Как обозначать числа с пи на числовой окружности? Тригонометрическая окружность. Подробная теория с примерами Отметьте на единичной окружности точки соответствующие числу

При изучении тригонометрии в школе каждый ученик сталкивается с весьма интересным понятием «числовая окружность». От умения школьного учителя объяснить, что это такое, и для чего она нужна, зависит, насколько хорошо ученик пойдём тригонометрию впоследствии. К сожалению, далеко не каждый учитель может доступно объяснить этот материал. В результате многие ученики путаются даже с тем, как отмечать точки на числовой окружности . Если вы дочитаете эту статью до конца, то научитесь делать это без проблем.

Итак, приступим. Нарисуем окружность, радиус которой равен 1. Самую «правую» точку этой окружности обозначим буквой O :

Поздравляю, вы только что нарисовали единичную окружность. Поскольку радиус этой окружности равен 1, то её длина равна .

Каждому действительному числу можно поставить в соответствие длину траектории вдоль числовой окружности от точки O . За положительное направление принимается направление движения против часовой стрелки. За отрицательное – по часовой стрелке:

Расположение точек на числовой окружности

Как мы уже отмечали, длина числовой окружности (единичной окружности) равна . Где тогда будет располагаться на этой окружности число ? Очевидно, от точки O против часовой стрелки нужно пройти половину длины окружности, и мы окажемся в нужной точке. Обозначим её буквой B :

Обратите внимание, что в ту же точку можно было бы попасть, пройдя полуокружность в отрицательном направлении. Тогда бы мы отложили на единичной окружности число . То есть числам и соответствует одна и та же точка.

Причём этой же точке соответствуют также числа , , , и, вообще, бесконечное множество чисел, которые можно записать в виде , где , то есть принадлежит множеству целых чисел. Всё это потому, что из точки B можно совершить «кругосветное» путешествие в любую сторону (добавить или вычесть длину окружности ) и попасть в ту же самую точку. Получаем важный вывод, который нужно понять и запомнить.

Каждому числу соответствует единственная точка на числовой окружности. Но каждой точке на числовой окружности соответствует бесконечно много чисел.

Разобьем теперь верхнюю полуокружность числовой окружности на дуги равной длины точкой C . Легко видеть, что длина дуги OC равна . Отложим теперь от точки C дугу той же длины в направлении против часовой стрелки. В результате попадём в точку B . Результат вполне ожидаемый, поскольку . Отложим эту дугу в том же направлении ещё раз, но теперь уже от точки B . В результате попадём в точку D , которая будет уже соответствовать числу :

Заметим опять, что эта точка соответствует не только числу , но и, например, числу , потому что в эту точку можно попасть, отложив от точки O четверть окружности в направлении движения часовой стрелки (в отрицательном направлении).

И, вообще, отметим снова, что этой точке соответствует бесконечно много чисел, которые можно записать в виде . Но их также можно записать в виде . Или, если хотите, в виде . Все эти записи абсолютно равнозначны, и они могут быть получены одна из другой.

Разобьём теперь дугу на OC пополам точкой M . Сообразите теперь, чему равна длина дуги OM ? Правильно, вдвое меньше дуги OC . То есть . Каким числам соответствует точка M на числовой окружности? Уверен, что теперь вы сообразите, что эти числа можно записать в виде .

Но можно и иначе. Давайте в представленной формуле возьмём . Тогда получим, что . То есть эти числа можно записать в виде . Этот же результат можно было получить, используя числовую окружность. Как я уже говорил, оба записи равнозначны, и они могут быть получены одна из другой.

Теперь вы легко можете привести пример чисел, которым соответствуют точки N , P и K на числовой окружности. Например, числам , и :

Часто именно минимальные положительные числа и берут для обозначения соответствующих точек на числовой окружности. Хотя это совсем не обязательно, и точке N , как вы уже знаете, соответствует бесконечное множество других чисел. В том числе, например, число .

Если разбить дугу OC на три равные дуги точками S и L , так что точка S будет лежать между точками O и L , то длина дуги OS будет равна , а длина дуги OL будет равна . Используя знания, которые вы получили в предыдущей части урока, вы без труда сообразите, как получились остальные точки на числовой окружности:

Числа не кратные π на числовой окружности

Зададимся теперь вопросом, где на числовой прямой отметить точку, соответствующую числу 1? Чтобы это сделать, надо от самой «правой» точки единичной окружности O отложить дугу, длина которой была бы равна 1. Указать место искомой точки мы можем лишь приблизительно. Поступим следующим образом.

Вообще, этот вопрос заслуживает особого внимания, но здесь все просто: у угла градусов и синус и косинус положительны (смотри рисунок), тогда берем знак «плюс».

Теперь попробуй на основе вышеизложенного найти синус и косинус углов: и

Можно схитрить: в частности для угла в градусов. Так как если один угол прямоугольного треугольника равен градусам, то второй - градусам. Теперь вступают в силу знакомые тебе формулы:

Тогда так как, то и. Так как, то и. C градусами все еще проще: так если один из углов прямоугольного треугольника равен градусам, то и другой тоже равен градусам, а значит такой треугольник равнобедренный.

Значит, его катеты равны. А значит равны его синус и косинус.

Теперь найди сам по новому определению (через икс и игрек!) синус и косинус углов в градусов и градусов. Здесь уже никакие треугольники нарисовать не получится! Уж слишком они будут плоские!

У тебя должно было получиться:

Тангенс и котангенс ты можешь отыскать самостоятельно по формулам:

Обрати внимание, что на ноль делить нельзя!!

Теперь все полученные числа можно свести в таблицу:

Здесь приведены значения синуса, косинуса, тангенса и котангенса углов I четверти . Для удобства углы приведены как в градусах, так и в радианах (но ты-то теперь знаешь связь между ними!). Обрати внимание на 2 прочерка в таблице: а именно у котангенса нуля и тангенса градусов. Это неспроста!

В частности:

Теперь давай обобщим понятие синус и косинус на совсем произвольный угол. Я рассмотрю здесь два случая:

  1. Угол лежит в пределах от до градусов
  2. Угол больше градусов

Вообще говоря, я скривил немного душой, говоря про «совсем все» углы. Они бывают также и отрицательными! Но этот случай мы с тобой рассмотрим в другой статье. Вначале остановимся на первом случае.

Если угол лежит в 1 четверти - то тут все понятно, мы этот случай уже рассмотрели и даже таблицы нарисовали.

Теперь же пусть наш угол больше градусов и не больше чем. Это значит, что он расположен либо во 2, либо в 3 или же в 4 четверти.

Как мы поступаем? Да точно так же!

Давай рассмотрим вместо вот такого случая...

...вот такой:

То есть рассмотрим угол, лежащий во второй четверти. Что мы можем сказать про него?

У точки, которая является точкой пересечения луча и окружности по-прежнему имеет 2 координаты (ничего сверхъестественного, правда?). Это координаты и.

Причем первая координата отрицательная, а вторая - положительная! Это значит, что у углов второй четверти косинус отрицателен, а синус - положителен!

Удивительно, правда? До этого мы еще ни разу не сталкивались с отрицательным косинусом.

Да и в принципе этого не могло быть, когда мы рассматривали тригонометрические функции как отношения сторон треугольника. Кстати, подумай, у каких углов косинус равен? А у каких равен синус?

