Как найти работу силы формула. Формула работы

Вывод формулы для расчета работы сил поля при перемещении зарядов. Понятие потенциала, потенциальный характер электростатического поля. Связь между напряженностью и потенциалом. Потенциал поля плоского конденсатора, заряженной нити, цилиндрического и сферического конденсаторов.

4. 1. Вывод формулы для расчета работы сил поля при перемещении зарядов. 4. 2. Понятие потенциала, потенциальный характер электростатического поля. 4. 3. Связь между напряженностью и потенциалом. 4. 4. Потенциал поля плоского конденсатора, заряженной нити, цилиндрического и сферического конденсаторов.

4. 1. Вывод формулы для расчета работы сил поля при перемещении зарядов. Пусть имеется точечный положительный заряд. Рассчитаем работу по перемещению из точки 1 в точку 2. Рис. 4. 1. Перемещение точечного положительного заряди из точки 1 в точку 2.

(4. 1) Вывод: работа по перемещению заряда из одной точки поля в другую равна произведению величины этого заряда на разность потенциалов начальной и конечной точек траектории. К оглавлению

4. 2. Понятие потенциала, потенциальный характер электростатического поля. может служить характеристикой поля. Т. к. при функциональная часть выражения (4. 2) , то примем const = 0. Получим (4. 3) Эта величина получила название потенциал поля точечного заряда. (4. 4) (4. 5)

Потенциалом поля в данной точке называется физическая величина, численно равная работе по переносу единичного положительного заряда из данной точки поля в бесконечность. Работа сил электростатического поля равна убыли потенциальной энергии, т. е. (4. 6) (4. 7) Тогда, сравнив (4. 4) и (4. 6), получим Т. к. при (4. 8) , то Потенциалом поля в данной точке называется физическая величина, численно равная потенциальной энергии, которая приобретается единичным положительным зарядом при переносе из бесконечности в данную точку поля. Выясним свойства потенциального электростатического поля. (4. 9) Рис. 4. 2.

1. Работа по переносу из одной точки электрического поля в другую не зависит от формы траектории. (4. 10) 2. Работа по переносу заряда вдоль замкнутого пути равна нулю. 1 и 2 отражают потенциальный характер поля. 3. В электрическом поле циркуляция вектора напряженности вдоль замкнутого контура равна нулю.

Эквипотенциальные поверхности. Приставка экви- означает равный. Эквипотенциальная поверхность - это поверхность, состоящая из точек, имеющих одинаковый потенциал. Для геометрического описания электрического поля наряду с силовыми линиями используют и эквипотенциальные поверхности. 1. Силовые линии перпендикулярны эквипотенциальным поверхностям. Рис. 4. 3. Эквипотенциальные поверхности 2. Работа по перемещению заряда вдоль эквипотенциальной поверхности равна нулю.

Опыт 4. 1. Демонстрация эквипотенциальных поверхностей. Цель: Демонстрация эквипотенциальных поверхностей. Оборудование: 1. Электрометр демонстрационный. 2. Конусообразный кондуктор на изолирующем штативе. 3. Эбонитовая палочка. 4. Шерсть. 5. Шарик пробный на изолирующей ручке. 6. Два проводника: один – длиной 1, 5 - 2 м гибкий, другой – для заземления электрометра. Рис. 4. 4. Установка Ход работы: Пробный шарик с длинным проводником соединён со стержнем электроскопа, корпус заземлён. Заряжаем кондуктор и шарик перемещаем по всей поверхности (наружной и внутренней) кондуктора. Показания электрометра не меняются. Выводы: поверхность заряженного проводника всюду имеет одинаковый потенциал. К оглавлению

4. 3. Связь между напряженностью и потенциалом. Пусть имеется векторное поле и некоторое скалярное поле (4. 11) Известно, что между напряженностью и потенциалом электростатического поля существует связь: (4. 12) К оглавлению

4. 4. Потенциал поля плоского конденсатора, заряженной нити, цилиндрического и сферического конденсаторов. Однородный плоский конденсатор. (4. 13) Рис. 4. 4. Однородный плоский конденсатор Задание для самостоятельной работы. Используя материал лекций 3 и 4 вывести формулы, описывающие потенциал поля заряженной нити, цилиндрического и сферического конденсаторов. К оглавлению

Для цилиндрического конденсатора мы знаем что найдем разность потенциалов между обкладками конденсатора путем интегрирования Если зазор между обкладками относительный, т. е. выполняется условие в этом случае Рис. 4. 5

Для сферического конденсатора Рис. 4. 6 Для заряженной нити, где R – толщина нити Рис. 4. 7

Механическая работа. Единицы работы.

В обыденной жизни под понятием "работа" мы понимаем всё.

В физике понятие работа несколько иное. Это определенная физическая величина, а значит, ее можно измерить. В физике изучается прежде всего механическая работа .

Рассмотрим примеры механической работы.

Поезд движется под действием силы тяги электровоза, при этом совершается механическая работа. При выстреле из ружья сила давления пороховых газов совершает работу - перемещает пулю вдоль ствола, скорость пули при этом увеличивается.

Из этих примеров видно, что механическая работа совершается, когда тело движется под действием силы. Механическая работа совершается и в том случае, когда сила, действуя на тело (например, сила трения), уменьшает скорость его движения.

Желая передвинуть шкаф, мы с силой на него надавливаем, но если он при этом в движение не приходит, то механической работы мы не совершаем. Можно представить себе случай, когда тело движется без участия сил (по инерции), в этом случае механическая работа также не совершается.

Итак, механическая работа совершается, только когда на тело действует сила, и оно движется .

Нетрудно понять, что чем большая сила действует на тело и чем длиннее путь, который проходит тело под действием этой силы, тем большая совершается работа.

Механическая работа прямо пропорциональна приложенной силе и прямо пропорциональна пройденному пути .

