либо она индуцируется фотоном, либо это происходит спонтанно. В первом случае имеет место вынужденное излучение, а во втором - спонтанное. При тепловом равновесии вероятность вынужденного излучения значительно ниже, чем спонтанного (1:10 33), поэтому большинство обычных источников света некогерентны, а лазерная генерация возможна в условиях, отличных от теплового равновесия.

Даже при очень сильной накачке населенность двухуровневых систем можно лишь сделать равной. Поэтому для достижения инверсной населенности оптическим или иным способом накачки требуются трех- или четырехуровневые системы.

Многоуровневые системы

Каков принцип действия трехуровневого лазера? Облучение интенсивным светом частоты ν 02 накачивает большое количество атомов с самого низкого уровня энергии E 0 до верхнего Е 2 . Безызлучательный переход атомов с E 2 до E 1 устанавливает инверсию населенности между E 1 и E 0 , что на практике возможно только, когда атомы длительное время находятся в метастабильном состоянии E 1, и переход от Е 2 до Е 1 происходит быстро. Принцип действия трехуровневого лазера заключается в выполнении этих условий, благодаря чему между E 0 и E 1 достигается инверсия населенности и происходит усиление фотонов энергией Е 1 -Е 0 индуцированного излучения. Более широкий уровень E 2 мог бы увеличить диапазон поглощения длин волн для более эффективной накачки, следствием чего является рост вынужденного излучения.

Трехуровневая система требует очень высокой мощности накачки, так как нижний уровень, задействованный в генерации, является базовым. В этом случае для того, чтобы произошла инверсия населенности, до состояния E 1 должно быть накачано более половины от общего числа атомов. При этом энергия расходуется впустую. Мощность накачки можно значительно уменьшить, если нижний уровень генерации не будет базовым, что требует, по крайней мере, четырехуровневой системы.

В зависимости от природы активного вещества, лазеры подразделяются на три основные категории, а именно, твердый, жидкий и газовый. С 1958 года, когда впервые наблюдалась генерация в кристалле рубина, ученые и исследователи изучили широкий спектр материалов в каждой категории.

Твердотельный лазер

Принцип действия основан на использовании активной среды, которая образуется путем добавления в изолирующую кристаллическую решетку металла переходной группы (Ti +3 , Cr +3 , V +2 , Со +2 , Ni +2 , Fe +2 , и т. д.), редкоземельных ионов (Ce +3 , Pr +3 , Nd +3 , Pm +3 , Sm +2 , Eu +2,+3 , Tb +3 , Dy +3 , Ho +3 , Er +3 , Yb +3 , и др.), и актиноидов, подобных U +3 . ионов отвечают только за генерацию. Физические свойства базового материала, такие как теплопроводность и имеют важное значение для эффективной работы лазера. Расположение атомов решетки вокруг легированного иона изменяет ее энергетические уровни. Различные длины волн генерации в активной среде достигаются путем легирования различных материалов одним и тем же ионом.

Гольмиевый лазер

Примером является квантовый генератор, в котором гольмий заменяет атом базового вещества кристаллической решетки. Ho:YAG является одним из лучших генерационных материалов. Принцип действия гольмиевого лазера состоит в том, что алюмоиттриевый гранат легируется ионами гольмия, оптически накачивается лампой-вспышкой и излучает на длине волны 2097 нм в ИК-диапазоне, хорошо поглощаемом тканями. Используется этот лазер для операций на суставах, в лечении зубов, для испарения раковых клеток, почечных и желчных камней.

Полупроводниковый квантовый генератор

Лазеры на квантовых ямах недороги, позволяют массовое производство и легко масштабируются. Принцип действия полупроводникового лазера основан на использовании диода с p-n-переходом, который производит свет определенной длины волны путем рекомбинации носителя при положительном смещении, подобно светодиодам. LED излучают спонтанно, а лазерные диоды - вынужденно. Чтобы выполнить условие инверсии заселенности, рабочий ток должен превышать пороговое значение. Активная среда в полупроводниковом диоде имеет вид соединительной области двух двумерных слоев.

Принцип действия лазера данного типа таков, что для поддержания колебаний никакого наружного зеркала не требуется. Отражающая способность, создаваемая благодаря слоев и внутреннему отражению активной среды, для этой цели достаточна. Торцевые поверхности диодов скалываются, что обеспечивает параллельность отражающих поверхностей.

Соединение, образованное одного типа, называется гомопереходом, а созданное соединением двух разных - гетеропереходом.

Полупроводники р и n типа с высокой плотностью носителей образуют р-n-переход с очень тонким (≈1 мкм) обедненным слоем.

Газовый лазер

Принцип действия и использование лазера этого типа позволяет создавать устройства практически любой мощности (от милливатта до мегаватта) и длин волн (от УФ до ИК) и позволяет работать в импульсном и непрерывном режимах. Исходя из природы активных сред, различают три типа газовых квантовых генераторов, а именно атомные, ионные, и молекулярные.

