Как разложить функцию в ряд фурье. На каждый день

Функция , определённая при всех значениях x называется периодической , если существует такое число T (T≠ 0) , что при любом значении x выполняется равенство f(x + T) = f(x) . Число T в этом случае является периодом функции.

Свойства периодических функций :

1) Сумма, разность, произведение и частное периодических функций периода Т есть периодическая функция периода Т.

2) Если функция f(x) имеет период Т ,то функция f(ax) имеет период

В самом деле, для любого аргумента х :

(умножение аргумента на число означает сжатие или растяжение графика этой функции вдоль оси ОХ )

Например, функция имеет период , периодом функции является

3) Если f(x) периодическая функция периода Т , то равны любые два интеграла от этой функции, взятые по промежутку длины Т (при этом предполагается, что эти интегралы существуют).

Ряд Фурье для функции с периодом T= .

Тригонометрическим рядом называется ряд вида:

или, короче,

Где , , , , , … , , , … - действительные числа, называемые коэффициентами ряда.

Каждое слагаемое тригонометрического ряда является периодической функцией периода (т.к. - имеет любой

период, а период () равен , а значит, и ). Каждое слагаемое (), при n= 1,2,3… является аналитическим выражением простого гармонического колебания , где A - амплитуда,

Начальная фаза. Учитывая сказанное, получаем: если тригонометрический ряд сходится на отрезке длины периода , то он сходится на всей числовой оси и его сумма является периодической функцией периода .

Пусть тригонометрический ряд равномерно сходится на отрезке (следовательно, и на любом отрезке) и его сумма равна . Для определения коэффициентов этого ряда воспользуемся следующими равенствами:

А так же воспользуемся следующими свойствами.

1) Как известно, сумма равномерно сходящегося на некотором отрезке ряда, составленного из непрерывных функций, сама является непрерывной функцией на этом отрезке. Учитывая это, получим, что сумма равномерно сходящегося на отрезке тригонометрического ряда - непрерывная функция на всей числовой оси.

2) Равномерная сходимость ряда на отрезке не нарушится, если все члены ряда умножить на функцию , непрерывную на этом отрезке.

В частности, равномерная сходимость на отрезке данного тригонометрического ряда не нарушится, если все члены ряда умножить на или на .

По условию

В результате почленного интегрирования равномерно сходящегося ряда (4.2) и учитывая вышеприведенные равенства (4.1) (ортогональность тригонометрических функций), получим:

Следовательно, коэффициент

Умножая равенство (4.2) на , интегрируя это равенство в пределах от до и, учитывая вышеприведенные выражения (4.1), получим:


Следовательно, коэффициент

Аналогично, умножая равенство (4.2) на и интегрируя его в пределах от до , с учетом равенств (4.1) имеем:

Следовательно, коэффициент

Таким образом, получены следующие выражения для коэффициентов ряда Фурье:

Достаточные признаки разложимости функции в ряд Фурье. Напомним, что точку x o разрыва функции f(x) называют точкой разрыва первого рода, если существуют конечные пределы справа и слева функции f(x) в окрестности точки.

Предел справа,

Предел слева.

Теорема (Дирихле). Если функция f(x) имеет период и на отрезке непрерывна или имеет конечное число точек разрыва первого рода и, кроме того, отрезок можно разбить на конечное число отрезков так, что внутри каждого из них f(x) монотонна, то ряд Фурье для функции f(x) сходится при всех значениях x . Причём в точках непрерывности функции f(x) его сумма равна f(x) , а в точках разрыва функции f(x) его сумма равна , т.е. среднему арифметическому предельных значений слева и справа. Кроме того, ряд Фурье для функции f(x) сходится равномерно на любом отрезке, который вместе со своими концами принадлежит интервалу непрерывности функции f(x) .

Пример : разложить в ряд Фурье функцию

Удовлетворяющую условию .

Решение. Функция f(x) удовлетворяет условиям разложимости в ряд Фурье, поэтому можно записать:

В соответствии с формулами (4.3) , можно получить следующие значения коэффициентов ряда Фурье:

При вычислении коэффициентов ряда Фурье использовалась формула «интегрирования по частям».

И, следовательно,

Ряды Фурье для чётных и нечётных функций с периодом T = .

Используем следующее свойство интеграла по симметричному относительно x=0 промежутку:

Если f(x) - нечётная функция,

если f(x) - чётная функция.

Заметим, что произведение двух чётных или двух нечётных функций - чётная функция, а произведение чётной функции на нечётную функцию - нечётная функция. Пусть теперь f(x) - чётная периодическая функция с периодом , удовлетворяющая условиям разложимости в ряд Фурье. Тогда, используя вышеуказанное свойство интегралов, получим:

Таким образом, ряд Фурье для чётной функции содержит только чётные функции - косинусы и записывается так:

а коэффициенты bn = 0.

Рассуждая аналогично, получаем, что если f(x) - нечётная периодическая функция, удовлетворяющая условиям разложимости в ряд Фурье, то, следовательно, ряд Фурье для функции нечётной содержит только нечётные функции - синусы и записывается следующим образом:

при этом an =0 при n= 0, 1,…

Пример: разложить в ряд Фурье периодическую функцию

Так как заданная нечетная функция f(x) удовлетворяет условиям разложимости в ряд Фурье, то

или, что то же,

И ряд Фурье для данной функции f(x) можнозаписать так:

Ряды Фурье для функций любого периода T=2l .