Поэтому, условились измерять механическую работу произведением силы на путь, пройденный по этому направлению этой силы:

работа = сила × путь

где А - работа, F - сила и s - пройденный путь.

За единицу работы принимается работа, совершаемая силой в 1Н, на пути, равном 1 м.

Единица работы - джоуль (Дж ) названа в честь английского ученого Джоуля. Таким образом,

1 Дж = 1Н · м.

Используется также килоджоули (кДж ) .

1 кДж = 1000 Дж.

Формула А = Fs применима в том случае, когда сила F постоянна и совпадает с направлением движения тела.

Если направление силы совпадает с направлением движения тела, то данная сила совершает положительную работу.

Если же движение тела происходит в направлении, противоположном направлению приложенной силы, например, силы трения скольжения, то данная сила совершает отрицательную работу.

Если направление силы, действующей на тело, перпендикулярно направлению движения, то эта сила работы не совершает, работа равна нулю:

В дальнейшем, говоря о механической работе, мы будем кратко называть ее одним словом - работа.

Пример . Вычислите работу, совершаемую при подъеме гранитной плиты объемом 0,5 м3 на высоту 20 м. Плотность гранита 2500 кг/м 3 .

Дано :

ρ = 2500 кг/м 3

Решение :

где F -сила, которую нужно приложить, чтобы равномерно поднимать плиту вверх. Эта сила по модулю равна силе тяж Fтяж, действующей на плиту, т. е. F = Fтяж. А силу тяжести можно определить по массе плиты: Fтяж = gm. Массу плиты вычислим, зная ее объем и плотность гранита: m = ρV; s = h, т. е. путь равен высоте подъема.

Итак, m = 2500 кг/м3 · 0,5 м3 = 1250 кг.

F = 9,8 Н/кг · 1250 кг ≈ 12 250 Н.

A = 12 250 Н · 20 м = 245 000 Дж = 245 кДж.

Ответ : А =245 кДж.

Рычаги.Мощность.Энергия

На совершение одной и той же работы различным двигателям требуется разное время. Например, подъемный кран на стройке за несколько минут поднимает на верхний этаж здания сотни кирпичей. Если бы эти кирпичи перетаскивал рабочий, то ему для этого потребовалось бы несколько часов. Другой пример. Гектар земли лошадь может вспахать за 10-12 ч, трактор же с многолемешным плугом (лемех - часть плуга, подрезающая пласт земли снизу и передающая его на отвал; многолемешный - много лемехов), эту работу выполнит на 40-50 мин.

Ясно, что подъемный кран ту же работу совершает быстрее, чем рабочий, а трактор - быстрее чем лошадь. Быстроту выполнения работы характеризуют особой величиной, называемой мощностью.

Мощность равна отношению работы ко времени, за которое она была совершена.

Чтобы вычислить мощность, надо работу разделить на время, в течение которого совершена эта работа. мощность = работа/время.

где N - мощность, A - работа, t - время выполненной работы.

Мощность - величина постоянная, когда за каждую секунду совершается одинаковая работа, в других случаях отношение A/t определяет среднюю мощность:

N ср = A/t . За единицу мощности приняли такую мощность, при которой в 1 с совершается работа в Дж.

Эта единица называется ваттом (Вт ) в честь еще одного английского ученого Уатта.

1 ватт = 1 джоуль/ 1 секунда , или 1 Вт = 1 Дж/с.

Ватт (джоуль в секунду) - Вт (1 Дж/с).

В технике широко используется более крупные единицы мощности - киловатт (кВт ), мегаватт (МВт ) .

1 МВт = 1 000 000 Вт

1 кВт = 1000 Вт

1 мВт = 0,001 Вт

1 Вт = 0,000001 МВт

1 Вт = 0,001 кВт

1 Вт = 1000 мВт

Пример . Найти мощность потока воды, протекающей через плотину, если высота падения воды 25 м, а расход ее - 120 м3 в минуту.

Дано :

ρ = 1000 кг/м3

Решение :

Масса падающей воды: m = ρV ,

m = 1000 кг/м3 · 120 м3 = 120 000 кг (12 · 104 кг).

Сила тяжести, действующая на воду:

F = 9.8 м/с2 · 120 000 кг ≈ 1 200 000 Н (12 · 105 Н)

Работа, совершаемая потоком в минуту:

А - 1 200 000 Н · 25 м = 30 000 000 Дж (3 · 107 Дж).

Мощность потока: N = A/t,

N = 30 000 000 Дж / 60 с = 500 000 Вт = 0,5 МВт.

Ответ : N = 0.5 МВт.

Различные двигатели имеют мощности от сотых и десятых долей киловатта (двигатель электрической бритвы, швейной машины) до сотен тысяч киловатт (водяные и паровые турбины).

Таблица 5.

Мощность некоторых двигателей, кВт.

На каждом двигателе имеется табличка (паспорт двигателя), на которой указаны некоторые данные о двигателе, в том числе и его мощность.

Мощность человека при нормальный условиях работы в среднем равна 70-80 Вт. Совершая прыжки, взбегая по лестнице, человек может развивать мощность до 730 Вт, а в отдельных случаях и еще бóльшую.

Из формулы N = A/t следует, что

Чтобы вычислить работу, необходимо мощность умножить на время, в течение которого совершалась эта работа.

Пример. Двигатель комнатного вентилятора имеет мощность 35 Вт. Какую работу он совершает за 10 мин?

Запишем условие задачи и решим ее.

Дано :

Решение :

A = 35 Вт * 600с = 21 000 Вт* с = 21 000 Дж = 21 кДж.

Ответ A = 21 кДж.

Простые механизмы.

С незапамятных времен человек использует для совершения механической работы различные приспособления.