Большинство газовых лазеров накачиваются электрическим разрядом. Электроны в разрядной трубке ускоряются электрическим полем между электродами. Они сталкиваются с атомами, ионами или молекулами активной среды и индуцируют переход на более высокие энергетические уровни для достижения состояния населения инверсии и вынужденного излучения.

Молекулярный лазер

Принцип действия лазера основан на том, что, в отличие от изолированных атомов и ионов, в атомных и ионных квантовых генераторах молекулы обладают широкими энергетическими зонами дискретных энергетических уровней. При этом каждый электронный энергетический уровень имеет большое число колебательных уровней, а те, в свою очередь, - несколько вращательных.

Энергия между электронными энергетическими уровнями находится в УФ и видимой областях спектра, в то время как между колебательно-вращательными уровнями - в дальней и ближней ИК областях. Таким образом, большинство молекулярных квантовых генераторов работает в далекой или ближней ИК областях.

Эксимерные лазеры

Эксимеры представляют собой такие молекулы как ArF, KrF, XeCl, которые имеют разделенное основное состояние и стабильны на первом уровне. Принцип действия лазера следующий. Как правило, в основном состоянии число молекул мало, поэтому прямая накачка из основного состояния не представляется возможной. Молекулы образуются в первом возбужденном электронном состоянии путем соединения обладающих большой энергией галогенидов с инертными газами. Населенность инверсии легко достигается, так как число молекул на базовом уровне слишком мало, по сравнению с возбужденным. Принцип действия лазера, кратко говоря, состоит в переходе из связанного возбужденного электронного состояния в диссоциативное основное состояние. Населенность в основном состоянии всегда остается на низком уровне, потому что молекулы в этой точке диссоциируют на атомы.

Устройство и принцип действия лазеров состоит в том, что разрядную трубку наполняют смесью галогенида (F 2) и редкоземельного газа (Ar). Электроны в ней диссоциируют и ионизируют молекулы галогенида и создают отрицательно заряженные ионы. Положительные ионы Ar + и отрицательные F - реагируют и производят молекулы ArF в первом возбужденном связанном состоянии с последующим их переходом в отталкивающее базовое состояние и генерацией когерентного излучения. Эксимерный лазер, принцип действия и применение которого мы сейчас рассматриваем, может применяться для накачки активной среды на красителях.

Жидкостный лазер

По сравнению с твердыми веществами, жидкости более однородны, и обладают большей плотностью активных атомов, по сравнению с газами. В дополнение к этому, они не сложны в производстве, позволяют просто отводить тепло и могут быть легко заменены. Принцип действия лазера состоит в использовании в качестве активной среды органических красителей, таких как DCM (4-дицианометилен-2-метил-6-p- диметиламиностирил-4Н-пиран), родамина, стирила, LDS, кумарина, стильбена, и т. д., растворенных в надлежащем растворителе. Раствор молекул красителя возбуждается излучением, длина волны которого обладает хорошим коэффициентом поглощения. Принцип действия лазера, кратко говоря, заключается в генерации на большей длине волны, называемой флуоресценцией. Разница между поглощенной энергией и излучаемыми фотонами используется безызлучательными энергетическими переходами и нагревает систему.

Более широкая полоса флуоресценции жидкостных квантовых генераторов обладает уникальной особенностью - перестройкой длины волны. Принцип действия и использование лазера этого типа как настраиваемого и когерентного источника света, приобретает все большее значение в спектроскопии, голографии, и в биомедицинских приложениях.

Недавно квантовые генераторы на красителях стали использоваться для разделения изотопов. В этом случае лазер избирательно возбуждает один из них, побуждая вступить в химическую реакцию.

Инверсию населенностей в лазерах создают разными способами. Чаще всего для этого используют облучение светом (оптическая накачка), электрический разряд, электрический ток, химические реакции.

Для того, чтобы от режима усиления перейти к режиму генерации света, в лазере, как и в любом генераторе, используют обратную связь. Обратная связь в лазере осуществляется с помощью оптического резонатора, который в простейшем случае представляет собой пару параллельных зеркал.

Принципиальная схема лазера показана на рис. 6. Она содержит активный элемент, резонатор, источник накачки.

Лазер работает следующим образом. Сначала источник накачки (например, мощная лампа - вспышка), воздействуя на рабочее вещество (активный элемент) лазера, создает в нем инверсию населенностей. Затем инвертированная среда начинает спонтанно испускать кванты света. Под действием спонтанного излучения начинается процесс вынужденного излучения света. Благодаря инверсии населенностей этот процесс носит лавинообразный характер и приводит к экспоненциальному усилению света. Потоки света, идущие в боковых направлениях, быстро покидают активный элемент, не успевая набрать значительную энергию. В тоже время световая волна, распространяющаяся вдоль оси резонатора, многократно проходит через активный элемент, непрерывно набирая энергию. Благодаря частичному пропусканию света одним из зеркал резонатора излучение выводится наружу, образуя лазерный луч.

Рис.6. Принципиальная схема лазера. 1- активный элемент; 2- система накачки;

3- оптический резонатор; 4- генерируемое излучение.