Аналогично можно рассмотреть углы во всех остальных четвертях. Я лишь напомню, что угол отсчитывается против часовой стрелки! (так, как это показано на последнем рисунке!).

Конечно, можно и отсчитывать в другую сторону, но вот подход к таким углам будет уже несколько другой.

Исходя из приведенных выше рассуждений, можно расставить знаки у синуса, косинуса, тангенса (как синус деленный на косинус) и котангенса (как косинус деленный на синус) для всех четырех четвертей.

Но еще раз повторюсь, нет смысла запоминать этот рисунок. Все, что тебе нужно знать:

Давай мы с тобой немного потренируемся. Совсем простые задачки:

Выяснить, какой знак имеют следующие величины:

Проверим?

  1. градусов - это угол, больший и меньший, а значит лежит в 3 четверти. Нарисуй любой угол в 3 четверти и посмотри, какой у него игрек. Он окажется отрицательным. Тогда.
    градусов - угол 2 четверти. Синус там положительный, а косинус - отрицательный. Плюс делить на минус - будет минус. Значит.
    градусов - угол, больший и меньший. Значит, он лежит в 4 четверти. У любого угла четвертой четверти «икс» будет положительным, значит
  2. C радианами работаем аналогично: это угол второй четверти (так как и. Синус второй четверти положительный.
    .
    , это угол четвертой четверти. Там косинус положительный.
    - угол снова четвертой четверти. Там косинус положительный, а синус - отрицательный. Тогда тангенс будет меньше нуля:

Быть может, тебе сложно определять четверти по радианам. В таком случае, ты всегда можешь перейти к градусам. Ответ, разумеется, будет точно таким же.

Теперь я хотел бы очень кратко остановиться вот еще на каком моменте. Давай снова вспомним основное тригонометрическое тождество.

Как я уже говорил, из него мы можем выразить синус через косинус или наоборот:

На выбор знака же будет влиять только та четверть, в которой находится наш угол альфа. На последние две формулы существует масса задач в ЕГЭ, например, вот таких:

Задача

Найдите, если и.

На самом деле, это задача на четверть! Смотри, как она решается:

Решение

Так как, то подставим сюда значение, тогда. Теперь дело за малым: разобраться со знаком. Что нам для этого нужно? Знать, в какой четверти находится наш угол. По условию задачи: . Какая это четверть? Четвертая. Каков знак косинуса в четвертой четверти? Косинус в четвертой четверти положительный. Тогда и нам остается выбрать знак «плюс» перед. , тогда.

Я не буду сейчас подробно останавливаться на таких задачах, их подробный разбор ты можешь найти в статье « ». Я лишь хотел указать тебе на важность того, какой знак принимает та или иная тригонометрическая функция в зависимости от четверти.

Углы больше градусов

Последнее, что я бы хотел отметить в этой статье - это как быть с углами, большими чем градусов?

Что это такое и с чем это можно есть, чтобы не подавиться? Возьму, я скажем, угол в градусов (радиан) и пойду от него против часовой стрелки…

На рисунке я нарисовал спираль, но ты-то понимаешь, что на самом деле у нас нет никакой спирали: у нас есть только окружность.

Так куда же мы попадем, если стартуем от определенного угла и пройдем полностью весь круг (градусов или радиан)?

Куда мы придем? А придем мы в тот же самый угол!

Это же, конечно, справедливо и для любого другого угла:

Взяв произвольный угол и пройдя полностью всю окружность, мы вернемся в тот же самый угол.

Что же нам это даст? А вот что: если, то

Откуда окончательно получим:

Для любого целого. Это значит, что синус и косинус являются периодическими функциями с периодом .

Таким образом, нет никакой проблемы в том, чтобы найти знак теперь уже произвольного угла: нам достаточно отбросить все «целые круги», которые умещаются в нашем угле и выяснить, в какой четверти лежит оставшийся угол.

Например, найти знак:

Проверяем:

  1. В градусов умещается раза по градусов (градусов):
    осталось градусов. Это угол 4 четверти. Там синус отрицательный, значит
  2. . градусов. Это угол 3 четверти. Там косинус отрицательный. Тогда
  3. . . Так как, то - угол первой четверти. Там косинус положителен. Тогда cos
  4. . . Так как, то наш угол лежит во второй четверти, где синус положительный.

Аналогичным образом мы можем поступать для тангенса и котангенса. Однако на самом деле с ними еще проще: они также являются периодическими функциями, только вот период у них в 2 раза меньше:

Итак, ты понял что такое тригонометрическая окружность и для чего она нужна.

Но у нас осталось еще очень много вопросов:

  1. А что такое отрицательные углы?
  2. Как вычислять значения тригонометрических функций в этих углах
  3. Как по известным значениям тригонометрических функций 1 четверти искать значения функций в других четвертях (неужто надо зубрить таблицу?!)
  4. Как с помощью круга упрощать решения тригонометрических уравнений?

СРЕДНИЙ УРОВЕНЬ

Ну что же, в этой статье мы с тобой продолжим изучение тригонометрической окружности и обсудим следующие моменты:

  1. Что такое отрицательные углы?
  2. Как вычислять значения тригонометрических функций в этих углах?
  3. Как по известным значениям тригонометрических функций 1 четверти искать значения функций в других четвертях?
  4. Что такое ось тангенсов и ось котангенсов?

Никаких дополнительных знаний, кроме как базовых навыков работы с единичной окружностью (предыдущая статья) нам не понадобится. Ну что же, давай приступим к первому вопросу: что такое отрицательные углы?

Отрицательные углы

Отрицательные углы в тригонометрии откладываются на тригонометрическом круге вниз от начала, по направлению движения часовой стрелки:

Давай вспомним, как мы до этого откладывали углы на тригонометрической окружности: Мы шли от положительного направления оси против часовой стрелки :

Тогда на нашем рисунке построен угол, равный. Аналогичным образом мы строили все углы.

Однако ничего нам не запрещает идти от положительного направления оси по часовой стрелке .

Мы будем тоже получать различные углы, но они будут уже отрицательными :

На следующей картинке изображено два угла, равные по абсолютной величине, но противоположные по знаку:

В целом правило можно сформулировать вот так:

  • Идем против часовой стрелки - получаем положительные углы
  • Идем по часовой стрелке - получаем отрицательные углы

Схематично правило изображено вот на этом рисунке:

Ты мог бы задать мне вполне резонный вопрос: ну углы нам нужны для того, чтобы измерять у них значения синуса, косинуса, тангенса и котангенса.

Так есть ли разница, когда у нас угол положительный, а когда - отрицательный? Я отвечу тебе: как правило есть.

Однако ты всегда можешь свести вычисление тригонометрической функции от отрицательного угла к вычислению функции в угле положительном .

Посмотри на следующую картинку:

Я построил два угла, они равны по абсолютному значению, но имеют противоположный знак. Отметим для каждого из углов его синус и косинус на осях.

Что мы с тобой видим? А вот что:

  • Синусы у углов и противоположны по знаку! Тогда если
  • Косинусы у углов и совпадают! Тогда если
  • Так как, то:
  • Так как, то:

Таким образом, мы всегда можем избавиться от отрицательного знака внутри любой тригонометрической функции: либо просто уничтожив его, как у косинуса, либо поставив его перед функцией, как у синуса, тангенса и котангенса.

Кстати, вспомни-ка, как называется функция, у которой для любого допустимого выполняется: ?

Такая функция называется нечетной .