Пусть f(x) - периодическая функция любого периода T=2l (l- полупериод), кусочно-гладкая или кусочно-монотонная на отрезке [-l, l ]. Полагая x=at, получим функцию f(at) аргумента t, период которой равен . Подберём а так, чтобы период функции f(at) был равен , т.е. T = 2l

Решение. Функция f(x) - нечётная, удовлетворяющая условиям разложимости в ряд Фурье, поэтому на основании формул (4.12) и (4.13) имеем:

(при вычислении интеграла использовали формулу «интегрирования по частям»).

следует:

1) нарисовать график f(x) на промежутке хотя бы длиной в два периода, чтобы показать, что данная функция периодическая;

2) нарисовать график S(x) аналогично, чтобы было видно в каких точках f(x)¹S(x);

3) вычислить коэффициенты Фурье и записать ряд Фурье.

Задачи

№1. Разложить в ряд Фурье

Решение. Заметим, что f(x) задана на промежутке длины T = 4 . Т.к. f(x) предполагается периодической, то именно это число и является ее периодом, тогда -l = 2.

1) График f(x) :

2) График S(x):

Стрелки в концах линий показывают, что функция не принимает в концах интервала значения, определяемого из выражения, заданного на интервале. При сравнении графиков f(x) и S(x) хорошо видно, что в точках разрыва f(x)¹S(x) .

3) Вычислим коэффициенты Фурье. Это можно сделать по формулам (3*): ; ; . Именно: ; итак,

Разложение f(x) в ряд Фурье имеет вид:

Замечания . 1) При интегрировании на [-1;3] этот отрезок был разбит на и , т.к. на этих отрезках f(x) задана разными значениями.

2) При вычислении коэффициентов использованы интегралы: и , где a = const .

№2 . Разложить в ряд Фурье

Решение. Здесь T = 2 , l = 1 .

Ряд Фурье имеет вид: , где ; ; , т.к. l = 1 .

1) График f(x) :

2) График S(x) :

№3. Разложить в ряд Фурье по синусам

Решение. Заметим, что в ряд Фурье по синусам раскладываются только нечетные функции. Т.к. f(x) определена только для x > 0, xÎ(0;2)È(2;3) , то это означает, что на симметричный промежуток (-3;-2)È(-2;0) f(x) нужно продолжить так, чтобы выполнялось равенство f(-x) = -f(x) . Поэтому длина промежутка, на котором f(x) задана как нечетная функция, равна 6. Значит T = 6, l = 3. Ряд Фурье для f(x) имеет вид: , где , n = 1, 2, 3, (по формулам (5")).

1) График f(x) .

Чтобы нарисовать график f(x) как нечетной функции, нарисуем сначала график на (0;2)È(2;3) , а затем воспользуемся тем, что график нечетной функции симметричен относительно начала координат. Из этих соображений получаем график f(x) на (-3;-2)È(-2;0) . Затем продолжаем f(x) T = 6 .

2) График S(x) .

График S(x) отличается от графика f(x) в точках разрыва функции f(x) . Например, в т. x = 2 f(x) не определена, а S(x) имеет при x = 2 значение, равное полусумме односторонних пределов функции f(x) , именно: , где , .

Итак, , тогда разложение f(x) в ряд Фурье имеет вид: .

№4 . Разложить в ряд Фурье по косинусам .

Решение . Заметим, что в ряд Фурье по косинусам раскладываются только четные функции. Т.к. f(x) задана только для x>0, xÎ(0;2)È(2;3], то это означает, что на симметричный промежуток [-3;-2)È(-2;0) f(x) нужно продолжить так, чтобы выполнялось равенство: f(-x) = f(x). Поэтому длина промежутка, на котором f(x) задана как четная функция, равна 6, тогда T = 6, l = 3. Ряд Фурье в этом случае имеет вид:


где ; ; n = 1,2,... (по формулам (4")).

1) График f(x) .

Чтобы нарисовать график f(x) как четной функции, нарисуем сначала график f(x) на (0;2)È(2;3] , а затем воспользуемся тем, что график четной функции симметричен относительно оси ординат. Из этих соображений получаем график f(x) на [-3;-2)È(-2;0) . Затем продолжаем f(x) на всю числовую прямую как периодическую функцию с периодом T = 6 .

Здесь график f(x) нарисован на двух полных периодах функции.

2) График S(x).

График S(x) отличается от графика f(x) в точках разрыва функции f(x) . Например, в т. x = 0 f(x) не определена, а S(x) имеет значение: , поэтому график S(x) не прерывается в т. x = 0 , в отличие от графика f(x) .

Разложение f(x) в ряд Фурье по косинусам имеет вид: .

№5. Разложить в ряд Фурье f(x) = |x|, xÎ(-2;2). .