§5. Устройство и работа гелий-неонового лазера

Рис.7. Принципиальная схема гелий - неонового лазера.

1). Лазер состоит из газоразрядной трубки Т длиной от нескольких десятков см. до 1,5-2м и внутренним диаметром 7-10мм. Трубка наполнена смесью гелия (давление~1мм рт.ст.) и неона (давление ~0,1мм рт. ст.). Концы трубки закрыты плоскопараллельными стеклянными или кварцевыми пластинками Р 1 и Р 2 , установленными под углом Брюстера к ее оси. Это создает линейную поляризацию лазерного излучения с электрическим вектором, параллельным плоскости падения. Зеркала S 1 и S 2 , между которыми помещается трубка, делаются обычно сферическими с многослойными диэлектрическими покрытиями. Они имеют высокие коэффициенты отражения и практически не поглощают свет. Пропускаемость зеркала, через которое преимущественно выходит излучение лазера, составляет обычно 2%, другого - менее 1%. Между электродами трубки прикладывается постоянное напряжение 1-2кВ. Катод К трубки может быть холодным, но для увеличения разрядного тока применяют также трубки с пустотелым цилиндрическим анодом, катод которых нагревается низковольтным источником тока. Разрядный ток в трубке составляет несколько десятков миллиампер. Лазер генерирует красный свет с длиной волны =632,8 нм и может генерировать также инфракрасное излучение с длинами волн 1,15 и 3,39 мкм (см. рис. 2). Но тогда необходимо иметь торцевые окна, прозрачные для инфракрасного света, и зеркала с высокими коэффициентами отражения в инфракрасной области.

2). В лазерах индуцированное излучение используется для генерации когерентных световых волн. Идея этого впервые была высказана в 1957 г. А.М. Прохоровым, Н.Г. Басовым и независимо от них Ч. Таунсом. Чтобы активное вещество лазера превратить в генератор световых колебаний, надо осуществить обратную связь. Это означает, что часть излученного света должна все время возвращаться в зону активного вещества и вызвать вынужденное излучение все новых и новых атомов. Для этого активное вещество помещают между двумя зеркалами S 1 и S 2 (см. рис.7), которые являются элементами обратной связи. Луч света, претерпевая многократные отражения от зеркал S 1 и S 2 , будет проходить много раз через активное вещество, усиливаясь при этом в результате вынужденных переходов с высшего энергетического уровня " 3 на более низкий уровень  " 1 . Получается открытый резонатор, в котором зеркала обеспечивают многократное прохождение (и тем самым усиление) светового потока в активной среде. В реальном лазере часть света, чтобы ее можно было использовать, должна быть выпущена из активной среды наружу. С этой целью одной из зеркал, например S 2 , делается полупрозрачным.

Такой резонатор будет не только усиливать свет, но также коллимировать и монохроматизировать его. Для простоты предложим сначала, что зеркала S 1 и S 2 идеальны. Тогда лучи, параллельно оси цилиндра, будут проходить через активное вещество туда и обратно неограниченное число раз. Все же лучи, идущие наклонно, в конце концов, попадут на боковую стенку цилиндра, где они рассеются или выйдут наружу. Ясно поэтому, что максимально усилятся лучи, распространяющиеся параллельно оси цилиндра. Этим и объясняется коллимация лучей. Конечно, строго параллельные лучи получить нельзя. Этому препятствует дифракция света. Угол расхождения лучей принципиально не может быть меньше дифракционного предела  D , где D - ширина пучка. Однако, в лучших газовых лазерах такой предел практически достигнут.

Объясним теперь, как происходит монохроматизация света. Пусть Z - оптическая длина пути между зеркалами. Если 2 Z = m , то есть на длине Z укладывается целое число полуволн m, то световая волна, выйдя от S 1 , после прохождения туда и обратно вернется к S 1 в той же фазе. Такая волна усилится при втором и всех следующих прохождениях через активное вещество в прямом и обратном направлениях. Ближайшая длина волны  , для которой должно происходить такое же усиление, найдется из условия 2 Z =(m 1)( ). Следовательно,  = / m , то есть  , как и следовало ожидать совпадает со спектральной областью интерферометрам Фабри-Перо. Учтем теперь, что энергетические уровни " 3 и  " 1 и спектральные линии, возникающие при переходах между ними, не бесконечно тонкие, а имеют конечную ширину. Предположим, что ширина спектральной линии, излучаемой атомами, меньше дисперсной области прибора. Тогда из всех длин волн, излучаемых атомами, условию 2 Z = m может удовлетворять только одна длина волны . Такая волна усилится максимально. Это и ведет к сужению спектральных линий, генерируемых лазером, то есть к монохроматизации света.

Основные свойства пучка лазерного света:

    монохроматичность;

    пространственная и временная когерентность;

    высокая интенсивность;

    малая расходимость пучка.

Благодаря высокой когерентности гелий-неоновый лазер служит превосходным источником непрерывного монохроматического излучения для исследования всякого рода интерференционных и дифракционных явлений, осуществления которых с обычными источниками света требует применения специальной аппаратуры.