А если же для любого допустимого выполняется: ? То в таком случае функция называется четной .

Таким образом, мы с тобой только что показали, что:

Синус, тангенс и котангенс - нечетные функции, а косинус - четная.

Таким образом, как ты понимаешь, нет никакой разницы, ищем ли мы синус от положительного угла или отрицательного: справиться с минусом очень просто. Так что нам не нужны таблицы отдельно для отрицательных углов.

С другой стороны, согласись, было бы очень удобно зная только тригонометрические функции углов первой четверти, уметь вычислять аналогичные функции и для остальных четвертей. Можно ли это сделать? Конечно, можно! У тебя есть по крайней мере 2 пути: первый - строить треугольник и применять теорему Пифагора (так мы с тобой и отыскали значения тригонометрических функций для основных углов первой четверти), а второй - запомнив значения функций для углов в первой четверти и некое несложное правило, уметь вычислять тригонометрические функции для всех остальных четвертей. Второй способ избавит тебя от долгой возни с треугольниками и с Пифагором, поэтому мне он видится более перспективным:

Итак, данный способ (или правило) называется - формулы приведения.

Формулы приведения

Грубо говоря, эти формулы помогут тебе не запоминать вот такую таблицу (она между прочим содержит 98 чисел!) :

если ты помнишь вот эту (всего на 20 чисел):

То есть ты сможешь не забивать себе голову совершенно ненужными 78 числами! Пусть, например, нам нужно вычислить. Ясно, что в маленькой таблице такого нет. Что же нам делать? А вот что:

Во-первых, нам понадобятся следующие знания:

  1. Синус и косинус имеют период (градусов), то есть

    Тангенс (котангенс) имеют период (градусов)

    Любое целое число

  2. Синус и тангенс - функции нечетные, а косинус - четная:

Первое утверждение мы уже доказали с тобой, а справедливость второго установили совсем недавно.

Непосредственно правило приведения выглядит вот так:

  1. Если мы вычисляем значение тригонометрической функции от отрицательного угла - делаем его положительным при помощи группы формул (2). Например:
  2. Отбрасываем для синуса и косинуса его периоды: (по градусов), а для тангенса - (градусов). Например:
  3. Если оставшийся «уголок» меньше градусов, то задача решена: ищем его в «малой таблице».
  4. Иначе ищем, в какой четверти лежит наш угол: это будет 2, 3 или 4 четверть. Смотрим, какой знак имеет искомая функция в четверти. Запомнили этот знак!!!
  5. Представляем угол в одной из следующих форм:

    (если во второй четверти)
    (если во второй четверти)
    (если в третьей четверти)
    (если в третьей четверти)

    (если в четвертой четверти)

    так, чтобы оставшийся угол был больше нуля и меньше градусов. Например:

    В принципе не важно, в какой из двух альтернативных форм для каждой четверти ты представишь угол. На конечном результате это не скажется.

  6. Теперь смотрим, что у нас получилось: если ты выбрал запись через или градусов плюс минус что-либо, то знак функции меняться не будет: ты просто убираешь или и записываешь синус, косинус или тангенс оставшегося угла. Если же ты выбрал запись через или градусов, то синус меняем на косинус, косинус на синус, тангенс на котангенс, котангенс - на тангенс.
  7. Ставим перед получившимся выражением знак из пункта 4.

Давай продемонстрируем все вышесказанное на примерах:

  1. Вычислить
  2. Вычислить
  3. Най-ди-те зна-че-ние вы-ра-же-ния:

Начнем по порядку:

  1. Действуем согласно нашему алгоритму. Выделяем целое число кругов для:

    В общем, делаем вывод, что в угол помещается целиком 5 раз по, а сколько осталось? Осталось. Тогда

    Ну вот, лишнее мы отбросили. Теперь разбираемся со знаком. лежит в 4 четверти. Синус четвертой четверти имеет знак «минус», его я и не должен забыть поставить в ответе. Далее, представляем согласно одной из двух формул пункта 5 правил приведения. Я выберу:

    Теперь смотрим, что получилось: у нас случай с градусами, тогда отбрасываем и синус меняем на косинус. И ставим перед ним знак «минус»!

    градусов - угол в первой четверти. Мы знаем (ты мне обещал выучить малую таблицу!!) его значение:

    Тогда получим окончательный ответ:

    Ответ:

  2. все то же самое, но вместо градусов - радианы. Ничего страшного. Главное помнить, что

    Но можно и не заменять радианы на градусы. Это вопрос твоего вкуса. Я не буду ничего менять. Начну опять-таки с отбрасывания целых кругов:

    Отбрасываем - это два целых круга. Осталось вычислить. Данный угол находится в третьей четверти. Косинус третьей четверти отрицательный. Не забудем поставить знак «минус» в ответе. можно представить как. Снова вспоминаем правило: у нас случай «целого» числа (или), тогда функция не меняется:

    Тогда.
    Ответ: .

  3. . Нужно проделать все то же самое, но уже с двумя функциями. Я буду несколько более краток: и градусов - углы второй четверти. Косинус второй четверти имеет знак «минус», а синус - «плюс». можно представить как: , а как, тогда

    Оба случая - «половинки от целого ». Тогда синус меняется на косинус, а косинус - на синус. Причем перед косинусом стоит знак «минус»:

Ответ: .

Теперь потренируйся самостоятельно на следующих примерах:

А вот и решения:


  1. Вначале избавимся от минуса, вынеся его перед синусом (поскольку синус - функция нечетная!!!). Затем рассмотрим углы:

    Отбрасываем целое количество кругов - то есть три круга ().
    Остается вычислить: .
    Так же поступаем и со вторым углом:

    Удаляем целое число кругов - 3 круга () тогда:

    Теперь думаем: в какой четверти лежит оставшийся угол? Он «не дотягивает» до всего. Тогда какая это четверть? Четвертая. Каков знак косинуса четвертой четверти? Положительный. Теперь представим. Так как вычитаем мы из целого количества, то знак косинуса не меняем:

    Подставляем все полученные данные в формулу:

    Ответ: .


  2. Стандартно: убираем минус из косинуса, пользуясь тем, что.
    Осталось сосчитать косинус градусов. Уберем целые круги: . Тогда

    Тогда.
    Ответ: .

  3. Действуем, как в предыдущем примере.

    Поскольку ты помнишь, что период у тангенса - (или) в отличие от косинуса или синуса, у которых он в 2 раза больше, то удалим целое количество.

    градусов - угол во второй четверти. Тангенс второй четверти отрицательный, тогда не забудем в конце о «минусе»! можно записать как. Тангенс меняется на котангенс. Окончательно получим:

    Тогда.
    Ответ: .

Ну что же, осталось совсем немного!

Ось тангенсов и ось котангенсов

Последнее, на чем бы мне хотелось здесь остановиться - это на двух дополнительных осях. Как мы уже обсуждали, у нас есть две оси:

  1. Ось - ось косинусов
  2. Ось - ось синусов

На самом деле, координатные оси у нас закончились, не так ли? Но а как же быть с тангенсами и котангенсами?

Неужели, для них нет никакой графической интерпретации?

