Физика динамика движение вверх по наклонной плоскости. Движение по наклонной плоскости

Динамика является одним из важных разделов физики, который изучает причины движения тел в пространстве. В данной статье рассмотрим с точки зрения теории одну из типичных задач динамики — движение тела по наклонной плоскости, а также приведем примеры решений некоторых практических проблем.

Основная формула динамики

Прежде чем переходить к изучению физики движения тела по плоскости наклонной, приведем необходимые теоретические сведения для решения этой задачи.

В XVII Исаак Ньютон благодаря практическим наблюдениям за движением макроскопических окружающих тел вывел три закона, носящих в настоящее время его фамилию. На этих законах зиждется вся классическая механика. Нас интересует в данной статье лишь второй закон. Его математический вид приведен ниже:

Формула говорит о том, что действие внешней силы F¯ придаст ускорение a¯ телу массой m. Это простое выражение будем далее использовать для решения задач движения тела по плоскости наклонной.

Отметим, что сила и ускорение — это величины векторные, направленные в одну и ту же сторону. Кроме того, сила — это аддитивная характеристика, то есть в приведенной формуле F¯ можно рассматривать как результирующее воздействие на тело.

Наклонная плоскость и силы, действующие на тело, находящееся на ней

Ключевым моментом, от которого зависит успех решения задач движения тела по плоскости наклонной, является определение действующих на тело сил. Под определением сил понимают знание их модулей и направлений действия.

Ниже дан рисунок, где показано, что тело (автомобиль) находится в покое на наклоненной под углом к горизонту плоскости. Какие силы на него действуют?

Список ниже перечисляет эти силы:

  • тяжести;
  • реакции опоры;
  • трения;
  • натяжения нити (если присутствует).

Сила тяжести


В первую очередь это сила тяжести (F g). Она направлена вертикально вниз. Поскольку тело имеет возможность двигаться только вдоль поверхности плоскости, то при решении задач силу тяжести разлагают на две взаимно перпендикулярные составляющие. Одна из составляющих направлена вдоль плоскости, другая — перпендикулярна ей. Только первая из них приводит к появлению у тела ускорения и, по сути, является единственным движущим фактором для рассматриваемого тела. Вторая составляющая обуславливает возникновение силы реакции опоры.

Реакция опоры

Второй действующей на тело силой является реакция опоры (N). Причина ее появления связана с третьим законом Ньютона. Величина N показывает, с какой силой плоскость воздействует на тело. Она направлена вверх перпендикулярно плоскости наклонной. Если бы тело находилось на горизонтальной поверхности, то N равнялась бы его весу. В рассматриваемом же случае N равна лишь второй составляющей, полученной при разложении силы тяжести (см. абзац выше).

Реакция опоры не оказывает прямого воздействия на характер движения тела, поскольку она перпендикулярна плоскости наклона. Тем не менее она обуславливает появление трения между телом и поверхностью плоскости.

Сила трения


Третьей силой, которую следует учитывать при исследовании движения тела по наклонной плоскости, является трение (F f). Физическая природа трения является непростой. Ее появление связано с микроскопическими взаимодействиями соприкасающихся тел, имеющих неоднородные поверхности контакта. Выделяют три вида этой силы:

  • покоя;
  • скольжения;
  • качения.

Трение покоя и скольжения описываются одной и той же формулой:

где µ — это безразмерный коэффициент, значение которого определяется материалами трущихся тел. Так, при трении скольжения дерева о дерево µ = 0,4, а льда о лед — 0,03. Коэффициент для трения покоя всегда больше такового для скольжения.

Трение качения описывается по отличной от предыдущей формуле. Она имеет вид:

Здесь r — радиус колеса, f — коэффициент, имеющий размерность обратной длины. Эта сила трения, как правило, намного меньше предыдущих. Заметим, что на ее значение влияет радиус колеса.

Сила F f , какого бы типа она ни была, всегда направлена против движения тела, то есть F f стремится остановить тело.

Натяжение нити

При решении задач движения тела по наклонной плоскости эта сила не всегда присутствует. Ее появление определяется тем, что находящееся на наклонной плоскости тело связано с помощью нерастяжимой нити с другим телом. Часто второе тело свисает на нити через блок за пределами плоскости.

На находящийся на плоскости предмет, сила натяжение нити воздействует либо ускоряя его, либо замедляя. Все зависит от модулей сил, действующих в физической системе.

Появление этой силы в задаче значительно усложняет процесс решения, поскольку приходится рассматривать одновременно движение двух тел (на плоскости и свисающего).


Задача на определение критического угла

Теперь пришло время применить описанную теорию для решения реальных задач движения по наклонной плоскости тела.