Каждому известно, что тяжелый предмет (камень, шкаф, станок), который невозможно сдвинуть руками, можно сдвинуть с помощью достаточно длинной палки - рычага.

На данный момент считается, что с помощью рычагов три тысячи лет назад при строительстве пирамид в Древнем Египте передвигали и поднимали на большую высоту тяжелые каменные плиты.

Во многих случаях, вместо того, чтобы поднимать тяжелый груз на некоторую высоту, его можно вкатывать или втаскивать на ту же высоту по наклонной плоскости или поднимать с помощью блоков.

Приспособления, служащие для преобразования силы, называются механизмами .

К простым механизмам относятся: рычаги и его разновидности - блок, ворот; наклонная плоскость и ее разновидности - клин, винт . В большинстве случаев простые механизмы применяют для того, чтобы получить выигрыш в силе, т. е. увеличить силу, действующую на тело, в несколько раз.

Простые механизмы имеются и в бытовых, и во всех сложных заводских и фабричных машинах, которые режут, скручивают и штампуют большие листы стали или вытягивают тончайшие нити, из которых делаются потом ткани. Эти же механизмы можно обнаружить и в современных сложных автоматах, печатных и счетных машинах.

Рычаг. Равновесие сил на рычаге.

Рассмотрим самый простой и распространенный механизм - рычаг.

Рычаг представляет собой твердое тело, которое может вращаться вокруг неподвижной опоры.

На рисунках показано, как рабочий для поднятия груза в качестве рычага, использует лом. В первом случае рабочий с силой F нажимает на конец лома B , во втором - приподнимает конец B .

Рабочему нужно преодолеть вес груза P - силу, направленную вертикально вниз. Он поворачивает для этого лом вокруг оси, проходящей через единственную неподвижную точку лома - точку его опоры О . Сила F , с которой рабочий действует на рычаг, меньше силы P , таким образом, рабочий получает выигрыш в силе . При помощи рычага можно поднять такой тяжелый груз, который своими силами поднять нельзя.

На рисунке изображен рычаг, ось вращения которого О (точка опоры) расположена между точками приложения сил А и В . На другом рисунке показана схема этого рычага. Обе силы F 1 и F 2, действующие на рычаг, направлены в одну сторону.

Кратчайшее расстояние между точкой опоры и прямой, вдоль которой действует на рычаг сила, называется плечом силы.

Чтобы найти плечо силы, надо из точки опоры опустить перпендикуляр на линию действия силы.

Длина этого перпендикуляра и будет плечом данной силы. На рисунке показано, что ОА - плечо силы F 1; ОВ - плечо силы F 2 . Силы, действующие на рычаг могут повернуть его вокруг оси в двух направлениях: по ходу или против хода часовой стрелки. Так, сила F 1 вращает рычаг по ходу часовой стрелки, а сила F 2 вращает его против часовой стрелки.

Условие, при котором рычаг находится в равновесии под действием приложенных к нему сил, можно установить на опыте. При этом надо помнить, что результат действия силы, зависит не только от ее числового значения (модуля), но и от того, в какой точке она приложена к телу, или как направлена.

К рычагу (см рис.) по обе стороны от точки опоры подвешиваются различные грузы так, что каждый раз рычаг оставался в равновесии. Действующие на рычаг силы, равны весам этих грузов. Для каждого случая измеряются модули сил и их плечи. Из опыта изображенного на рисунке 154, видно, что сила 2 Н уравновешивает силу 4 Н . При этом, как видно из рисунка, плечо меньшей силы в 2 раза больше плеча большей силой.

На основании таких опытов было установлено условие (правило) равновесия рычага.

Рычаг находится в равновесии тогда, когда силы, действующие на него, обратно пропорциональны плечам этих сил.

Это правило можно записать в виде формулы:

F 1/F 2 = l2/ l1 ,

где F 1 и F2 - силы, действующие на рычаг, l 1 и l2 , - плечи этих сил (см. рис.).

Правило равновесия рычага было установлено Архимедом около 287 - 212 гг. до н. э. (но ведь в прошлом параграфе говорилось, что рычаги использовались египтянами? Или тут важную роль играет слово "установлено"?)

Из этого правила следует, что меньшей силой можно уравновесить при помощи рычага бóльшую силу. Пусть одно плечо рычага в 3 раза больше другого (см рис.). Тогда, прикладывая в точке В силу, например, в 400 Н, можно поднять камень весом 1200 Н. Что0бы поднять еще более тяжелый груз, нужно увеличить длину плеча рычага, на которое действует рабочий.

Пример . С помощью рычага рабочий поднимает плиту массой 240 кг (см рис. 149). Какую силу прикладывает он к большему плечу рычага, равному 2,4 м, если меньшее плечо равно 0,6 м?

Запишем условие задачи, и решим ее.

Дано :

Решение :

По правилу равновесия рычага F1/F2 = l2/l1, откуда F1 = F2 l2/l1, где F2 = Р - вес камня. Вес камня asd = gm, F = 9,8 Н · 240 кг ≈ 2400 Н

Тогда, F1 = 2400 Н · 0,6/2,4 = 600 Н.

Ответ : F1 = 600 Н.

В нашем примере рабочий преодолевает силу 2400 Н, прикладывая к рычагу силу 600 Н. Но при этом плечо, на которое действует рабочий, в 4 раза длиннее того, на которое действует вес камня (l 1 : l2 = 2,4 м: 0,6 м = 4).

Применяя правило рычага, можно меньшей силой уравновесить бóльшую силу. При этом плечо меньшей силы должно быть длиннее плеча большей силы.

Момент силы.

Вам уже известно правило равновесия рычага:

F 1 / F2 = l 2 / l1 ,

Пользуясь свойством пропорции (произведение ее крайних членов, равно произведению ее средних членов), запишем его в таком виде:

F 1l 1 = F2 l2 .