На самом деле, она есть, ее ты можешь увидеть на вот этой картинке:

В частности, по этим картинкам можно сказать вот что:

  1. Тангенс и котангенс имеют одинаковые знаки по четвертям
  2. Они положительны в 1 и 3 четверти
  3. Они отрицательны во 2 и 4 четверти
  4. Тангенс не определен в углах
  5. Котангенс не определен в углах

Для чего еще нужны эти картинки? Узнаешь на продвинутом уровне, где я расскажу, как с помощью тригонометрического круга можно упрощать решения тригонометрических уравнений!

ПРОДВИНУТЫЙ УРОВЕНЬ

В этой статье я опишу, как единичная окружность (тригонометрическая окружность) может пригодиться при решении тригонометрических уравнений.

Я могу выделить два случая, когда она может оказаться полезной:

  1. В ответе у нас не получается «красивый» угол, но тем не менее надо производить отбор корней
  2. В ответе получается уж слишком много серий корней

Никаких специфических знаний тебе не требуется, кроме знания темы:

Тему «тригонометрические уравнения» я старался писать, не прибегая к окружности. Многие бы меня за такой подход не похвалили.

Но мне милее формулы, уж что тут поделать. Однако в некоторых случаях формул оказывается мало. Написать эту статью меня мотивировал следующий пример:

Решите уравнение:

Ну что же. Решить само уравнение несложно.

Обратная замена:

Отсюда наше исходное уравнение равносильно аж четырем простейшим уравнениям! Неужели нам нужно будет записывать 4 серии корней:

В принципе, на этом можно было бы и остановиться. Но только не читателям данной статьи, претендующей на некую «усложненность»!

Вначале рассмотрим первую серию корней. Итак, берется единичная окружность, теперь давай нанесем эти корни на окружность (отдельно для и для):

Обрати внимание: какой угол получился между углами и? Это угол. Теперь проделаем то же самое и для серии: .

Между корнями уравнения снова получился угол в. А теперь совместим эти две картинки:

Что же мы видим? А то, все углы между нашими корнями равны. А что это значит?

Если мы стартуем от угла и будем брать углы, равные (для любого целого), то мы всегда попадем в одну из четырех точек на верхней окружности! Таким образом, 2 серии корней:

Можно объединить в одну:

Увы, для серий корней:

Данные рассуждения уже не будут справедливы. Сделай чертеж и пойми, почему это так. Однако, их можно объединить следующим образом:

Тогда исходное уравнение имеет корни:

Что является довольно кратким и лаконичным ответом. А о чем говорит краткость и лаконичность? Об уровне твоей математической грамоты.

Это был первый пример, в котором использование тригонометрической окружности дало полезные плоды.

Второй пример - уравнения, которые имеют «некрасивые корни».

Например:

  1. Решите уравнение.
  2. Найдите его корни, принадлежащие промежутку.

Первая часть не представляет из себя ничего сложного.

Поскольку ты уже знаком с темой , то я позволю себе быть кратким в моих выкладках.

тогда или

Так мы нашли корни нашего уравнения. Ничего сложного.

Сложнее решить вторую часть задания, не зная, чему в точности равен арккосинус от минус одной четверти (это не табличное значение).

Однако мы можем изобразить найденные серии корней на единичной окружности:

Что мы видим? Во-первых, рисунок дал нам понять, в каких пределах лежит арккосинус:

Эта визуальная интерпретация поможет нам найти корни, принадлежащие отрезку: .

Во-первых, в него попадает само число, затем (см. рис).

также принадлежит отрезку.

Таким образом, единичная окружность помогает определить, в какие пределы попадают «некрасивые» углы.

У тебя должен был остаться по крайней мере еще один вопрос: а как нам быть с тангенсами и котангенсами?

На самом деле, для них тоже есть свои оси, правда они имеют немного специфический вид:

В остальном же способ обращения с ними будет такой же, как с синусом и косинусом.

Пример

Дано уравнение.

  • Решите данное уравнение.
  • Укажите корни данного уравнения, принадлежащие промежутку.

Решение:

Рисуем единичную окружность и отмечаем на ней наши решения:

Из рисунка можно понять, что:

Или даже более того: так как, то

Тогда найдем корни, принадлежащие отрезку.

, (так как)

Предоставляю тебе самостоятельно убедиться, что других корней, принадлежащих промежутку, наше уравнение не имеет.

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Главный инструмент тригонометрии - это тригонометрическая окружность, она позволяет измерять углы, находить их синусы, косинусы и прочее.

Есть два способа измерять углы.

  1. Через градусы
  2. Через радианы

И наоборот: от радиан к градусам:

Чтобы найти синус и косинус угла нужно:

  1. Провести единичную окружность с центром, совпадающим с вершиной угла.
  2. Найти точку пересечения этого угла с окружностью.
  3. Её «иксовая» координата - это косинус искомого угла.
  4. Её «игрековая» координата - это синус искомого угла.

Формулы приведения

Это формулы, позволяющие упростить сложные выражения тригонометрической функции.

Эти формулы помогут тебе не запоминать вот такую таблицу:

Подведение итогов

    Ты научился делать универсальную шпору по тригонометрии.

    Ты научился решать задачи намного легче и быстрее и, самое главное, без ошибок.

    Ты понял, что тебе не надо зубрить никакие таблицы и вообще мало что нужно зубрить!

Теперь я хочу услышать тебя!

    Удалось ли тебе разобраться с этой сложной темой?

    Что тебе понравилось? Что не понравилось?

    Может быть ты нашел ошибку?

    Пиши в комментариях!

    И удачи на экзамене!

Видеоурок «Определение синуса и косинуса на единичной окружности» представляет наглядный материал для урока по соответствующей теме. В ходе урока рассматриваются понятия синуса и косинуса для чисел, соответствующих точкам единичной окружности, описывается множество примеров, формирующих умение решать задания, где используется данная интерпретация понятий. Удобное и понятное иллюстрирований решений, подробно описанный ход рассуждений помогают быстрее достичь целей обучения, повысить эффективность урока.

Видеоурок начинается с представления темы. В начале демонстрации дается определение синуса и косинуса числа. На экране демонстрируется единичная окружность с центром в начале координат, отмечаются точки пересечения единичной окружности с осями координат А, В, С, D. В рамке выделено определение, в котором указано, что если точке М, принадлежащей единичной окружности, соответствует некоторое число t, то абсцисса этой точки является косинусом числа t и обозначается cos t, ордината точки является синусом и обозначается sin t. Озвучивание определения сопровождается изображением на единичной окружности точки М, указанием ее абсциссы и ординаты. Представляется краткая запись с помощью обозначений, что для М(t)=M(x;y), х= cos t, у= sin t. Указываются ограничения, накладываемые на значение косинуса и синуса числа. Согласно рассмотренным данным, -1<=cos t<=1 и -1<= sin t<=1.

Также по рисунку легко отследить, как изменяется знак функции в зависимости от того, в какой четверти располагается точка. На экране составляется таблица, в которой для каждой функции указывается ее знак в зависимости от четверти. Знак cos t - плюс в первой и четвертой четвертях и минус во второй и третьей четвертях. Знак sin t - плюс в первой и второй четвертях, минус в третьей и четвертой четвертях.

Ученикам напоминается уравнение единичной окружности х 2 +у 2 =1. Отмечается, что после подстановки вместо координат соответствующих функций, получим cos 2 t+ sin 2 t=1 - основное тригонометрическое тождество. Пользуясь способом нахождения sin t и cos t с помощью единичной окружности, заполняется таблица основных значений синуса и косинуса для чисел от 0 до 2π с шагом π/4 и для чисел от π/6 до 11π/6 с шагом π/6. На экране демонстрируются эти таблицы. С помощью их и рисунка учитель может проверить, как усвоен материал и насколько ученикам понятно происхождение значений sin t и cos t.