Решение. По условию, f(x) является четной функцией на (-2;2) ; т.е. ее ряд Фурье содержит только косинусы, при этом T = 4, l = 2, ,

где ; ; n = 1, 2,

1) График f(x) :

2) График S(x) :

3) , т.к. |x| = x для x > 0. ; .

Тогда разложение f(x) в ряд Фурье имеет вид: . Заметим, что при интегрировании выражений или применяется формула интегрирования по частям: , где u = x; dv = cos(ax)dx или dv = sin(ax)dx.

№6. Разложить функцию в ряд Фурье: а) в интервале (-?, ?); б) в интервале (0, 2?); в) в интервале (0, ?) в ряд синусов.

Решение. а) График функции с 2? - периодическим продолжением имеет вид

Функция удовлетворяет условиям теоремы Дирихле и потому ее можно разложить в ряд Фурье.

Вычислим коэффициенты Фурье. Так как функция четная, то bn = 0 (n = 0, 1, 2,…) и (n = 0, 1, 2,…).

Для вычисления этого интеграла применяют формулу интегрирования по частям в определенном интеграле. Получаем

Ряд Фурье данной функции имеет вид . В силу признака Дирихле данный ряд представляет функцию х2 в интервале (-?,?).

б) Интервал (0, 2?) не симметричен относительно начала координат, а длина его 2l = 2?. Вычисляем коэффициенты Фурье по формулам:

Поэтому ряд Фурье имеет вид . В силу теоремы Дирихле ряд сходится к порождающей функции в точках х?(0,2?), а в точках 0 и 2? к значению. График суммы ряда имеет вид

в) Функция, разлагаемая в ряд по синусам, должна быть нечетной. Следовательно, доопределим заданную функцию х2 в (-π,π) нечетным образом, т.е. рассматриваем функцию . Для этой функции f(x) имеем аn = 0 (n = 0, 1, 2,…) и

Искомое разложение имеет вид .

График суммы ряда имеет вид

Отметим, что в точках х = (-π,π) ряд Фурье сходится к нулю.

№7 Разложить в ряд Фурье функцию, заданную графически:

Решение. Получим явное выражение для f(x). График функции - прямая линия, используем уравнение прямой в виде . Как видно из чертежа, , т.е. f(x) = x - 1 (-1 < x < 1) и период Т = 2.

Эта функция удовлетворяет условиям признака Дирихле, поэтому она разлагается в ряд Фурье. Вычислим коэффициенты Фурье (l = 1):

; (n = 1, 2,…);

Ряд Фурье для функции f(x) имеет вид

Он представляет функцию f(x) при -1 < x < 1, а в точках х0 = -1 и х0 = 1 ряд сходится к -1.

№8. Разложить функцию в тригонометрический ряд Фурье на отрезке и указать функцию, к которой сходится полученный ряд.

Решение. Нарисовать график функции, продолжив ее периодически с периодом или на всю ось. Продолженная функция имеет период .

Проверить условия достаточных признаков сходимости ряда Фурье (Дини-Липшица, Жордана, Дирихле).

Функция кусочно-монотонна на отрезке : она возрастает на и на . В точках функция имеет разрывы первого рода.

Выяснить четность или нечетность функции: Функция не является ни четной, ни нечетной.

а) если функция задана на

б) если функция задана на

Составить ряд Фурье функции : .

Указать функцию, к которой будет сходиться этот ряд, пользуясь поточечными признаками сходимости: Согласно признаку Дирихле ряд Фурье функции сходится к сумме:

№9. Разложить функцию , в ряд Фурье по синусам на и с помощью этого разложения найти сумму числового ряда .

Решение. Продолжить функцию четным (нечетным) образом на (-p ,0) или (-l ,0), а затем периодически с периодом 2p или 2l продолжить функцию на всю ось.

Продолжим функцию нечетным образом на , а затем периодически, с периодом , продолжим ее на всю ось.

Нарисовать график периодического продолжения. Мы получим функцию вида:

Проверить условия достаточных признаков сходимости ряда Фурье (Дини-Липица, Жордана, Дирихле).

Функция кусочно-постоянна в промежутке : она равна -1 на и 1 на . В точках функция имеет разрывы первого рода.

Вычислить коэффициенты Фурье:

Ее коэффициенты Фурье вычисляются по формулам:

Составить ряд Фурье функции . .

Указать функцию, к которой будет сходиться этот ряд, пользуясь поточечными признаками сходимости.

Согласно признаку Дирихле ряд Фурье функции сходится к сумме:

Следовательно, при

Подставив значения , указать сумму заданного числового ряда.

Полагая в полученном разложении , найдем ,

откуда, так как , .

№10. Написать равенство Парсеваля для функции , и, исходя из этого равенства, найти сумму числового ряда .

Решение. Установить, является ли данная функция функцией с интегрируемым квадратом на .

Функция непрерывна, а, следовательно, интегрируема на . По той же причине ее квадрат интегрируем на .

Вычислить коэффициенты Фурье по формулам:

Так как нечетная функция, то ее коэффициенты Фурье вычисляются по формулам:

Вычислить интеграл .

Написать формулу Парсеваля:

Таким образом, формула Парсеваля имеет вид

Произведя, если требуется, арифметические действия в правой и левой частях, получить сумму данного числового ряда.