В левой части равенства стоит произведение силы F 1 на ее плечо l 1, а в правой - произведение силы F 2 на ее плечо l 2 .

Произведение модуля силы, вращающей тело, на ее плечо называется моментом силы ; он обозначается буквой М. Значит,

Рычаг находится в равновесии под действием двух сил, если момент силы, вращающий его по часовой стрелке, равен моменту силы, вращающей его против часовой стрелки.

Это правило, называемое правилом моментов , можно записать в виде формулы:

М1 = М2

Действительно, в рассмотренном нами опыте, (§ 56) действующие силы были равны 2 Н и 4 Н, их плечи соответственно составляли 4 и 2 давления рычага, т. е. моменты этих сил одинаковы при равновесии рычага.

Момент силы, как и всякая физическая величина, может быть измерена. За единицу момента силы принимается момент силы в 1 Н, плечо которой ровно 1 м.

Эта единица называется ньютон-метр (Н · м ).

Момент силы характеризует действие силы, и показывает, что оно зависит одновременно и от модуля силы, и от ее плеча. Действительно, мы уже знаем, например, что действие силы на дверь зависит и от модуля силы, и от того, где приложена сила. Дверь тем легче повернуть, чем дальше от оси вращения приложена действующая на нее сила. Гайку, лучше отвернуть длинным гаечным ключом, чем коротким. Ведро тем легче поднять из колодца, чем длиннее ручка вóрота, и т. д.

Рычаги в технике, быту и природе.

Правило рычага (или правило моментов) лежит в основе действия различного рода инструментов и устройств, применяемых в технике и быту там, где требуется выигрыш в силе или в пути.

Выигрыш в силе мы имеем при работе с ножницами. Ножницы - это рычаг (рис), ось вращения которого, происходит через винт, соединяющий обе половины ножниц. Действующей силой F 1 является мускульная сила руки человека, сжимающего ножницы. Противодействующей силой F 2 - сила сопротивления такого материала, который режут ножницами. В зависимости от назначения ножниц их устройство бывает различным. Конторские ножницы, предназначенные для резки бумаги, имеют длинные лезвия и почти такой же длины ручки. Для резки бумаги не требуется большой силы, а длинным лезвием удобнее резать по прямой линии. Ножницы для резки листового металла (рис.) имеют ручки гораздо длиннее лезвий, так как сила сопротивления металла велика и для ее уравновешивания плечо действующей силы приходится значительно увеличивать. Еще больше разница между длиной ручек и расстоянии режущей части и оси вращения в кусачках (рис.), предназначенных для перекусывания проволоки.

Рычаги различного вида имеются у многих машин. Ручка швейной машины, педали или ручной тормоз велосипеда, педали автомобиля и трактора, клавиши пианино - все это примеры рычагов, используемых в данных машинах и инструментах.

Примеры применения рычагов - это рукоятки тисков и верстаков, рычаг сверлильного станка и т. д.

На принципе рычага основано действие и рычажных весов (рис.). Учебные весы, изображенные на рисунке 48 (с. 42), действуют как равноплечий рычаг . В десятичных весах плечо, к которому подвешена чашка с гирями, в 10 раз длиннее плеча, несущего груз. Это значительно упрощает взвешивание больших грузов. Взвешивая груз на десятичных весах, следует умножить массу гирь на 10.

Устройство весов для взвешивания грузовых вагонов автомобилей также основано на правиле рычага.

Рычаги встречаются также в разных частях тела животных и человека. Это, например, руки, ноги, челюсти. Много рычагов можно найти в теле насекомых (прочитав книгу про насекомых и строение их тела), птиц, в строении растений.

Применение закона равновесия рычага к блоку.

Блок представляет собой колесо с желобом, укрепленное в обойме. По желобу блока пропускается веревка, трос или цепь.

Неподвижным блоком называется такой блок, ось которого закреплена, и при подъеме грузов не поднимается и не опускается (рис).

Неподвижный блок можно рассматривать как равноплечий рычаг, у которого плечи сил равны радиусу колеса (рис): ОА = ОВ = r . Такой блок не дает выигрыша в силе. (F 1 = F 2), но позволяет менять направление действие силы. Подвижный блок - это блок. ось которого поднимается и опускается вместе с грузом (рис.). На рисунке показан соответствующий ему рычаг: О - точка опоры рычага, ОА - плечо силы Р и ОВ - плечо силы F . Так как плечо ОВ в 2 раза больше плеча ОА , то сила F в 2 раза меньше силы Р :

F = P/2 .

Таким образом, подвижный блок дает выигрыш в силе в 2 раза .

Это можно доказать и пользуясь понятием момента силы. При равновесии блока моменты сил F и Р равны друг другу. Но плечо силы F в 2 раза больше плеча силы Р , а, значит, сама сила F в 2 раза меньше силы Р .

Обычно на практике применяют комбинацию неподвижного блока с подвижным (рис.). Неподвижный блок применяется только для удобства. Он не дает выигрыша в силе, но изменяет направление действия силы. Например, позволяет поднимать груз, стоя на земле. Это пригождается многим людям или рабочим. Тем не менее, он даёт выигрыш в силе в 2 раза больше обычного!

Равенство работ при использовании простых механизмов. "Золотое правило" механики.

Рассмотренные нами простые механизмы применяются при совершении работы в тех случаях, когда надо действием одной силы уравновесить другую силу.

Естественно, возникает вопрос: давая выигрыш в силе или пути, не дают ли простые механизмы выигрыша в работе? Ответ на поставленный вопрос можно получить из опыта.