Рассматривается пример, в котором вычисляется sin t и cos t для t=41π/4. Решение иллюстрируется рисунком, на котором изображена единичная окружность с центром в начале координат. На ней отмечается точка 41π/4. Замечено, что данная точка совпадает с положением точки π/4. Это доказывается с помощью представления данной дроби в виде смешанной 41π/4=π/4+2π·5. Пользуясь таблицей значений косинуса, получаем значения cos π/4=√2/2 и sinπ/4=√2/2. Из полученных сведений следует, что cos 41π/4=√2/2 и sin 41π/4=√2/2.

В втором примере необходимо вычислить sin t и cos t для t=-25π/3. На экране изображается единичная окружность с отмеченной на ней точкой t=-25π/3. Сначала для решения задания число -25π/3 представляется в виде смешанной дроби, чтобы обнаружить, какому табличному значению будет соответствовать его sin t и cos t. После преобразования получаем -25π/3=-π/3+2π·(-4). Очевидно, t=-25π/3 совпадет на окружности с точкой -π/3 или 5π/3. Из таблицы выбираем соответствующие значения синуса и косинуса cos 5π/3=1/2 и sin 5π/3=-√3/2. Эти значения будут верными и для рассматриваемого числа cos (-25π/3)=1/2 и sin (-25π/3)=-√3/2. Задача решена.

Аналогично решается и пример 3, в котором необходимо вычислить sin t и cos t для t=37π. Чтобы решить пример, число 37π раскладывается, вычленяя π и 2π. В таком представлении получается 37π=π+2π·18. На единичной окружности, которая изображена рядом с решением, отмечается данная точка на пересечении отрицательной части оси ординат и единичной окружности - точка π. Очевидно, что значения синуса и косинуса числа совпадут с табличными значениями π. Из таблицы находим значения sin π=-1 и cos π=0. Соответственно, эти же значения являются искомыми, то есть sin 37π=-1 и cos 37π=0.

В примере 4 требуется вычислить sin t и cos t при t=-12π. Представляем число в виде -12π=0+2π·(-6). Соответственно, точка -12π совпадает с точкой 0. Значения косинуса и синуса этой точки sin 0=1 и cos 0=0. Эти значения и являются искомыми sin (-12π)=1 и cos (-12π)=0.

В пятом примере нужно решить уравнение sin t=√3/2. В решении уравнения используется понятие синуса числа. Так как он представляет ординату точки М(t), то необходимо отыскать точку с ординатой √3/2. На рисунке, сопровождающем решение, видно, что ординате √3/2 соответствуют две точки - первая π/3 и вторая 2π/3. Учитывая периодичность функции, отмечаем, что t=π/3+2πk и t= 2π/3+2πk для целого k.

В примере 6 решается уравнение с косинусом - cos t=-1/2. В поиске решений уравнения находим на единичной окружности точки с абсциссой 2π/3. На экране демонстрируется рисунок, на котором отмечается абсцисса -1/2. Ей соответствуют две точки на окружности - 2π/3 и -2π/3. Учитывая периодичность функций, найденное решение записывается в виде t=2π/3+2πk и t=-2π/3+2πk, где k- целое число.

В примере 7 решается уравнение sin t-1=0. Чтобы найти решение, уравнение преобразуется к виду sin t=1. Синусу 1 соответствует число π/2. Учитывая периодичность функции, найденное решение записывается в виде t=π/2+2πk, где k - целое. Аналогично в примере 8 решается уравнение cos t+1=0. Преобразуем уравнение к виду cos t=-1. Точка, абсцисса которой равна -1, соответствует числу π. Эта точка отмечена на единичной окружности, изображенной рядом с текстовым решением. Соответственно, решением данного уравнения является число t=π+2πk, где k - целое число. Не более сложным является решение уравнения cos t+1=1 в примере 9. Преобразовав уравнение, получаем cos t=0. На единичной окружности, изображенной рядом с решением, отмечаем точки -π/2 и -3π/2, в которых косинус принимает значение 0. Очевидно, решением данного уравнение будет ряд значений t=π/2+πk, где k - целое число.

В примере 10 сравниваются значения sin 2 и cos 3. Чтобы решение было наглядным, демонстрируется рисунок, где отмечены точки 2 и 3. Зная, что π/2≈1,57, оцениваем удаленность точек от нее. На рисунке отмечается, что точка 2 удалена от π/2 на 0,43, в то время как 3 удалена на 1,43, поэтому точка 2 имеет большую абсциссу, чем точка 3. Это значит, что sin 2>cos 3.

Пример 11 описывает вычисление выражения sin 5π/4. Так как 5π/4 - это π/4+π, то, используя формулы приведения, выражение можно преобразовать в вид - sin π/4. Из таблицы выбираем его значение - sin π/4=-√2/2. Аналогично в примере 12 находится значение выражения cos7π/6. Преобразуя его к виду cos(π/6+π), получаем выражение - cos π/6. Табличное значение - cos π/6=-√3/2. Это значение и будет решением.

Далее предлагается запомнить важные равенства, которые помогают в решении задач - это sin(-t)= -sin t и cos (-t)=cos t. Фактически данное выражение отображает четность косинуса и нечетность синуса. На изображении единичной окружности рядом с равенствами можно увидеть, как на координатной плоскости работают данные равенства. Также представляются два равенства, отображающие периодичность функций, важные для решения задач sin(t+2πk)= sin t и cos (t+2πk)=cos t. Демонстрируются равенства, отображающие симметричное расположение точек на единичной окружности sin(t+π)= -sin t и cos (t+π)=-cos t. Рядом с равенствами строится изоражение, на котором отображается расположение этих точек на единичной окружности. И последние представленные равенства sin(t+π/2)= cos t и cos (t+π/2)=- sin t.

Видеоурок «Определение синуса и косинуса на единичной окружности» рекомендуется применять на традиционном школьном уроке математик для повышения его эффективности, обеспечения наглядности объяснения учителя. С этой же целью материал может использоваться в ходе дистанционного обучения. Пособие также может быть полезно для формирования соответствующих навыков решения заданий у учеников при самостоятельном освоении материала.

ТЕКСТОВАЯ РАСШИФРОВКА:

«Определение синуса и косинуса на единичной окружности».

Дадим определение синуса и косинуса числа

ОПРЕДЕЛЕНИЕ: если точка М числовой единичной окружности соответствует числу t(тэ), то абсциссу точки М называют косинусом числа t(тэ) и обозначают cost, а ординату точки М называют синусом числа t(тэ) и обозначают sint(рис).

Значит, если М(t) = М (x ,y)(эм от тэ равно эм с координатами икс и игрек), то x = cost, y= sint (икс равен косинус тэ, игрек равен синус тэ).Следовательно, -1≤ cost ≤ 1, -1≤ sint ≤1(косинус тэ больше либо равно минус один, но меньше либо равно один; синус тэ больше либо равно минус один, но меньше либо равно один).Зная, что каждая точка числовой окружности имеет в системе xOy свои координаты, можно составить таблицу значении синуса и косинуса по четвертям окружности, где значение косинуса положительно в первой и четвертой четвертях и, соответственно, отрицательно во второй и третьей четвертях.

