Действительные числа геометрическое изображение действительных чисел. Изображение действительных чисел на числовой оси

Существуют следующие формы комплексных чисел: алгебраическая (x+iy), тригонометрическая (r(cos+isin)), показательная (re i).

Всякое комплексное число z=x+iy можно изобразить на плоскости ХОУ в виде точки А(х,у).

Плоскость, на которой изображаются комплексные числа, называется плоскостью комплексного переменного z (на плоскости ставим символ z).

Ось ОХ – действительная ось, т.е. на ней лежат действительные числа. ОУ – мнимая ось с мнимыми числами.

x+iy - алгебраическая форма записи комплексного числа.

Выведем тригонометрическую форму записи комплексного числа.

Подставляем полученные значения в начальную форму: , т.е.

r(cos +isin ) - тригонометрическая форма записи комплексного числа.

Показательная форма записи комплексного числа следует из формулы Эйлера:
,тогда

z=re i - показательная форма записи комплексного числа.

Действия над комплексными числами.

1. сложение. z 1 +z 2 =(x1+iy1)+ (x2+iy2)=(x1+x2)+i(y1+y2);

2 . вычитание. z 1 -z 2 =(x1+iy1)- (x2+iy2)=(x1-x2)+i(y1-y2);

3. умножение. z 1 z 2 =(x1+iy1)*(x2+iy2)=x1x2+i(x1y2+x2y1+iy1y2)=(x1x2-y1y2)+i(x1y2+x2y1);

4 . деление. z 1 /z 2 =(x1+iy1)/(x2+iy2)=[(x1+iy1)*(x2-iy2)]/[ (x2+iy2)*(x2-iy2)]=

Два комплексных числа, которые отличаются только знаком мнимой единицы, т.е. z=x+iy (z=x-iy), называются сопряженными.

Произведение.

z1=r(cos+isin); z2=r(cos+isin).

То произведение z1*z2 комплексных чисел находится: , т.е. модуль произведения равен произведению модулей, а аргумент произведения равен сумме аргументов сомножителей.

;
;

Частное.

Если комплексные числа заданы в тригонометрической форме.

Если комплексные числа заданы в показательной форме.

Возведение в степень.

1. Комплексное число задано в алгебраической форме.

z=x+iy, то z n находим по формуле бинома Ньютона :

- число сочетаний из n элементов по m (число способов, сколькими можно взять n элементов из m).

; n!=1*2*…*n; 0!=1;
.

Применяем для комплексного числа.

В полученном выражении нужно заменить степени i их значениями:

i 0 =1 Отсюда, в общем случае получаем: i 4k =1

i 1 =i i 4k+1 =i

i 2 =-1 i 4k+2 =-1

i 3 =-i i 4k+3 =-i

Пример .

i 31 = i 28 i 3 =-i

i 1063 = i 1062 i=i

2. тригонометрической форме.

z=r(cos+isin), то

- формула Муавра .

Здесь n может быть как “+” так и “-” (целым).

3. Если комплексное число задано в показательной форме:

Извлечение корня.

Рассмотрим уравнение:
.

Его решением будет корень n–ой степени из комплексного числа z:
.

Корень n–ой степени из комплексного числа z имеет ровно n решений (значений). Корень из действующего числа n-ой степени имеет только одно решение. В комплексных – n решений.

Если комплексное число задано в тригонометрической форме:

z=r(cos+isin), то корень n-ой степени от z находится по формуле:

, где к=0,1…n-1.

Ряды. Числовые ряды.

Пусть переменная а принимает последовательно значения а 1 ,а 2 ,а 3 ,…,а n . Такое перенумерованное множество чисел называется последовательностью. Она бесконечна.

Числовым рядом называется выражение а 1 +а 2 +а 3 +…+а n +…=. Числа а 1 ,а 2 ,а 3 ,…,а n – члены ряда.

Например.

а 1 – первый член ряда.

а n – n-ый или общий член ряда.

Ряд считается заданным, если известен n-ый (общий член ряда).

Числовой ряд имеет бесконечное число членов.

Числители – арифметическая прогрессия (1,3,5,7…).

n-ый член находится по формуле а n =а 1 +d(n-1); d=а n -а n-1 .