Разделив обе части полученного равенства на 144, найдем: .

№11. Найти интеграл Фурье функции

и построить его график.

Решение. Построить график функции .

Проверить выполнение условий достаточных признаков сходимости интеграла Фурье (Дини, Дирихле-Жордана или следствий из них).

Функция абсолютно интегрируема в промежутке, непрерывна при и , а в точке имеет разрыв первого рода. Далее, при и функция имеет конечную производную, а в нуле существуют конечные правая и левая производные. Выяснить четность или нечетность функции. Функция не является ни четной, ни нечетной. ; .

Итак, , или ,

Одним из видов функциональных рядов является тригонометрический ряд

Ставится задача подобрать коэффициенты ряда так, чтобы он сходился к заданной в интервале [-π, π] функции; иначе говоря, требуется разложить данную функцию в тригонометрический ряд. Достаточное условие разрешимости этой задачи состоит в том, чтобы функция была в интервале [-π, π] кусочно-непрерывна и кусочно-дифференцируема, т. е. чтобы интервал [-π, π] мог быть разбит на конечное число частичных интервалов, в каждом из которых данная функция непрерывна и имеет производную (на концах частичных интервалов функция должна иметь конечные односторонние пределы и односторонние производные, при вычислении которых в качестве значения функции в конце частичного интервала берется ее односторонний предел). Условие кусочной дифференцируемости может быть заменено условием кусочной монотонности функции, т. е. требованием, чтобы в каждом из частичных интервалов функция была монотонна. Достаточным условием разложимости функции в интервале [-π, π] в тригонометрический ряд является также требование, чтобы в этом интервале функция имела ограниченное изменение. По определению функции f(x) имеет в интервале ограниченное изменение, если при любом разбиении этого интервала на конечное число интервалов

величина

ограничена сверху одним и тем же числом.

Именно с такими функциями приходится иметь дело при решении практических задач.

При выполнении любого из трех указанных достаточных условий функция f(x) представляется в интервале [-π, π] тригонометрическим рядом, у которого коэффициенты определяются по формулам

При таких коэффициентах тригонометрический ряд называется рядом Фурье . Этот ряд сходится к f(x) в каждой точке ее непрерывности; в точках разрыва он сходится к среднему арифметическому левого и правого предельных значений, т. е. k , если х есть точка разрыва (рис. 1); на границах отрезка ряд сходится к .

Рисунок 1.

Функция, выражаемая рядом Фурье, есть функция периодическая, а потому ряд, составленный для функции, заданной на отрезке [-π, π], сходится вне этого отрезка к периодическому продолжению этой функции (рис. 2).

Рисунок 2.

Если рядом Фурье представляется функция f(x), заданная в произвольном интервале [α, α+2π] длиной 2π, то коэффициенты ряда а 0 , a k , b k (коэффициенты Фурье) можно определить по указанным формулам, в которых пределы интегрирования заменены на α и α+2π. Вообще, поскольку в формулах для а 0 , a k , b к стоят функции с периодом 2π, интегрирование можно проводить по любому интервалу с длиной 2π.

Ряд Фурье может быть использован для приближенного представления функции, а именно: функция f(x) заменяется приближенно равной ей суммой s n (x) первых нескольких членов ряда Фурье:

Выражение s n (x), где а 0 , a k , b k являются коэффициентами Фурье функции f(x), по сравнению с другими выражениями такого же вида с тем же значением n, но с другими коэффициентами, приводит к минимальному среднему квадратичному отклонению s n (x) от f(х), которое определяется как

В зависимости от рода симметрии функции возможны некоторые упрощения. Если функция четная, т. е. f(-x)=f(x), то

и функция разлагается в ряд по косинусам. Если функция нечетная, т. е. f(-х)=-f(x), то

и функция разлагается в ряд по синусам. Если функция удовлетворяет условию f(x+π)=-f(x), т. е. кривая, относящаяся к половине отрезка длиной 2π, является зеркальным отражением другой половины кривой, то

Функция может быть задана не только на отрезке длиной 2π, но также на отрезке любой длины 2l. Если она на этом отрезке удовлетворяет приведенным выше условиям, то она разложима в ряд Фурье следующего вида:

причем коэффициенты ряда вычисляются по формулам

В табл. 1 даны разложения некоторых функций.

Таблица 1.

Тригонометрический ряд можно записать и в таком виде:

Ряд Фурье функции f(x) сходится тем скорее, чем более гладкой является функция. Если функция f(x) и ее производные f"(x), f"(x), ..., f k -1 (x) всюду непрерывны, а f (k) (x) допускает лишь точки разрыва 1-го рода в конечном числе, то коэффициенты Фурье а n , b n функции f(х) будут

Символом обозначается такая величина, что

Разложение в тригонометрический ряд называют гармоническим анализом, а тригонометрические функции, входящие в этот ряд, - гармониками. Вычисление по составляющим гармоникам называется гармоническим синтезом.

При расчетах конструкций часто приходится разлагать в ряд Фурье различные функции, заданные графиками, и прежде всего изображающие нагрузку. В табл. 2 и 3 даны разложения для некоторых функций, характерных для нагрузок, в том числе и ряды, соответствующие сосредоточенным силам.