Значение синуса положительно в первой и второй четвертях и, соответственно, отрицательно в третьей и четвертой четвертях. (показать на чертеже)

Так как уравнение числовой окружности имеет вид х 2 + у 2 = 1(икс квадрат плюс игрек квадрат равно одному), то получаем равенство:

(косинус квадрат тэ плюс синус квадрат тэ равно единице).

Опираясь на таблицы, которые мы составляли при определении координат точек числовой окружности, составим таблицы для координат точек числовой окружности для значений cost и sint .

Рассмотрим примеры.

ПРИМЕР 1. Вычислить cos t и sin t, если t = (тэ равно сорок один пи на четыре).

Решение. Числу t = соответствует та же точка числовой окружности, что и числу, так как = ∙π = (10 +) ∙π = + 2π ∙ 5(сорок один пи на четыре равно сумме пи на четыре и произведения два пи на пять). А для точки t = по таблице значение косинусов 1 имеем cos = и sin =. Следовательно,

ПРИМЕР 2. Вычислить cos t и sin t, если t = (тэ равно минус двадцать пять пи на три).

РЕШЕНИЕ: Числу t = соответствует та же точка числовой окружности, что и числу, так как = ∙ π = - (8 +)∙π = + 2π ∙ (- 4) (минус двадцать пять пи на три равно сумме минус пи на три и произведению двух пи на минус четыре). А числу соответствует на числовой окружности та же точка, что и числу. А для точки t = по таблице 2 имеем cos = и sin = .Следовательно, cos () = и sin () =.

ПРИМЕР 3. Вычислить cos t и sin t, если t = 37π; (тэ равно тридцать семь пи).

РЕШЕНИЕ: 37π = 36π + π = π + 2π ∙ 18.Значит, числу 37π соответствует та же точка числовой окружности, что и числу π. А для точки t = π по таблице 1 имеем cos π = -1, sin π=0.Значит, cos37π = -1, sin37π=0.

ПРИМЕР 4. Вычислить cos t и sin t, если t = -12π (равно минус двенадцать пи).

РЕШЕНИЕ: - 12π = 0 + 2π ∙ (- 6), то есть числу - 12π соответствует та же точка числовой окружности, что и числу ноль. А для точки t = 0 по таблице 1 имеем cos 0 = 1, sin 0 =0.Значит, cos(-12π) =1, sin(-12π) =0.

ПРИМЕР 5. Решить уравнение sin t = .

Решение. Учитывая, что sin t - это ордината точки М(t) (эм от тэ) числовой окружности, найдем на числовой окружности точки с ординатой и запишем каким числам t они соответствуют. Одна точка соответствует числу, а значит, и любому числу вида + 2πk. Вторая точка соответствует числу, а значит, и любому числу вида + 2πk. Ответ: t = + 2πk,где kϵZ (ка принадлежит зэт),t = + 2πk,где kϵZ (ка принадлежит зэт).

ПРИМЕР 6. Решить уравнение cos t = .

Решение. Учитывая, что cos t - это абсцисса точки М(t) (эм от тэ) числовой окружности, найдем на числовой окружности точки с абсциссой и запишем каким числам t они соответствуют. Одна точка соответствует числу,а значит и любому числу вида + 2πk. А вторая точка соответствует числу или, а значит, и любому числу вида + 2πk или + 2πk.

Ответ: t = + 2πk, t=+ 2πk (или ± + 2πk(плюс минус два пи на три плюс два пи ка) , где kϵZ (ка принадлежит зэт).

ПРИМЕР 7.Решить уравнение cos t = .

Решение. Аналогично предыдущему примеру, на числовой окружности нужно найти точки c абсциссой и записать, каким числам t они соответствуют.

По рисунку видно, что абсциссу имеют две точки Е и S, а каким числам они соответствуют мы пока не сможем сказать. К этому вопросу вернемся позже.

ПРИМЕР 8.Решить уравнение sin t = - 0,3.

Решение. На числовой окружности найдем точки с ординатой - 0,3 и запишем, каким числам t они соответствуют.

Ординату - 0,3 имеют две точки P и H, а каким числам они соответствуют мы пока не сможем сказать. К этому вопросу так же вернемся позже.

ПРИМЕР 9.Решить уравнение sin t -1 =0

Решение. Перенесем минус единицу в правую часть уравнения, получим синус тэ равно одному (sin t =1). На числовой окружности нам нужно найти точку, у которой ордината равна один. Эта точка соответствует числу, а значит всем числам вида + 2πk(пи на два плюс два пи ка).

Ответ: t = + 2πk, kϵZ(ка принадлежит зэт).

ПРИМЕР 10.Решить уравнение cos t + 1 = 0.

Перенесем единицу в правую часть уравнения, получим косинус тэ равно минус один(cos t = - 1).Абсциссу минус один имеет точка числовой окружности, которая соответствует числу π, а это значит, и все числам вида π+2πk. Ответ: t = π+ 2πk, kϵZ.

ПРИМЕР 11. Решить уравнение cos t + 1 = 1.

Перенесем единицу в правую часть уравнения, получим косинус тэ равно нулю(cos t = 0).Абсциссу ноль имеют точки В и D (рис 1), которые соответствуют числам, и т. д. Эти числа можно записать так + πk. Ответ: t = + πk, kϵZ.

ПРИМЕР 12. Какое из двух чисел больше, cos 2 или cos 3? (косинус двух или косинус трех)

Решение. Переформулируем вопрос по-другому: на числовой окружности отмечены точки 2 и 3. У какой из них абсцисса больше?

На числовой окружности отметим точки 2 и 3. Вспомним, что.Значит, точка 2 удалена от по окружности примерно на 0,43(нуль целых сорок три сотых) (2 -≈ 2 - 1,57 = 0,43), а точка 3 на 1,43 (одну целую сорок три сотых). Следовательно, точка 2 находится ближе к точке, чем точка 3, поэтому у нее абсцисса больше (мы учли, что абсциссы обе отрицательные).

Ответ: cos 2 > cos 3.

ПРИМЕР 13. Вычислить sin (синус пять пи на четыре)

Решение. sin(+ π) = - sin = (синус пять пи на четыре равно сумме пи на четыре и пи равно минус синус пи на четыре равно минус корень из двух на два).

ПРИМЕР 14. Вычислить cos (косинус семь пи на шесть).

cos(+ π) = - cos =. (представили семь пи на шесть как сумму пи на шесть и пи и применили третье равенство).

Для синуса и косинуса получим некоторые важные формулы.

1. Для любого значения t справедливы равенства

sin (-t) = -sin t

cos (-t) = cos t

Синус от минус тэ равно минус синус тэ

Косинус от мину тэ равно косинусу тэ.

По рисунку видно, что у точек Е и L, симметричных относительно оси абсцисс, одна и та же абсцисса, это значит

cos(-t) = cost, но равны по модулю и противоположные по знаку ординаты (это значит sin(- t) = - sint.

2. Для любого значения t справедливы равенства

sin (t+2πk) = sin t

cos (t+2πk) = cos t

Синус от тэ плюс два пи ка равно синусу тэ

Косинус от тэ плюс два пи ка равно косинусу тэ

Это верно, так как числам t и t+2πk соответствует одна и та же точка.