Знаменатель – геометрическая прогрессия . b n =b 1 q n-1 ;
.

Рассмотрим сумму первых n членов ряда и обозначим ее Sn.

Sn=а1+а2+…+а n .

Sn – n-ая частичная сумма ряда.

Рассмотрим предел:

S - сумма ряда.

Ряда сходящийся , если этот предел конечен (конечный предел S существует).

Ряд расходящийся , если этот предел бесконечен.

В дальнейшем наша задача заключается в следующем: установить какой ряд.

Одним из простейших, но часто встречающихся рядов является геометрическая прогрессия.

, C=const.

Геометрическая прогрессия является сходящимся рядом , если
, и расходящимся, если
.

Также встречается гармонический ряд (ряд
). Этот рядрасходящийся .

ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА II

§ 37 Геометрическое изображение рациональных чисел

Пусть Δ есть отрезок, принятый за единицу длины, а l - произвольная прямая (рис. 51). Возьмем на ней какую-нибудь точку и обозначим ее буквой О.

Каждому положительному рациональному числу m / n поставим в соответствие точку прямой l , лежащую справа от С на расстоянии в m / n единиц длины.

Например, числу 2 будет соответствовать точка А, лежащая справа от О на расстоянии в 2 единицы длины, а числу 5 / 4 точка В, лежащая справа от О на расстоянии в 5 / 4 единиц длины. Каждому отрицательному рациональному числу k / l поставим в соответствие точку прямой, лежащую слева от О на расстоянии в | k / l | единиц длины. Так, числу - 3 будет соответствовать точка С, лежащая слева от О на расстоянии в 3 единицы длины, а числу - 3 / 2 точка D, лежащая слева от О на расстоянии в 3 / 2 единиц длины. Наконец, рациональному числу «нуль» поставим в соответствие точку О.

Очевидно, что при выбранном соответствии равным рациональным числам (например, 1 / 2 и 2 / 4) будет отвечать одна и та же точка, а не равным между собой числам различные точки прямой. Предположим, что числу m / n соответствует точка P , а числу k / l точка Q. Тогда, если m / n > k / l , то точка Р будет лежать правее точки Q (рис. 52, а); если же m / n < k / l , то точка Р будет находиться левее точки Q (рис. 52, б).

Итак, любое рациональное число можно геометрически изобразить в виде некоторой, вполне определенной точки прямой. А верно ли обратное утверждение? Всякую ли точку прямой можно рассматривать как геометрический образ некоторого рационального числа? Решение этого вопроса мы отложим до § 44.

Упражнения

296. Изобразить точками прямой следующие рациональные числа:

3; - 7 / 2 ; 0 ; 2,6.

297. Известно, что точка А (риc. 53) служит геометрическим изображением рационального числа 1 / 3 . Какие числа изображают точки В, С и D?

298. На прямой заданы две точки, которые служат геометрическим изображением рациональных чисел а и b а + b и а - b .

299. На прямой заданы две точки, которые служат геометрическим изображением рациональных чисел а + b и а - b . Найти на этой прямой точки, изображающие числа а и b .

Выразительное геометрическое представление системы рациональных чисел может быть получено следующим образом.

На некоторой прямой линии, "числовой оси", отметим отрезок от О до 1 (рис. 8). Тем самым устанавливается длина единичного отрезка, которая, вообще говоря, может быть выбрана произвольно. Положительные и отрицательные целые числа тогда изображаются совокупностью равноотстоящих точек на числовой оси, именно положительные числа отмечаются вправо, а отрицательные - влево от точки 0. Чтобы изобразить числа со знаменателем n, разделим каждый из полученных отрезков единичной длины на n равных частей; точки деления будут изображать дроби со знаменателем n. Если сделаем так для значений n, соответствующих всем натуральным числам, то каждое рациональное число будет изображено некоторой точкой числовой оси. Эти точки мы условимся называть "рациональными"; вообще, термины "рациональное число" и "рациональная точка" будем употреблять как синонимы.