Предположим, что брус из дерева имеет массу 2 кг. Он находится на деревянной плоскости. Следует определить, при каком критическом угле наклона плоскости брус начнет по ней скользить.

Скольжение бруса наступит только тогда, когда суммарная действующая вниз вдоль плоскости сила на него окажется больше нуля. Таким образом, чтобы решить эту задачу, достаточно определить результирующую силу и найти угол, при котором она станет больше нуля. Согласно условию задачи на брус будут вдоль плоскости оказывать действие только две силы:

  • составляющая силы тяжести F g1 ;
  • трение покоя F f .

Чтобы началось скольжение тела, должно выполняться условие:

Отметим, что если составляющая силы тяжести превысит трение покоя, то она также будет больше силы трения скольжения, то есть начавшееся движение будет продолжаться с постоянным ускорением.

Рисунок ниже показывает направления всех действующих сил.


Обозначим критический угол символом θ. Несложно показать, что силы F g1 и F f будут равны:

F g1 = m × g × sin(θ);

F f = µ × m × g × cos(θ).

Здесь m × g — это вес тела, µ — коэффициент силы трения покоя для пары материалов дерево-дерево. Из соответствующей таблицы коэффициентов можно найти, что он равен 0,7.

Подставляем найденные величины в неравенство, получаем:

m × g × sin(θ) ≥ µ × m × g × cos(θ).

Преобразуя это равенство, приходим к условию движения тела:

tg(θ) ≥ µ =>

θ ≥ arctg(µ).

Мы получили весьма интересный результат. Оказывается, значение критического угла θ не зависит от массы тела на наклонной плоскости, а однозначно определяется коэффициентом трения покоя µ. Подставляя его значение в неравенство, получим величину критического угла:

θ ≥ arctg(0,7) ≈ 35 o .

Задача на определение ускорения при движении по наклонной плоскости тела


Теперь решим несколько иную задачу. Пусть на стеклянной наклонной плоскости находится брус из дерева. Плоскость к горизонту наклонена под углом 45 o . Следует определить, с каким ускорением будет двигаться тело, если его масса равна 1 кг.

Запишем главное уравнение динамики для этого случая. Поскольку сила F g1 будет направлена вдоль движения, а F f против него, то уравнение примет вид:

F g1 — F f = m × a.

Подставляем полученные в предыдущей задаче формулы для сил F g1 и F f , имеем:

m × g × sin(θ) — µ × m × g × cos(θ) = m × a.

Откуда получаем формулу для ускорения:

a = g × (sin(θ) — µ × cos(θ)).

Снова мы получили формулу, в которой нет массы тела. Этот факт означает, что бруски любой массы будут соскальзывать за одно и то же время по наклонной плоскости.

Учитывая, что коэффициент µ для трущихся материалов дерево-стекло равен 0,2, подставим все параметры в равенство, получим ответ:

Таким образом, методика решения задач с наклонной плоскостью заключается в определении результирующей силы, действующей на тело, и в последующем применении второго закона Ньютона.

Физика: движение тела по наклонной плоскости. Примеры решения и задачи — все интересные факты и достижения науки и образования на сайт

Динамика и кинематика - это два важных раздела физики, которые изучают законы перемещения объектов в пространстве. Первый рассматривает действующие на тело силы, второй же занимается непосредственно характеристиками динамического процесса, не вникая в причины того, что его вызвало. Знание этих разделов физики необходимо применять для успешного решения задач на движение по наклонной плоскости. Рассмотрим этот вопрос в статье.

Основная формула динамики

Конечно же, речь идет о втором законе, который постулировал Исаак Ньютон в XVII веке, изучая механическое движение твердых тел. Запишем его в математической форме:

Действие внешней силы F¯ вызывает появление линейного ускорения a¯ у тела с массой m. Обе векторные величины (F¯ и a¯) направлены в одну и ту же сторону. Сила в формуле является результатом действия на тело всех сил, которые присутствуют в системе.

В случае движения вращения второй закон Ньютона записывается в виде:

Здесь M и I - и инерции, соответственно, α - угловое ускорение.

Формулы кинематики

Решение задач на движение по наклонной плоскости требует знания не только главной формулы динамики, но и соответствующих выражений кинематики. Они связывают в равенства ускорение, скорость и пройденный путь. Для равноускоренного (равнозамедленного) прямолинейного движения применяются следующие формулы:

S = v 0 *t ± a*t 2 /2

Здесь v 0 - значение начальной скорости тела, S - пройденный за время t путь вдоль прямолинейной траектории. Знак "+" следует поставить, если скорость тела увеличивается с течением времени. В противном случае (равнозамедленное движение) следует использовать в формулах знак "-". Это важный момент.