3. Для любого значения t справедливы равенства

sin (t+π) = -sin t

cos (t+π) = -cos t

Синус от тэ плюс пи равно минус синусу тэ

косинус от тэ плюс пи равно минус косинусу тэ

Пусть числу t соответствует точка E числовой окружности, тогда числу t+π соответствует точка L, которая симметрична точке E относительно начала координат. По рисунку видно, что у этих точек абсциссы и ординаты равны по модулю и противоположны по знаку. Это значит,

cos(t +π)= - cost;

sin(t +π)= - sint.

4. Для любого значения t справедливы равенства

sin (t+) = cos t

cos (t+) = -sin t

Синус тэ плюс пи на два равно косинусу тэ

Косинус тэ плюс пи на два равно минус синусу тэ.

>> Числовая окружность


Изучая курс алгебры 7-9-го классов, мы до сих пор имели дело с алгебраическими функциями, т.е. функциями, заданными аналитически выражениями, в записи которых использовались алгебраические операции над числами и переменной (сложение, вычитание, умножение, деление , возведение в степень, извлечение квадратного корня). Но математические модели реальных ситуаций часто бывают связаны с функциями другого типа, не алгебраическими. С первыми представителями класса неалгебраических функций - тригонометрическими функциями - мы познакомимся в этой главе. Более детально изучать тригонометрические функции и другие виды неалгебраических функций (показательные и логарифмические) вам предстоит в старших классах.
Для введения тригонометрических функций нам понадобится новая математическая модель - числовая окружность, с которой вы до сих пор не встречались, зато хорошо знакомы с числовой прямой. Напомним, что числовая прямая - это прямая, на которой заданы начальная точка О, масштаб (единичный отрезок) и положительное направление. Любое действительное число мы можем сопоставить с точкой на прямой и обратно.

Как по числу х найти на прямой соответствующую точку М? Числу 0 соответствует начальная точка О. Если х > 0, то, двигаясь по прямой из точки 0 в положительном направлении, нужно пройти п^ть длиной х; конец этого пути и будет искомой точкой М(х). Если х < 0, то, двигаясь по прямой из точки О в отрицательном направлении, нужно пройти путь 1*1; конец этого пути и будет искомой точкой М(х). Число х - координата точки М.

А как мы решали обратную задачу, т.е. как искали координату х заданной точки М на числовой прямой? Находили длину отрезка ОМ и брали ее со знаком «+» или * - » в зависимости от того, с какой стороны от точки О расположена на прямой точка М.

Но в реальной жизни двигаться приходится не только по прямой. Довольно часто рассматривается движение по окружности . Вот конкретный пример. Будем считать беговую дорожку стадиона окружностью (на самом деле это, конечно, не окружность, но вспомните, как обычно говорят спортивные комментаторы: «бегун пробежал круг», «до финиша осталось пробежать полкруга» и т.д.), ее длина равна 400 м. Отмечен старт - точка А (рис. 97). Бегун из точки А движется по окружности против часовой стрелки. Где он будет через 200 м? через 400 м? через 800 м? через 1500 м? А где провести финишную черту, если он бежит марафонскую дистанцию 42 км 195 м?

Через 200 м он будет находиться в точке С, диаметрально противоположной точке А (200 м - это длина половины беговой дорожки, т.е. длина половины окружности). Пробежав 400 м (т.е. «один круг», как говорят спортсмены), он вернется в точку А. Пробежав 800 м (т.е. «два круга»), он вновь окажется в точке А. А что такое 1500 м? Это «три круга» (1200 м) плюс еще 300 м, т.е. 3

Беговой дорожки - финиш этой дистанции будет в точке 2) (рис. 97).

Нам осталось разобраться с марафоном. Пробежав 105 кругов, спортсмен преодолеет путь 105-400 = 42 000 м, т.е. 42 км. До финиша остается 195 м, это на 5 м меньше половины длины окружности. Значит, финиш марафонской дистанции будет в точке М, расположенной около точки С (рис. 97).

Замечание. Вы, разумеется, понимаете условность последнего примера. Марафонскую дистанцию по стадиону никто не бегает, максимум составляет 10 000 м, т.е. 25 кругов.

По беговой дорожке стадиона можно пробежать или пройти путь любой длины. Значит, любому положительному числу соответствует какая-то точка - «финиш дистанции». Более того, можно и любому отрицательному числу поставить в соответствие точку окружности: просто надо заставить спортсмена бежать в противоположном направлении, т.е. стартовать из точки А не в направлении против,ав направлении по часовой стрелке. Тогда беговую дорожку стадиона можно рассматривать как числовую окружность.

В принципе, любую окружность можно рассматривать как числовую, но в математике условились использовать для этой цели единичную окружность - окружность с радиусом 1. Это будет наша «беговая дорожка». Длина Ь окружности с радиусом К вычисляется по формуле Длина половины окружности равна n, а длина четверти окружности - АВ, ВС, СБ, DА на рис. 98 - равна Условимся называть дугу АВ первой четвертью единичной окружности, дугу ВС - второй четвертью, дугу СB - третьей четвертью, дугу DА - четвертой четвертью (рис. 98). При этом обычно речь идет об Открытой дуге, т.е. о дуге без ее концов (что-то вроде интервала на числовой прямой).


Определение. Дана единичная окружность, на ней отмечена начальная точка А - правый конец горизонтального диаметра (рис. 98). Поставим в соответствие каждому действительному числу I точку окружности по следующему правилу:

1) если x > 0, то, двигаясь из точки А в направлении против часовой стрелки (положительное направление обхода окружности), опишем по окружности путь длиной и конечная точка М этого пути и будет искомой точкой: М = М(x);

2) если x < 0, то, двигаясь из точки А в направлении по часовой стрелке (отрицательное направление обхода окружности), опишем по окружности путь длиной и |; конечная точка М этого пути и будет искомой точкой: М = М(1);

0 поставим в соответствие точку А: А = А(0).

Единичную окружность с установленным соответствием (между действительными числами и точками окружности) будем называть числовой окружностью.
Пример 1. Найти на числовой окружности
Так как первые шесть из заданных семи чисел положительны, то для отыскания соответствующих им точек на окружности нужно пройти по окружности путь заданной длины, двигаясь из точки А в положительном направлении. Учтем при этом, что


Числу 2 соответствует точка А, так как, пройдя по окружности путь длиной 2, т.е. ровно одну окружность, мы снова попадем в начальную точку А Итак, А = А(2).
Что такое Значит, двигаясь из точки А в положительном направлении, нужно пройти целую окружность.

Замечание. Когда мы в 7-8-м классах работали с числовой прямой, то условились, ради краткости, не говорить «точка прямой, соответствующая числу х», а говорить «точка х». Точно такой же договоренности будем придерживаться и при работе с числовой окружностью: «точка f» - это значит, что речь идет о точке окружности, которая соответствует числу
Пример 2.
Разделив первую четверть АВ на три равные части точками К и Р, получим:

Пример 3. Найти на числовой окружности точки, соответствующие числам
Построения будем делать, пользуясь рис. 99. Отложив дугу АМ (ее длина равна -) от точки А пять раз в отрицательном направлении, получим точку!, - середину дуги ВС. Итак,

Замечание. Обратите внимание на некоторую вольность, которую мы позволяем себе в использовании математического языка. Ясно, что дуга АК и д л ина дуги АК - разные вещи (первое понятие - геометрическая фигура, а второе понятие - число). Но обозначается и то и другое одинаково: АК. Более того, если точки А и К соединить отрезком, то и полученный отрезок, и его длина обозначаются так же: АК. Обычно из контекста бывает ясно, какой смысл вкладывается в обозначение (дуга, длина дуги, отрезок или длина отрезка).