В главе I, § 1 было определено соотношение неравенства Алюбой пары рациональных точек, то естественно пытаться обобщить арифметическое отношение неравенства таким образом, чтобы сохранить этот геометрический порядок для рассматриваемых точек. Это удается, если принять следующее определение: говорят, что рациональное число А меньше , чем рациональное число В (Абольше, чем число А (В>А), если разность В-А положительна. Отсюда следует (при Aмежду А и В - это те, которые одновременно >A и сегментом (или отрезком ) и обозначается [А, В] (а множество одних только промежуточных точек - интервалом (или промежутком ), обозначаемым (А, В)).

Расстояние произвольной точки А от начала 0, рассматриваемое как положительное число, называется абсолютной величиной А и обозначается символом

Понятие "абсолютная величина" определяется следующим образом: если A≥0, то |А| = А; если A

|А + В|≤|А| + |В|,

которое справедливо независимо от знаков А и В.

Факт фундаментальной важности выражается следующим предложением: рациональные точки расположены на числовой прямой всюду плотно. Смысл этого утверждения тот, что внутри всякого интервала, как бы он ни был мал, содержатся рациональные точки. Чтобы убедиться в справедливости высказанного утверждения, достаточно взять число n настолько большое, что интервал будет меньше, чем данный интервал (A, В); тогда по меньшей мере одна из точек вида окажется внутри данного интервала. Итак, не существует такого интервала на числовой оси (даже самого маленького, какой только можно вообразить), внутри которого не было бы рациональных точек. Отсюда вытекает дальнейшее следствие: во всяком интервале содержится бесконечное множество рациональных точек. Действительно, если бы в некотором интервале содержалось лишь конечное число рациональных точек, то внутри интервала, образованного двумя соседними такими точками, рациональных точек уже не было бы, а это противоречит тому, что только что было доказано.

Выразительное геометрическое представление системы рациональных чисел может быть получено следующим образом.

Рис. 8. Числовая ось

На некоторой прямой линии, «числовой оси», отметим отрезок от 0 до 1 (рис. 8). Тем самым устанавливается длина единичного отрезка, которая, вообще говоря, может быть выбрана произвольно. Положительные и отрицательные целые числа тогда изображаются совокупностью равноотстоящих точек на числовой оси, именно, положительные числа отмечаются вправо, а отрицательные - влево от точки 0. Чтобы изобразить числа со знаменателем разделим каждый из полученных отрезков единичной длины на равных частей; точки деления будут изображать дроби со знаменателем Если сделаем так для значений соответствующих всем натуральным числам, то каждое рациональное число будет изображено некоторой точкой числовой оси. Эти точки мы условимся называть «рациональными»; вообще термины «рациональное число» и «рациональная точка» будем употреблять как синонимы.

В главе I, § 1 было определено соотношение неравенства для натуральных чисел. На числовой оси это соотношение отражено следующим образом: если натуральное число А меньше, чем натуральное число В, то точка А лежит левее точки В. Так как указанное геометрическое соотношение устанавливается для любой пары рациональных точек, то естественно пытаться обобщить арифметическое отношение неравенства таким образом, чтобы сохранить этот геометрический порядок для рассматриваемых точек. Это удается, если принять следующее определение: говорят, что рациональное число А меньше, чем Рациональное число или что число В больше, чем число если разность положительна. Отсюда следует (при ), что точки (числа) между это те, которые

одновременно Каждая такая пара точек вместе со всеми точками между ними, называется сегментом (или отрезком) и обозначается (а множество одних только промежуточных точек - интервалом (или промежутком), обозначаемым

Расстояние произвольной точки А от начала 0, рассматриваемое как положительное число, называется абсолютным значением А и обозначается символом

Понятие «абсолютное значение» определяется следующим образом: если , то если то Ясно, что если числа имеют один и тот же знак, то справедливо равенство если же имеют разные знаки, то . Соединяя эти два результата вместе, мы приходим к общему неравенству

которое справедливо независимо от знаков

Факт фундаментальной важности выражается следующим предложением: рациональные точки расположены на числовой прямой всюду плотно. Смысл этого утверждения тот, что внутри всякого интервала, как бы он ни был мал, содержатся рациональные точки. Чтобы убедиться в справедливости высказанного утверждения, достаточно взять число настолько большое, что интервал ( будет меньше, чем данный интервал ; тогда по меньшей мере одна из точек вида окажется внутри данного интервала. Итак, не существует такого интервала на числовой оси (даже самого маленького, какой только можно вообразить), внутри которого не было бы рациональных точек. Отсюда вытекает дальнейшее следствие: во всяком интервале содержится бесконечное множество рациональных точек. Действительно, если бы в некотором интервале содержалось лишь конечное число рациональных точек, то внутри интервала, образованного двумя соседними такими точками, рациональных точек уже не было бы, а это противоречит тому, что только что было доказано.