Таблица 2.
График функций
Ряд Фурье
n
Рядом Фурье функции f(x) на интервале (-π ; π) называется тригонометрический ряд вида:
, где

Рядом Фурье функции f(x) на интервале (-l;l) называется тригонометрический ряд вида:
, где

Назначение . Онлайн калькулятор предназначен для разложение функции f(x) в Ряд Фурье.

Для функций по модулю (например, |x|), используйте разложение по косинусам .

Правила ввода функций :

Для функций по модулю используйте разложение по косинусам. Например, для |x| необходимо ввести функцию без модуля, т.е. x .

Ряд Фурье кусочно-непрерывной, кусочно-монотонной и ограниченной на интервале (-l ;l ) функции сходится на всей числовой оси.

Сумма ряда Фурье S(x) :

  • является периодической функцией с периодом 2l . Функция u(x) называется периодической с периодом T (или T-периодической), если для всех x области R, u(x+T)=u(x).
  • на интервале (-l ;l ) совпадает с функцией f (x ), за исключением точек разрыва
  • в точках разрыва (первого рода, т.к. функция ограничена) функции f (x ) и на концах интервала принимает средние значения:
.
Говорят, что функция раскладывается в ряд Фурье на интервале (-l ;l ): .

Если f (x ) – четная функция, то в ее разложении участвуют только четные функции, то есть b n =0.
Если f (x ) – нечетная функция, то в ее разложении участвуют только нечетные функции, то есть а n =0

Рядом Фурье функции f (x ) на интервале (0;l ) по косинусам кратных дуг называется ряд:
, где
.
Рядом Фурье функции f (x ) на интервале (0;l ) по синусам кратных дуг называется ряд:
, где .
Сумма ряда Фурье по косинусам кратных дуг является четной периодической функцией с периодом 2l , совпадающей с f (x ) на интервале (0;l ) в точках непрерывности.
Сумма ряда Фурье по синусам кратных дуг является нечетной периодической функцией с периодом 2l , совпадающей с f (x ) на интервале (0;l ) в точках непрерывности.
Ряд Фурье для данной функции на данном интервале обладает свойством единственности, то есть если разложение получено каким-либо иным способом, чем использование формул, например, при помощи подбора коэффициентов, то эти коэффициенты совпадают с вычисленными по формулам.

Пример №1 . Разложить функцию f(x)=1:
а) в полный ряд Фурье на интервале (-π ;π);
б) в ряд по синусам кратных дуг на интервале (0;π); построить график полученного ряда Фурье
Решение :
а) Разложение в ряд Фурье на интервале(-π;π) имеет вид:
,
причем все коэффициенты b n =0, т.к. данная функция – четная; таким образом,

Очевидно, равенство будет выполнено, если принять
а 0 =2, а 1 =а 2 =а 3 =…=0
В силу свойства единственности это и есть искомые коэффициенты. Таким образом, искомое разложение: или просто 1=1.
В таком случае, когда ряд тождественно совпадает со своей функцией, график ряда Фурье совпадает с графиком функции на всей числовой прямой.
б) Разложение на интервале (0;π) по синусам кратных дуг имеет вид:
Подобрать коэффициенты так, чтобы равенство тождественно выполнялось, очевидно, невозможно. Воспользуемся формулой для вычисления коэффициентов:


Таким образом, для четных n (n =2k ) имеем b n =0, для нечетных (n =2k -1) -
Окончательно, .
Построим график полученного ряда Фурье, воспользовавшись его свойствами (см. выше).
Прежде всего, строим график данной функции на заданном интервале. Далее, воспользовавшись нечетностью суммы ряда, продолжаем график симметрично началу координат:

Продолжаем периодическим образом на всей числовой оси:


И наконец, в точках разрыва заполняем средние (между правым и левым пределом) значения:

Пример №2 . Разложить функцию на интервале (0;6) по синусам кратных дуг.
Решение : Искомое разложение имеет вид:

Поскольку и левая, и правая части равенства содержат только функции sin от различных аргументов, следует проверить, совпадают ли при каких-либо значениях n (натуральных!) аргументы синусов в левой и правой частях равенства:
или , откуда n =18. Значит, такое слагаемое содержится в правой части и коэффициент при нем должен совпадать с коэффициентом в левой части: b 18 =1;
или , откуда n =4. Значит, b 4 =-5.
Таким образом, при помощи подбора коэффициентов удалось получить искомое разложение.

Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем


Разложение в ряд Фурье четных и нечетных функций Функция f(x), определенная на отрезке \-1, где I > 0, называется четной, если График четной функции симметричен относительно оси ординат. Функция f(x), определенная на отрезке J), где I > 0, называется нечетной, если График нечетной функции симметричен относительно начала координат. Пример. а) Функция является четной на отрезке |-jt, jt), так как для всех х е б) Функция является нечетной, так как Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем в) Функция f(x)=x2-x, где не принадлежит ни к четным, ни к нечетным функциям, так как Пусть функция f(x), удовлетворяющая условиям теоремы 1, является четной на отрезке х|. Тогда для всех т.е. /(ж) cos nx является четной функцией, a f(x)sinnx - нечетной. Поэтому коэффициенты Фурье четной функции /(ж) будут равны Следовательно, ряд Фурье четной функции имеет вид 00 Если f(x) - нечетная функция на отрезке [-тг, ir|, то произведение f(x)cosnx будет нечетной функцией, а произведение f(x) sin пх - четной функцией. Поэтому будем иметь Таким образом, ряд Фурье нечетной функции имеет вид Пример 1. Разложить в ряд Фурье на отрезке -х ^ х ^ п функцию 4 Так как эта функция четная и удовлетворяет условиям теоремы 1, то ее ряд Фурье имеет вид Находим коэффициенты Фурье. Имеем Применяя дважды интегрирование по частям, получим, что Значит, ряд Фурье данной функции выглядит так: или, в развернутом виде, Это равенство справедливо для любого х € , так как в точках х = ±ir сумма ряда совпадает со значениями функции f(x) = х2, поскольку Графики функции f(x) = х и суммы полученного ряда даны на рис. Замечание. Этот ряд Фурье позволяет найти сумму одного из сходящихся числовых рядов, а именно, при х = 0 получаем, что Пример 2. Разложить в ряд Фурье на интервале функцию /(х) = х. Функция /(х) удовлетворяет условиям теоремы 1, следовательно ее можно разложить в ряд Фурье, который в силу нечетности этой функции будет иметь вид Интегрируя по частям, находим коэффициенты Фурье Следовательно, ряд Фурье данной функции имеет вид Это равенство имеет место для всех х В точках х - ±тг сумма ряда Фурье не совпадает со значениями функции /(х) = х, так как она равна Вне отрезка [-*, я-] сумма ряда является периодическим продолжением функции /(х) = х; ее график изображен на рис. 6. § 6. Разложение функции, заданной на отрезке, в ряд по синусам или по косинусам Пусть ограниченная кусочно-монотонная функция / задана на отрезке . Значения этой функции на отрезке 0| можно доопределить различным образом. Например, можно определить функцию / на отрезке тс] так, чтобы /. В этом случае говорят, что) «продолжена на отрезок 0] четным образом»; ее ряд Фурье будет содержать только косинусы. Если же функцию /(ж) определить на отрезке [-л-, тс] так, чтобы /(, то получится нечетная функция, и тогда говорят, что / «продолжена на отрезок [-*, 0] нечетным образом»; в этом случае се ряд Фурье будет содержать только синусы. Итак, каждую ограниченную кусочно-монотонную функцию /(ж), определенную на отрезке , можно разложить в ряд Фурье и по синусам, и по косинусам. Пример 1. Функцию разложить в ряд Фурье: а) по косинусам; б) по синусам. М Данная функция при ее четном и нечетном продолжениях в отрезок |-х,0) будет ограниченной и кусочно-монотонной. а) Продолжим /(z) в отрезок 0) а) Продолжим j\x) в отрезок (-тг,0| четным образом (рис. 7), тогда ее ряд Фурье i будет иметь вид П=1 где коэффициенты Фурье равны соответственно для Следовательно, б) Продолжим /(z) в отрезок [-x,0] нечетным образом (рис. 8). Тогда ее ряд Фурье §7. Ряд Фурье для функции с произвольным периодом Пусть функция fix) является периодической с периодом 21,1 ^ 0. Для разложения ее в ряд Фурье на отрезке где I > 0, сделаем замену переменной, положив х = jt. Тогда функция F(t) = / ^tj будет периодической функцией аргумента t с периодом и ее можно разложить на отрезке в ряд Фурье Возвращаясь к переменной ж, т. е. положив, получим Все теоремы, справедливые для рядов Фурье периодических функций с периодом 2тг, остаются в силе и для периодических функций с произвольным периодом 21. В частности, сохраняет свою силу и достаточный признак разложимости функции в ряд Фурье. Пример 1. Разложить в ряд Фурье периодическую функцию с периодом 21, заданную на отрезке [-/,/] формулой (рис.9). Так как данная функция четная, то ее ряд Фурье имеет вид Подставляя в ряд Фурье найденные значения коэффициентов Фурье, получим Отметим одно важное свойство периодических функций. Теорема 5. Если функция имеет период Т и интегрируема, то для любого числа а выполняется равенство m. е. интеграл no отрезку, длина которого равна периоду Т, имеет одно и то же значение независимо от положения этого отрезка на числовой оси. В самом деле, Делаем замену переменной во втором интеграле, полагая. Это дает и следовательно, Геометрически это свойство означает, что в случае площади заштрихованных на рис. 10 областей равны между собой. В частности, для функции f(x) с периодом получим при Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем Пример 2. Функция x является периодической с периодом В силу нечетности данной функции без вычисления интегралов можно утверждать, что при любом Доказанное свойство, в частности, показывает, что коэффициенты Фурье периодической функции f(x) с периодом 21 можно вычислять по формулам где а - произвольное действительное число (отметим, что функции cos - и sin имеют период 2/). Пример 3. Разложить в ряд Фурье заданную на интервале функцию с периодом 2х (рис. 11). 