Поэтому нам очень пригодятся два макета числовой окружности.

ПЕРВЫЙ МАКЕТ
Каждая из четырех четвертей числовой окружности разделена на две равные части, и около каждой из имеющихся восьми точек записаны их «имена» (рис. 100).

ВТОРОЙ МАКЕТ Каждая из четырех четвертей числовой окружности разделена на три равные части, и около каждой из имеющихся двенадцати точек записаны их «имена» (рис. 101).


Учтите, что на обоих макетах мы могли бы заданным точкам присвоить и другие «имена».
Заметили ли вы, что во всех разобранных примерах длины дуг
выражались некоторыми долями числа п? Это неудивительно: ведь длина единичной окружности равна 2п, и если мы окружность или ее четверть делим на равные части, то получаются дуги, длины которых выражаются долями числа и. А как вы думаете, можно ли найти на единичной окружности такую точку Е, что длина дуги АЕ будет равна 1? Давайте прикинем:

Рассуждая аналогичным образом, делаем вывод, что на единичной окружности можно найти и точку Ег, для которой АЕ, = 1, и точку Е2, для которой АЕг = 2, и точку Е3, для которой АЕ3 = 3, и точку Е4, для которой АЕ4 = 4, и точку Еь, для которой АЕЪ = 5, и точку Е6, для которой АЕ6 = 6. На рис. 102 отмечены (приблизительно) соответствующие точки (причем для ориентировки каждая из четвертей единичной окружности разделена черточками на три равные части).


Пример 4. Найти на числовой окружности точку, соответствующую числу -7.

Нам нужно, отправляясь из точки А(0) и двигаясь в отрицательном направлении (в направлении по часовой стрелке), пройти по окружности путь длиной 7. Если пройти одну окружность, то получим (приближенно) 6,28, значит, нужно еще пройти (в том же направлении) путь длиной 0,72. Что же это за дуга? Немного меньше половины четверти окружности, т.е. ее длина меньше числа -.

Итак, начисловой окружности, как и начисловой прямой, каждому действительному числу соответствует одна точка (только, разумеется, на прямой ее найти легче, чем на окружности). Но для прямой верно и обратное: каждая точка соответствует единственному числу. Для числовой окружности такое утверждение неверно, выше мы неоднократно убеждались в этом. Для числовой окружности справедливо следующее утверждение.
Если точка М числовой окружности соответствует числу I, то она соответствует и числу вида I + 2як, где к - любое целое число (к е 2).

В самом деле, 2п - длина числовой (единичной) окружности, а целое число |й| можно рассматривать как количество полных обходов окружности в ту или другую сторону. Если, например, к = 3, то это значит, что мы делаем три обхода окружности в положительном направлении; если к = -7, то это значит, что мы делаем семь (| к | = | -71 = 7) обходов окружности в отрицательном направлении. Но если мы находимся в точке М(1), то, выполнив еще | к | полных обходов окружности, мы снова окажемся в точке М.

А.Г. Мордкович Алгебра 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если расположить единичную числовую окружность на координатной плоскости, то для ее точек можно найти координаты. Числовую окружность располагают так, чтобы ее центр совпал с точкой начала координат плоскости, т. е. точкой O (0; 0).

Обычно на единичной числовой окружности отмечают точки соответствующие от начала отсчета на окружности

  • четвертям - 0 или 2π, π/2, π, (2π)/3,
  • серединам четвертей - π/4, (3π)/4, (5π)/4, (7π)/4,
  • третям четвертей - π/6, π/3, (2π)/3, (5π)/6, (7π)/6, (4π)/3, (5π)/3, (11π)/6.

На координатной плоскости при указанном выше расположении на ней единичной окружности можно найти координаты, соответствующие этим точкам окружности.

Координаты концов четвертей найти очень легко. У точки 0 окружности координата x равна 1, а y равен 0. Можно обозначить так A (0) = A (1; 0).

Конец первой четверти будет располагаться на положительной полуоси ординат. Следовательно, B (π/2) = B (0; 1).

Конец второй четверти находится на отрицательной полуоси абсцисс: C (π) = C (-1; 0).

Конец третьей четверти: D ((2π)/3) = D (0; -1).

Но как найти координаты середин четвертей? Для этого строят прямоугольный треугольник. Его гипотенузой является отрезок от центра окружности (или начала координат) к точке середины четверти окружности. Это радиус окружности. Поскольку окружность единичная, то гипотенуза равна 1. Далее проводят перпендикуляр из точки окружности к любой оси. Пусть будет к оси x. Получается прямоугольный треугольник, длины катетов которого - это и есть координаты x и y точки окружности.

Четверть окружности составляет 90º. А половина четверти составляет 45º. Поскольку гипотенуза проведена к точке середины четверти, то угол между гипотенузой и катетом, выходящим из начала координат, равен 45º. Но сумма углов любого треугольника равна 180º. Следовательно, на угол между гипотенузой и другим катетом остается также 45º. Получается равнобедренный прямоугольный треугольник.

Из теоремы Пифагора получаем уравнение x 2 + y 2 = 1 2 . Поскольку x = y, а 1 2 = 1, то уравнение упрощается до x 2 + x 2 = 1. Решив его, получаем x = √½ = 1/√2 = √2/2.

Таким образом, координаты точки M 1 (π/4) = M 1 (√2/2; √2/2).

В координатах точек середин других четвертей будут меняться только знаки, а модули значений оставаться такими же, так как прямоугольный треугольник будет только переворачиваться. Получим:
M 2 ((3π)/4) = M 2 (-√2/2; √2/2)
M 3 ((5π)/4) = M 3 (-√2/2; -√2/2)
M 4 ((7π)/4) = M 4 (√2/2; -√2/2)

При определении координат третьих частей четвертей окружности также строят прямоугольный треугольник. Если брать точку π/6 и проводить перпендикуляр к оси x, то угол между гипотенузой и катетом, лежащим на оси x, составит 30º. Известно, что катет, лежащий против угла в 30º, равен половине гипотенузы. Значит, мы нашли координату y, она равна ½.

Зная длины гипотенузы и одного из катетов, по теореме Пифагора находим другой катет:
x 2 + (½) 2 = 1 2
x 2 = 1 - ¼ = ¾
x = √3/2

Таким образом T 1 (π/6) = T 1 (√3/2; ½).

Для точки второй трети первой четверти (π/3) перпендикуляр на ось лучше провести к оси y. Тогда угол при начале координат также будет 30º. Здесь уже координата x будет равна ½, а y соответственно √3/2: T 2 (π/3) = T 2 (½; √3/2).

Для других точек третей четвертей будут меняться знаки и порядок значений координат. Все точки, которые ближе расположены к оси x будут иметь по модулю значение координаты x, равное √3/2. Те точки, которые ближе к оси y, будут иметь по модулю значение y, равное √3/2.
T 3 ((2π)/3) = T 3 (-½; √3/2)
T 4 ((5π)/6) = T 4 (-√3/2; ½)
T 5 ((7π)/6) = T 5 (-√3/2; -½)
T 6 ((4π)/3) = T 6 (-½; -√3/2)
T 7 ((5π)/3) = T 7 (½; -√3/2)
T 8 ((11π)/6) = T 8 (√3/2; -½)