Комплексные числа

Основные понятия

Первоначальные данные о числе относятся к эпохе каменного века – палеомелита. Это «один», «мало» и «много». Записывались они в виде зарубок, узелков и т.д. Развитие трудовых процессов и появление собственности заставили человека изобрести числа и их названия. Первыми появились натуральные числа N , получаемые при счете предметов. Затем, наряду с необходимостью счета, у людей появилась потребность измерять длины, площади, объемы, время и другие величины, где приходилось учитывать и части употребляемой меры. Так возникли дроби. Формальное обоснование понятий дробного и отрицательного числа было осуществлено в 19 веке. Множество целых чисел Z – это натуральные числа, натуральные со знаком минус и нуль. Целые и дробные числа образовали совокупность рациональных чисел Q, но и она оказалась недостаточной для изучения непрерывно изменяющихся переменных величин. Бытие снова показало несовершенство математики: невозможность решить уравнение вида х 2 = 3, в связи с чем появились иррациональные числа I. Объединение множества рациональных чисел Q и иррациональных чисел I – множество действительных (или вещественных) чисел R . В итоге числовая прямая заполнилась: каждому действительному числу соответствовала на ней точка. Но на множестве R нет возможности решить уравнение вида х 2 = – а 2 . Следовательно, снова возникла необходимость расширения понятия числа. Так в 1545 году появились комплексные числа. Их создатель Дж. Кардано называл их «чисто отрицательными». Название «мнимые» ввел в 1637 году француз Р. Декарт, в 1777 году Эйлер предложил использовать первую букву французского числа i для обозначения мнимой единицы. Этот символ вошел во всеобщее употребление благодаря К. Гауссу.

В течение 17 – 18 веков продолжалось обсуждение арифметической природы мнимостей, их геометрического истолкования. Датчанин Г. Вессель, француз Ж. Арган и немец К. Гаусс независимо друг от друга предложили изображать комплексное число точкой на координатной плоскости. Позднее оказалось, что еще удобнее изображать число не самой точкой, а вектором, идущим в эту точку из начала координат.

Лишь к концу 18 – началу 19 века комплексные числа заняли достойное место в математическом анализе. Первое их использование – в теории дифференциальных уравнений и в теории гидродинамики.

Определение 1. Комплексным числом называется выражение вида , где x и y – действительные числа, а i – мнимая единица, .

Два комплексных числа и равны тогда и только тогда, когда , .

Если , то число называют чисто мнимым ; если , то число является действительным числом, это означает, что множество R С , где С – множество комплексных чисел.

Сопряженным к комплексному числу называется комплексное число .

Геометрическое изображение комплексных чисел.

Любое комплексное число можно изобразить точкой М (x , y ) плоскости Oxy. Парой действительных чисел обозначаются и координаты радиус-вектора , т.е. между множеством векторов на плоскости и множеством комплексных чисел можно установить взаимно-однозначное соответствие: .

Определение 2. Действительной частью х .

Обозначение:x = Rez (от латинского Realis).

Определение 3. Мнимой частью комплексного числа называется действительное число y .

Обозначение: y = Imz (от латинского Imaginarius).

Rez откладывается на оси (Ох) , Imz откладывается на оси (Оy ), тогда вектор , соответствующий комплексному числу – это радиус-вектор точки М (x , y ), (или М (Rez , Imz )) (рис. 1).

Определение 4. Плоскость, точкам которой поставлено в соответствие множество комплексных чисел, называется комплексной плоскостью . Ось абсцисс называется действительной осью , так как на ней лежат действительные числа . Ось ординат называется мнимой осью , на ней лежат чисто мнимые комплексные числа . Множество комплексных чисел обозначается С .

Определение 5. Модулем комплексного числа z = (x , y ) называется длина вектора : , т.е. .

Определение 6. Аргументом комплексного числа называется угол между положительным направлением оси (Ох ) и вектором : .