Уравновесив на рычаге две какие-нибудь разные по модулю силы F 1 и F 2 (рис.), приводим рычаг в движение. При этом оказывается, что за одно и то же время точка приложения меньшей силы F 2 проходит больший путь s 2 , а точка приложения большей силы F 1 - меньший путь s 1. Измерив эти пути и модули сил, находим, что пути, пройденные точками приложения сил на рычаге, обратно пропорциональны силам:

s 1 / s 2 = F 2 / F 1.

Таким образом, действуя на длинное плечо рычага, мы выигрываем в силе, но при этом во столько же раз проигрываем в пути.

Произведение силы F на путь s есть работа. Наши опыты показывают, что работы, совершаемые силами, приложенными к рычагу, равны друг другу:

F 1 s 1 = F 2 s 2, т. е. А 1 = А 2.

Итак, при использовании рычага выигрыша в работе не получится.

Пользуясь рычагом, мы можем выиграть или в силе, или в расстоянии. Действуя же силой на короткое плечо рычага, мы выигрываем в расстоянии, но во столько же раз проигрываем в силе.

Существует легенда, что Архимед, восхищенный открытием правила рычага, воскликнул: "Дайте мне точку опоры, и я переверну Землю!".

Конечно, Архимед не мог бы справиться с такой задачей, если бы даже ему и дали бы точку опоры (которая должна была бы быть вне Земли) и рычаг нужной длины.

Для подъема земли всего на 1 см длинное плечо рычага должно было бы описать дугу огромной длины. Для перемещения длинного конца рычага по этому пути, например, со скоростью 1 м/с, потребовались бы миллионы лет!

Не дает выигрыша в работе и неподвижный блок, в чем легко убедиться на опыте (см. рис.). Пути, проходимые точками приложения сил F и F , одинаковы, одинаковы и силы, а значит, одинаковы и работы.

Можно измерить и сравнить между собой работы, совершаемые с помощью подвижного блока. Чтобы при помощи подвижного блока поднять груз на высоту h, необходимо конец веревки, к которому прикреплен динамометр, как показывает опыт (рис.), переместить на высоту 2h.

Таким образом, получая выигрыш в силе в 2 раза, проигрывают в 2 раза в пути, следовательно, и подвижный блок, на дает выигрыша в работе.

Многовековая практика показала, что ни один из механизмов не дает выигрыш в работе. Применяют же различные механизмы для того, чтобы в зависимости от условий работы выиграть в силе или в пути.

Уже древним ученым было известно правило, применимое ко всем механизмом: во сколько раз выигрываем в силе, во столько же раз проигрываем в расстоянии. Это правило назвали "золотым правилом" механики.

Коэффициент полезного действия механизма.

Рассматривая устройство и действие рычага, мы не учитывали трение, а также вес рычага. в этих идеальных условиях работа, совершенная приложенной силой (эту работу мы будем называть полной ), равна полезной работе по подъему грузов или преодоления какого - либо сопротивления.

На практике совершенная с помощью механизма полная работа всегда несколько больше полезной работы.

Часть работы совершается против силы трения в механизме и по перемещению его отдельных частей. Так, применяя подвижный блок, приходится дополнительно совершать работу по подъему самого блока, веревки и по определению силы трения в оси блока.

Какой мы механизм мы не взяли, полезная работа, совершенная с его помощью, всегда составляет лишь часть полной работы. Значит, обозначив полезную работу буквой Ап, полную(затраченную) работу буквой Аз, можно записать:

Ап < Аз или Ап / Аз < 1.

Отношение полезной работы к полной работе называется коэффициентом полезного действия механизма.

Сокращенно коэффициент полезного действия обозначается КПД.

КПД = Ап / Аз.

КПД обычно выражается в процентах и обозначается греческой буквой η, читается он как "эта":

η = Ап / Аз · 100%.

Пример : На коротком плече рычага подвешен груз массой 100 кг. Для его подъема к длинному плечу приложена сила 250 Н. Груз подняли на высоту h1 = 0,08 м, при этом точка приложения движущей силы опустилась на высоту h2 = 0,4 м. Найти КПД рычага.

Запишем условие задачи и решим ее.

Дано :

Решение :

η = Ап / Аз · 100%.

Полная (затраченная) работа Аз = Fh2.

Полезная работа Ап = Рh1

Р = 9,8 · 100 кг ≈ 1000 Н.

Ап = 1000 Н · 0,08 = 80 Дж.

Аз = 250 Н · 0,4 м = 100 Дж.

η = 80 Дж/100 Дж · 100% = 80%.

Ответ : η = 80%.

Но "золотое правило" выполняется и в этом случае. Часть полезной работы - 20% ее-расходуется на преодоление трения в оси рычага и сопротивления воздуха, а также на движение самого рычага.

КПД любого механизма всегда меньше 100%. Конструируя механизмы, люди стремятся увеличить их КПД. Для этого уменьшаются трение в осях механизмов и их вес.

Энергия.

На заводах и фабриках, станки и машины приводятся в движения с помощью электродвигателей, которые расходуют при этом электрическую энергию (отсюда и название).

Сжатая пружина (рис), распрямляясь, совершить работу, поднять на высоту груз, или заставить двигаться тележку.

Поднятый над землей неподвижный груз не совершает работы, но если этот груз упадет, он может совершить работу (например, может забить в землю сваю).

Способностью совершить работу обладает и всякое движущееся тело. Так, скатившийся с наклонной плоскости стальной шарик А (рис), ударившись о деревянный брусок В, передвигает его на некоторое расстояние. При этом совершается работа.

Если тело или несколько взаимодействующих между собой тел (система тел) могут совершить работу, говорится, что они обладают энергией.

Энергия - физическая величина, показывающая, какую работу может совершить тело (или несколько тел). Энергия выражается в системе СИ в тех же единицах, что и работу, т. е. в джоулях .

Чем большую работу может совершить тело, тем большей энергией оно обладает.

При совершении работы энергия тел изменяется. Совершенная работа равна изменению энергии.