Если движение осуществляется по круговой траектории (вращение вокруг оси), тогда следует использовать такие формулы:

ω = ω 0 ± α*t;

θ = ω 0 *t ± α*t 2 /2

Здесь α и ω - и скорость, соответственно, θ - угол поворота вращающегося тела за время t.

Линейные и угловые характеристики друг с другом связаны формулами:

Здесь r - радиус вращения.

Движение по наклонной плоскости: силы

Под этим движением понимают перемещение некоторого объекта вдоль плоской поверхности, которая наклонена под определенным углом к горизонту. Примерами может служить соскальзывание бруска по доске или качение цилиндра по металлическому наклоненному листу.

Для определения характеристик рассматриваемого типа движения необходимо в первую очередь найти все силы, которые действуют на тело (брусок, цилиндр). Они могут быть разными. В общем случае это могут быть следующие силы:

  • тяжести;
  • реакции опоры;
  • и/или скольжения;
  • натяжение нити;
  • сила внешней тяги.

Первые три из них присутствуют всегда. Существование последних двух зависит от конкретной системы физических тел.

Чтобы решать задачи на перемещение по плоскости наклонной необходимо знать не только модули сил, но и их направления действия. В случае, если тело по плоскости скатывается, сила трения неизвестна. Однако она определяется из соответствующей системы уравнений движения.

Методика решения

Решения задач данного типа начинается с определения сил и их направлений действия. Для этого в первую очередь рассматривают силу тяжести. Ее следует разложить на два составляющих вектора. Один из них должен быть направлен вдоль поверхности наклонной плоскости, а второй должен быть ей перпендикулярен. Первая составляющая силы тяжести, в случае движения тела вниз, обеспечивает его линейное ускорение. Это происходит в любом случае. Вторая равна Все эти показатели могут иметь различные параметры.

Сила трения при движении по наклонной плоскости всегда направлена против перемещения тела. Если речь идет о скольжении, то вычисления довольно просты. Для этого следует использовать формулу:

Где N - реакция опоры, µ - коэффициент трения, не имеющий размерности.

Если в системе присутствуют только указанные три силы, тогда их результирующая вдоль наклонной плоскости будет равна:

F = m*g*sin(φ) - µ*m*g*cos(φ) = m*g*(sin(φ) - µ*cos(φ)) = m*a

Здесь φ - это угол наклона плоскости к горизонту.

Зная силу F, можно по закону Ньютона определить линейное ускорение a. Последнее, в свою очередь, используется для определения скорости движения по наклонной плоскости через известный промежуток времени и пройденного телом расстояния. Если вникнуть, то можно понять, что все не так уж и сложно.

В случае, когда тело скатывается по наклонной плоскости без проскальзывания, суммарная сила F будет равна:

F = m*g*sin(φ) - F r = m*a

Где F r - Она неизвестна. Когда тело катится, то сила тяжести не создает момента, поскольку приложена к оси вращения. В свою очередь, F r создает следующий момент:

Учитывая, что мы имеем два уравнения и две неизвестных (α и a связаны друг с другом), можно легко решить эту систему, а значит, и задачу.

Теперь рассмотрим, как использовать описанную методику при решении конкретных задач.

Задача на движение бруска по наклонной плоскости

Деревянный брусок находится в верхней части наклонной плоскости. Известно, что она имеет длину 1 метр и располагается под углом 45 o . Необходимо вычислить, за какое время брусок опустится по этой плоскости в результате скольжения. Коэффициент трения принять равным 0,4.

Записываем закон Ньютона для данной физической системы и вычисляем значение линейного ускорения:

m*g*(sin(φ) - µ*cos(φ)) = m*a =>

a = g*(sin(φ) - µ*cos(φ)) ≈ 4,162 м/с 2

Поскольку нам известно расстояние, которое должен пройти брусок, то можно записать следующую формулу для пути при равноускоренном движении без начальной скорости:

Откуда следует выразить время, и подставить известные значения:

t = √(2*S/a) = √(2*1/4,162) ≈ 0,7 с

Таким образом, время движения по наклонной плоскости бруска составит меньше секунды. Заметим, что полученный результат от массы тела не зависит.

Задача со скатывающимся по плоскости цилиндром

Цилиндр радиусом 20 см и массой 1 кг помещен на наклонную под углом 30 o плоскость. Следует вычислить его максимальную линейную скорость, которую он наберет при скатывании с плоскости, если ее длина составляет 1,5 метра.

Запишем соответствующие уравнения:

m*g*sin(φ) - F r = m*a;

F r *r = I*α = I*a/r

Момент инерции I цилиндра вычисляется по формуле:

Подставим это значение во вторую формулу, выразим из нее силу трения F r и заменим полученным выражением ее в первом уравнении, имеем:

F r *r = 1/2*m*r 2 *a/r = >

m*g*sin(φ) - 1/2*m*a = m*a =>

a = 2/3*g*sin(φ)

Мы получили, что линейное ускорение не зависит от радиуса и массы скатывающегося с плоскости тела.