4 Найдем коэффициенты Фурье данной функции. Положив в формулах найдем, что для Следовательно, ряд Фурье будет выглядеть так: В точке х = jt (точка разрыва первого рода) имеем §8. Комплексная запись ряда Фурье В этом параграфе используются некоторые элементы комплексного анализа (см. главу XXX, где все, производимые здесь действия с комплексными выражениями, строго обоснованы). Пусть функция f(x) удовлетворяет достаточным условиям разложимости в ряд Фурье. Тогда на отрезке ж] ее можно представить рядом вида Используя формулы Эйлера Подставляя эти выражения в ряд (1) вместо cos пх и sin пху будем иметь Введем следующие обозначения Тогда ряд (2) примет вид Таким образом, ряд Фурье (1) представлен в комплексной форме (3). Найдем выражения коэффициентов через интегралы. Имеем Аналогично находим Окончательно формулы для с„, с_п и со можно записать так: . . Коэффициенты с„ называются комплексными коэффициентами Фурье функции Для периодической функции с периодом) комплексная форма ряда Фурье примет вид где коэффициенты Сп вычисляются по формулам Сходимость рядов (3) и (4) понимается так: ряды (3) и (4) называются сходящимися для данного значения ж, если существуют пределы Пример. Разложить в комплексный ряд Фурье функцию периода Данная функция удовлетворяет достаточным условиям разложимости в ряд Фурье. Пусть Найдем комплексные коэффициенты Фурье этой функции. Имеем для нечетных для четных n, или,короче. Подставляя значения), окончательно получим Заметим, что этот ряд можно записать и так: Ряды Фурье по общим ортогональным системам функций 9.1. Ортогональные системы функций Обозначим через множество всех (действительных) функций, определенных и интегрируемых на отрезке [а, 6] с квадратом, т. е. таких, для которых существует интеграл В частности, все функции f(x), непрерывные на отрезке [а, 6], принадлежат 6], и значения их интегралов Лебега совпадают со значениями интегралов Римана. Определение. Система функций, где, называется ортогональной на отрезке [а, Ь\, если Условие (1) предполагает, в частности, что ни одна из функций не равна тождественно нулю. Интеграл понимается в смысле Лебега. и назовем величину нормой функции Если в ортогональной системе для всякого п имеем, то система функций называется ортонормированной. Если система {у>„(ж)} ортогональна, то система Пример 1. Тригонометрическая система ортогональна на отрезке. Система функций является ортонормированной системой функций на, Пример 2. Косинус-система и синус-система ортонормирована. Введем обозначение являются ортогональными на отрезке (0, f|, но не ортонормированными (при I Ф- 2). так как их нормы COS Пример 3. Многочлены, определяемые равенством, называются многочленами (полиномами) Лежандра. При п = 0 имеем Можно доказать, что функции образуют ортонормированную систему функций на отрезке. Покажем, например, ортогональность полиномов Лежандра. Пусть т > п. В этом случае, интегрируя п раз по частям, находим поскольку для функции t/m = (z2 - I)m все производные до порядка m - I включительно обращаются в нуль на концах отрезка [-1,1). Определение. Система функций {pn(x)} называется ортогональной на интервале (а, Ь) свесом р(х), если: 1) для всех п = 1,2,... существуют интегралы Здесь предполагается, что весовая функция р(х) определена и положительна всюду на интервале (а, Ь) за возможным исключением конечного числа точек, где р(х) может обращаться в нуль. Выполнив дифференцирование в формуле (3), находим. Можно показать, что многочлены Чебышева-Эрмита ортогональны на интервале Пример 4. Система функций Бесселя {jL(pix)^ ортогональна на интервале нули функции Бесселя Пример 5. Рассмотрим многочлены Чебышева-Эрмита, которые могут быть определены при помощи равенства. Ряд Фурье по ортогональной системе Пусть ортогональная система функций в интервале (a, 6) и пусть ряд (cj = const) сходится на этом интервале к функции f(x): Умножая обе части последнего равенства на - фиксировано) и интегрируя по ж от а до 6, в силу ортогональности системы получим, что Эта операция имеет, вообще говоря, чисто формальный характер. Тем не менее, в некоторых случаях, например, когда ряд (4) сходится равномерно, все функции непрерывны и интервал (a, 6) конечен, эта операция законна. Но для нас сейчас важна именно формальная трактовка. Итак, пусть задана функция. Образуем числа с* по формуле (5) и напишем Ряд, стоящий в правой части, называется рядом Фурье функции f(x) относительно системы {^п(я)}- Числа Сп называются коэффициентами Фурье функции f(x) по этой системе. Знак ~ в формуле (6) означает лишь, что числа Сп связаны с функцией /(ж) формулой (5) (при этом не предполагается, что ряд справа вообще сходится, а тем более сходится к функции f(x)). Поэтому естественно возникает вопрос: каковы свойства этого ряда? В каком смысле он «представляет» функцию f(x)? 