Потенциальная и кинетическая энергия.

Потенциальной (от лат. потенция - возможность) энергией называется энергия, которая определяется взаимным положением взаимодействующих тел и частей одного и того же тела.

Потенциальной энергией, например, обладает тело, поднятое относительно поверхности Земли, потому что энергия зависит от взаимного положения его и Земли. и их взаимного притяжения. Если считать потенциальную энергию тела, лежащего на Земле, равной нулю, то потенциальная энергия тела, поднятого на некоторую высоту, определится работой, которую совершит сила тяжести при падении тела на Землю. Обозначим потенциальную энергию тела Е п, поскольку Е = А , а работа, как мы знаем, равна произведению силы на путь, то

А = Fh ,

где F - сила тяжести.

Значит, и потенциальная энергия Еп равна:

Е = Fh, или Е = gmh,

где g - ускорение свободного падения, m - масса тела, h - высота, на которую поднято тело.

Огромной потенциальной энергией обладает вода в реках, удерживаемая плотинами. Падая вниз, вода совершает работу, приводя в движение мощные турбины электростанций.

Потенциальную энергию молота копра (рис.) используют в строительстве для совершению работы по забиванию свай.

Открывая дверь с пружиной, совершается работа по растяжению (или сжатию) пружины. За счет приобретенной энергии пружина, сокращаясь (или распрямляясь), совершает работу, закрывая дверь.

Энергию сжатых и раскрученных пружин используют, например, в ручных часах, разнообразных заводных игрушках и пр.

Потенциальной энергией обладает всякое упругое деформированное тело. Потенциальную энергию сжатого газа используют в работе тепловых двигателей, в отбойных молотках, которые широко применяют в горной промышленности, при строительстве дорог, выемке твердого грунта и т. д.

Энергия, которой обладает тело вследствие своего движения, называется кинетической (от греч. кинема - движение) энергией.

Кинетическая энергия тела обозначается буквой Е к.

Движущаяся вода, приводя во вращение турбины гидроэлектростанций, расходует свою кинетическую энергию и совершает работу. Кинетической энергией обладает и движущийся воздух - ветер.

От чего зависит кинетическая энергия? Обратимся к опыту (см. рис.). Если скатывать шарик А с разных высот, то можно заметить, что чем с большей высоты скатывается шарик, тем больше его скорость и тем дальше он продвигает брусок, т. е. совершает большую работу. Значит, кинетическая энергия тела зависит от его скорости.

За счет скорости большой кинетической энергией обладает летящая пуля.

Кинетическая энергия тела зависит и от его массы. Еще раз проделаем наш опыт, но будем скатывать с наклонной плоскости другой шарик - большей массы. Брусок В передвинется дальше, т. е. будет совершена бóльшая работа. Значит, и кинетическая энергия второго шарика, больше, чем первого.

Чем больше масса тела и скорость, с которой он движется, тем больше его кинетическая энергия.

Для того чтобы определить кинетическую энергию тела, применяется формула:

Ек = mv^2 /2,

где m - масса тела, v - скорость движения тела.

Кинетическую энергию тел используют в технике. Удерживаемая плотиной вода обладает, как было уже сказано, большой потенциальной энергией. При падении с плотины вода движется и имеет такую же большую кинетическую энергию. Она приводит в движение турбину, соединенную с генератором электрического тока. За счет кинетической энергии воды вырабатывается электрическая энергия.

Энергия движущейся воды имеет большое значение в народном хозяйстве. Эту энергию используют с помощью мощных гидроэлектростанций.

Энергия падающей воды является экологически чистым источником энергии в отличие от энергии топлива.

Все тела в природе относительно условного нулевого значения обладают либо потенциальной, либо кинетической энергией, а иногда той и другой вместе. Например, летящий самолет обладает относительно Земли и кинетической и потенциальной энергией.

Мы познакомились с двумя видами механической энергии. Иные виды энергии (электрическая, внутренняя и др.) будут рассмотрены в других разделах курса физики.

Превращение одного вида механической энергии в другой.

Явление превращения одного вида механической энергии в другой очень удобно наблюдать на приборе, изображенном на рисунке. Накручивая на ось нить, поднимают диск прибора. Диск, поднятый вверх, обладает некоторой потенциальной энергией. Если его отпустить, то он, вращаясь, начнет падать. По мере падения потенциальная энергия диска уменьшается, но вместе с тем возрастает его кинетическая энергия. В конце падения диск обладает таким запасом кинетической энергии, что может опять подняться почти до прежней высоты. (Часть энергии расходуется на работу против силы трения, поэтому диск не достигает первоначальной высоты.) Поднявшись вверх, диск снова падает, а затем снова поднимается. В этом опыте при движении диска вниз его потенциальная энергия превращается в кинетическую, а при движении вверх кинетическая превращается в потенциальную.

Превращение энергии из одного вида в другой происходит также при ударе двух каких-нибудь упругих тел, например резинового мяча о пол или стального шарика о стальную плиту.

Если поднять над стальной плитой стальной шарик (рис) и выпустить его из рук, он будет падать. По мере падения шарика его потенциальная энергия убывает, а кинетическая растет, так как увеличивается скорость движения шарика. При ударе шарика о плиту произойдет сжатие как шарика, так и плиты. Кинетическая энергия, которой шарик обладал, превратится в потенциальную энергию сжатой плиты и сжатого шарика. Затем благодаря действию упругих сил плита и шарик, примут свою первоначальную форму. Шарик отскочит от плиты, а их потенциальная энергия вновь превратится в кинетическую энергию шарика: шарик отскочит вверх со скоростью, почти равной скорости, которой обладал в момент удара о плиту. При подъеме вверх скорость шарика, а значит, и его кинетическая энергия уменьшаются, потенциальная энергия увеличивается. отскочив от плиты, шарик поднимается почти до той же высоты, с которой начал падать. В верхней точке подъема вся его кинетическая энергия вновь превратится в потенциальную.

Явления природы обычно сопровождается превращением одного вида энергии в другой.

Энергия может и передаваться от одного тела к другому. Так, например, при стрельбе из лука потенциальная энергия натянутой тетивы переходит в кинетическую энергию летящей стрелы.

Работа силы в общем случае зависит от характера движения точки приложения силы. Следовательно, для вычисления работы надо знать движение этой точки. Но в природе имеются силы и примеры движения, для которых работу можно вычислить сравнительно просто, зная начальное и конечное положение точки.

Работа силы тяжести. Силу тяжести материальной точки массой вблизи поверхности Земли можно считать постоянной, равной , направленной по вертикали вниз. Если взять оси координат , где ось направлена по вертикали вверх, то

где – высота опускания точки.

При подъеме точки высота является отрицательной. Следовательно, в общем случае работа силы тяжести равна

Если имеем систему материальных точек, то для каждой точки с массой будем иметь работу ее силы тяжести

,

где – начальная и конечная координаты точки.

Работа всех сил тяжести системы материальных точек

где – масса системы точек; и – начальная и конечная координаты центра масс системы точек. Вводя обозначение для изменения высоты центра масс , имеем

Работа линейной силы упругости. Линейной силой упругости (или линейной восстанавливающей силой) называют силу, действующую по закону Гука:

где – расстояние от точки равновесия, где сила равна нулю, до рассматриваемой точки ; – постоянный коэффициент жесткости.

. (191)

По этой формуле вычисляют работу линейной силы упругости пружины при перемещении по любому пути из точки , в которой ее удлинение (начальная деформация) равно , в точку , где деформация соответственно равна . В новых обозначениях (191) принимает вид

. (191")

Работа силы, приложенной к твердому телу . Получим формулы для вычисления элементарной и полной работы силы, приложенной в какой-либо точке твердого тела, которое совершает то или иное движение. Сначала рассмотрим поступательное и вращательное движения тела, а затем общий случай движения твердого тела.

При поступательном движении твердого тела все точки тела имеют одинаковые по модулю и направлению скорости. Следовательно, если сила приложена к точке , то, так как ,

где – радиус-вектор произвольной точки твердого тела. На каком-либо перемещении полная работа

При вращении твердого тела вокруг неподвижной оси скорость точки можно вычислить по векторной формуле Эйлера:

тогда элементарную работу силы определим по формуле

. (194)

Таким образом, элементарная работа силы, приложенной к какой-либо точке тела, вращающегося вокруг неподвижной оси, равна произведению момента силы относительно оси вращения на дифференциал угла поворота тела.

Полная работа

. (195)

В частном случае, если момент силы относительно оси вращения является постоянным, т. е. , работу определяют по формуле

Используя определение мощности силы

. (197)

Мощность силы, приложенной к вращающемуся вокруг неподвижной оси твердому телу, равна произведению угловой скорости тела на момент силы относительно оси вращения тела.

Для свободного тела в общем случае движения скорость точки , в которой приложена сила ,

следовательно,

Таким образом, элементарная работа силы, приложенной в какой-либо точке твердого тела, в общем случае движения складывается из элементарной работы на элементарном поступательном перемещении вместе с какой-либо точкой тела и на элементарном вращательном перемещении вокруг этой точки.

В случае вращения твердого тела вокруг неподвижной точки, выбрав эту точку за полюс , для элементарной работы имеем

. (199)

Поворот на угол следует рассматривать в каждый момент времени вокруг своей мгновенной оси вращения.

Работа внутренних сил твердого тела. Для твердого тела сумма работ внутренних сил равна нулю при любом его перемещении.

Кинетическая энергия

Кинетическая энергия точки и системы . Кинетической энергией материальной точки называют половину произведения массы точки на квадрат ее скорости , т.е. или , так как скалярный квадрат любого вектора равен квадрату модуля этого вектора. Кинетическая энергия является скалярной положительной величиной.

Кинетической энергией системы называют сумму кинетических энергий всех точек механической системы , т. е.

. (200)

Кинетическая энергия как точки, так и сие темы не зависит от направления скоростей точек. Кинетическая энергия может быть равна нулю для системы только при условии, если все точки системы находятся в покое.

Вычисление кинетической энергии системы (теорема Кёнига): Кинетическая энергия системы в абсолютном движении складывается из кинетической энергии центра масс, если в нем сосредоточить всю массу системы, и кинетической энергии системы относительно центра масс:

, (201)

где .

Величина – кинетическая энергия относительного движения системы относительно системы координат, движущейся поступательно вместе с ее центром масс, или кинетическая энергией системы относительно центра масс.

Кинетическая энергия твердого тела . При поступательном движении твердого тела

, (202)

так как при поступательном движении твердого тела скорости всех точек тела одинаковы, т. е. , где – общая скорость для всех точек тела.

Определение

В том случае, если под воздействием силы происходит изменение модуля скорости движения тела, то говорят о том, что сила совершает работу . Считают, что если скорость увеличивается, то работа является положительной, если скорость уменьшается, то работа, которую совершает сила – отрицательна. Изменение кинетической энергии материальной точки в ходе ее движения между двумя положениями равно работе, которую совершает сила:

Действие силы на материальную точку можно охарактеризовать не только с помощью изменения скорости движения тела, но при помощи величины перемещения, которое совершает рассматриваемое тело под действием силы ().

Элементарная работа

Элементарная работа некоторой силы определяется как скалярное произведение:

Радиус – вектор точки, к которой приложена сила, - элементарное перемещение точки по траектории, – угол между векторами и . Если является тупым углом работа меньше нуля, если угол острый, то работа положительная, при

В декартовых координатах формула (2) имеет вид:

где F x ,F y ,F z – проекции вектора на декартовы оси.