9.3. Сходимость в среднем Определение. Последовательность, сходится к элементу ] в среднем, если норма в пространстве Теорема 6. Если последовательность } сходится равномерно, то она сходится и в среднем. М Пусть последовательность {)} сходится равномерно на отрезке [а, Ь] к функции /(х). Это означает, что для всякого при всех достаточно больших п имеем Следовательно, откуда вытекает наше утверждение. Обратное утверждение неверно: последовательность {} может сходиться в среднем к /(х), но не быть равномерно сходящейся. Пример. Рассмотрим последовательность пх Легко видеть, что Но эта сходимость не равномерна: существует е, например, такое, что сколь бы большим ни было л, на отрезке , Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем и пусть Обозначим через с* коэффициенты Фурье функции /(х) по ортонормированной системе ь Рассмотрим линейную комбинацию где n ^ 1 - фиксированное целое число, и найдем значения постоянных, при которых интеграл принимает минимальное значение. Запишем его подробнее Интефируя почленно, в силу ортонормированности системы получим Первые два слагаемых в правой части равенства (7) не зависят, а третье слагаемое неотрицательно. Поэтому интеграл (*) принимает минимальное значение при ак = ск Интеграл называют средним квадратичным приближением функции /(х) линейной комбинацией Тп(х). Таким образом, среднее квадратичное приближение функции/\ принимает минимальное значение, когда. когда Тп(х) есть 71-я частичная сумма ряда Фурье функции /(х) по системе {. Полагая ак = ск, из (7) получаем Равенство (9) называется тождеством Бесселя. Так как его левая часть неотрицательна, то из него следует неравенство Бесселя Поскольку я здесь произвольно, то неравенство Бесселя можно представить в усиленной форме т. е. для всякой функции / ряд из квадратов коэффициентов Фурье этой функции по ортонормированной системе } сходится. Так как система ортонормирована на отрезке [-х, тг], то неравенство (10) в переводе на привычную запись тригонометрического ряда Фурье дает соотношение do справедливое для любой функции /(х) с интегрируемым квадратом. Если f2(x) интегрируема, то в силу необходимого условия сходимости ряда в левой части неравенства (11) получаем, что. Равенство Парсе валя Для некоторых систем {^„(х)} знак неравенства в формуле (10) может быть заменен (для всех функций /(х) 6 Ч) знаком равенства. Получаемое равенство называется равенством Парсеваля-Стеклова (условием полноты). Тождество Бесселя (9) позволяет записать условие (12) в равносильной форме Тем самым выполнение условия полноты означает, что частичные суммы Sn(x) ряда Фурье функции /(х) сходятся к функции /(х) в среднем, т.е. по норме пространства 6]. Определение. Ортонормированная система { называется полной в Ь2[ау Ь], если всякую функцию можно с любой точностью приблизить в среднем линейной комбинацией вида с достаточно большим числом слагаемых, т. е. если для всякой функции/(х) € Ь2[а, Ь\ и для любого е > 0 найдется натуральное число nq и числа а\, а2у..., такие, что No Из приведенных рассуждений следует Теорема 7. Если ортонормированием система } полна в пространстве ряд Фурье всякой функции / по этой системе сходится к f(x) в среднем, т. е. по норме Можно показать, что тригонометрическая система полна в пространстве, Отсюда следует утверждение. Теорема 8. Если функция /о ее тригонометрический ряд Фурье сходится к ней в среднем. 9.5. Замкнутые системы. Полнота и замкнутость систем Определение. Ортонормированная система функций \, называется замкнутой, если в пространстве Li\a, Ь) не существует отличной от нуля функции, ортогональной ко всем функциям В пространстве L2\a, Ь\ понятия полноты и замкнутости ортонормированных систем совпадают. Упражнения 1. Разложите в ряд Фурье в интервале (-я-, ж) функцию 2. Разложите в ряд Фурье в интервале (-тг, тг) функцию 3. Разложите в ряд Фурье в интервале (-тг, тг) функцию 4. Разложите в ряд Фурье в интервале (-jt, тг) функцию 5. Разложите в ряд Фурье в интервале (-тг, тг) функцию f(x) = ж + х. 6. Разложите в ряд Фурье в интервале (-jt, тг) функцию п 7. Разложите в ряд Фурье в интервале (-тг, ж) функцию /(х) = sin2 х. 8. Разложите в ряд Фурье в интервале (-тг, jt) функцию f(x) = у 9. Разложите в ряд Фурье в интервале (-тт, -к) функцию /(х) = | sin х|. 10. Разложите в ряд Фурье в интервале (-я-, тг) функцию /(х) = §. 11. Разложите в ряд Фурье в интервале (-тг, тг) функцию f(x) = sin §. 12. Разложите в ряд Фурье функцию f(x) = п -2х, заданную в интервале (0, х), продолжив ее в интервал (-х, 0): а) четным образом; б) нечетным образом. 13. Разложите в ряд Фурье по синусам функцию /(х) = х2, заданную в интервале (0, х). 14. Разложите в ряд Фурье функцию /(х) = 3-х, заданную в интервале (-2,2). 15. Разложите в ряд Фурье функцию f(x) = |х|, заданную в интервале (-1,1). 16. Разложите в ряд Фурье по синусам функцию f(x) = 2х, заданную в интервале (0,1).