При рассмотрении работы силы, приложенной к материальной точке можно использовать формулу:

где – скорость материальной точки, – импульс материальной точки.

Если на тело (механическую систему) действуют несколько сил одновременно, то элементарная работа, которую совершают эти силы над системой, равна:

где проводится суммирование элементарных работ всех сил, dt – малый промежуток времени, за который совершается элементарная работа над системой.

Результирующая работа внутренних сил, даже если твердое тело движется, равна нулю.

Пусть твердое тело вращается около неподвижной точки - начала координат (или неподвижной оси, которая проходит через эту точку). В таком случае, элементарная работа всех внешних сил (допустим, что их число равно n), которые действуют на тело, равна:

где – результирующий момент сил относительно точки вращения, – вектор элементарного поворота, – мгновенная угловая скорость.

Работа силы на конечном участке траектории

Если сила выполняет работу по перемещению тела на конечном участке траектории его движения, то работа может быть найдена как:

В том случае, если вектор силы – величина постоянная на всем отрезке перемещения, то:

где – проекция силы на касательную к траектории.

Единицы измерения работы

Основной единицей измерения момента работы в системе СИ является: [A]=Дж=Н м

В СГС: [A]=эрг=дин см

1Дж=10 7 эрг

Примеры решения задач

Пример

Задание. Материальная точка движется прямолинейно (рис.1) под воздействием силы, которая задана уравнением: . Сила направлена по движению материальной точки. Чему равна работа данной силы на отрезке пути от s=0 до s=s 0 ?

Решение. За основу решения задачи примем формулу расчёта работы вида:

где , та как по условию задачи . Подставим выражение для модуля силы заданное условиями, возьмем интеграл:

Ответ.

Пример

Задание. Материальная точка перемещается по окружности. Ее скорость изменяется в соответствии с выражением: . При этом работа силы, которая действует на точку, пропорциональна времени: . Каково значение n?

30.2.1. Работа силы тяжести на

конечном перемещении точки её приложения

Пусть материальная точка
перемещается из положения
в положение
по произволь-ной траектории- см. рис.3.

Рисунок 30.3

.

Принято называть: - геодезическая высота начального положения точки;- геодезическая высота конечного положения точки;
- разность геодезических высот. Таким образом:

- работа, совершаемая силой тяжести, не зависит от формы траектории точки её приложения и равна произведению модуля силы тяжести на разность геодезических высот начального и конечного положений этой точки.

30.2.2. Работа упругой силы на конечном перемещении точки её приложения

На рис.30.4:
- тело, к которому приложена упругая сила ; - положение тела, соответствующее недеформированному состоянию пружины;

- координ

К выводу формулы для вычис-ления работы упругой силы

ата, определяющая некоторое текущее положение тела
.

В
соответствии с законом Гука
, где - жёсткость пружины, - величина её деформации. Изображённый на рис.30.4 треугольник называют эпюрой упругой силы.

Работу упругой силы при перемещении тела из некоторого деформированного состояния, определяемого координатой , в недеформи-рованное (
), называют полной работой упругой силы.

Рисунок 30.4

полная работа упругой силы (при переведении упругого элемента в недеформированное его состояние) определяется формулой

.

Неполная работа упругой силы (допустимо сокращение: «работа упругой силы») – это работа, совершаемая упругим элементом при переходе из одного своего деформированного состояния в другое. Ясно, что:

работа упругой силы равна площади той части треугольной своей эпюры, которая расположена между координатами, отличающими одно деформированное состояние упругого элемента от другого.

30.2.3. Работа гравитационной силы

Н

К выводу формулы для вычисления работы гравитационной силы


а рис.30.5:
- притягивающий центр (Земля, Солнце и т.д.); - притягиваемая масса; - сила притяжения, определяется по закону Ньютона:
. Ось начинается в
, - некоторое конечное значение координаты .

Полная работа гравитационной силы (
) – это работа, которую она совершит при перемещении притягиваемой массы из бесконечности в положение, определяемое расстоянием . Выведем формулу для её

Рисунок 30.5

вычисления:

полная работа гравитационной силы (совершаемая ею при перемещении притягиваемой массы из бесконечности в положение, определяемое расстоянием от притягивающего центра) определяется формулой
.

Самостоятельно получите результат:

работа гравитационной силы, затрачиваемая на перемещение притягиваемой массы из положения в определяется формулой

.

30.3. Формулы для вычислений суммарных мощностей сил, действующих на твёрдые тела

30.3.1. Случай поступательного движения

Мощности, развиваемые отдельными силами:

Т.к. тело движется поступательно, то

просто .

Поэтому суммарная мощность:

суммарная мощность сил, приложенных к поступательно движущемуся телу, определяется как мощность отдельной силы, равной главному вектору действующих на это тело сил и точка приложения которой перемещается со скоростью тела.

8.3.2. Случай сферического движения

суммарная мощность сил, приложенных к сферически движущемуся телу, определяется как мощность отдельной, приложенной к этому телу, пары сил, момент которой равен главному моменту действующих на тело внешних сил.

30.3.3. Случай вращательного движения

Вращательное движение – частный случай сферического.

Пусть осью вращения является . Тогда

суммарная мощность сил, приложенных к вращательно движущемуся телу, определяется как произведение главного момента внешних сил относительно оси вращения на проекцию угловой скорости на ту же ось.

При решении конкретных задач часто приходится иметь дело с постоянными моментами сил и, при этом, определять их работу на конечных перемещениях. Применительно к такому случаю имеем:

(после интегрирования)
, т.е.:

суммарная работа сил на конечном повороте тела определяется как произведение главного момента внешних сил относительно оси вращения на произошедшее приращение угловой координаты.