Зная, что длина плоскости составляет 1,5 метра, найдем время движения тела:

Тогда максимальная скорость движения по наклонной плоскости цилиндра будет равна:

v = a*t = a*√(2*S/a) = √(2*S*a) = √(4/3*S*g*sin(φ))

Подставляем все известные из условия задачи величины в конечную формулу, получаем ответ: v ≈ 3,132 м/c.

Аналогично рычагу , наклонные плоскости уменьшают усилие, необходимое для подъема тел. Например, бетонный блок весом 45 килограммов поднять руками довольно сложно, однако втащить его наверх по наклонной плоскости вполне возможно. Вес тела, размещенного на наклонной плоскости, раскладывается на две составляющие, одна из которых параллельна, а другая перпендикулярна ее поверхности. Для перемещения блока вверх по наклонной плоскости человек должен преодолеть только параллельную составляющую, величина которой растет с увеличением угла наклона плоскости.

Наклонные плоскости весьма разнообразны по конструктивному выполнению. Например, винт состоит из наклонной плоскости (резьбы), обвивающей по спирали его цилиндрическую часть. При вворачивании винта в деталь, его резьба проникает в тело детали, образуя очень прочное соединение за счет большого трения между деталью и витками резьбы. Тиски преобразуют действие рычага и вращательное движение винта в линейную сдавливающую силу. По такому же принципу работает и домкрат, используемый для подъема тяжелых грузов.

Силы на наклонной плоскости

У тела, находящегося на наклонной плоскости, сила тяжести действует параллельно и перпендикулярно ее поверхности. Для перемещения тела вверх по наклонной плоскости необходима сила, равная по величине составляющей силы тяжести, параллельной поверхности плоскости.

Наклонные плоскости и винты

Родство винта с наклонной плоскостью легко проследить, если обернуть цилиндр разрезанным по диагонали листом бумаги. Образующаяся спираль идентична по расположению резьбе винта.

Силы, действующие на винт

При повороте винта его резьба создает очень большую силу, приложенную к материалу детали, в которую он ввернут. Эта сила тащит винт вперед, если он поворачивается по часовой стрелке, и назад, если он поворачивается против часовой стрелки.

Винт для подъема тяжестей

Вращающиеся винты домкратов развивают огромную силу, позволяя им поднимать столь тяжелые тела как легковые или грузовые автомобили. При повороте центрального винта рычагом два конца домкрата стягиваются вместе, производя необходимый подъем.

Наклонные плоскости для расщепления

Клин состоит из двух наклонных плоскостей, соединенных своими основаниями. При забивании клина в дерево наклонные плоскости развивают боковые силы, достаточные для расщепления самых прочных пиломатериалов.

Сила и работа

Несмотря на то, что наклонная плоскость может облегчить задачу, она не уменьшает количество работы, требующееся для ее выполнения. Подъем бетонного блока весом 45 кг (W) на 9 метров вертикально вверх (дальний рисунок справа) требует совершения работы 45x9 килограммометров, что соответствует произведению веса блока на величину перемещения. Когда блок находится на наклонной плоскости с углом наклона 44,5°, сила (F), необходимая для втаскивания блока, уменьшается до 70 процентов от его веса. Хотя это и облегчает перемещение блока, зато теперь, чтобы, поднять блок на высоту 9 метров, его необходимо тащить по плоскости 13 метров. Другими словами выигрыш в силе равен высоте подъема (9 метров), деленной на длину перемещения по наклонной плоскости (13 метров).

Пусть небольшое тело находится на наклонной плоскости с углом наклона a (рис. 14.3,а ). Выясним: 1) чему равна сила трения, если тело скользит по наклонной плоскости; 2) чему равна сила трения, если тело лежит неподвижно; 3) при каком минимальном значении угла наклона a тело начинает соскальзывать с наклонной плоскости.

а) б)

Сила трения будет препятство­вать движению, следовательно, она будет направлена вверх по наклонной плоскости (рис. 14.3,б ). Кроме силы трения, на тело действуют еще сила тяжести и сила нормальной реакции . Введем систему координат ХОУ , как по­казано на рисунке, и найдем проекции всех указанных сил на коор­динатные оси:

Х : F трХ = –F тр, N X = 0, mg X = mg sina;

Y : F трY = 0, N Y = N , mg Y = –mg cosa.

Поскольку ускоряться тело может только по наклонной плоскости, то есть вдоль оси X , то очевидно, что проекция вектора ускорения на ось Y всегда будет равна нулю: а Y = 0, а значит, сумма проекций всех сил на ось Y также должна равняться нулю:

F трY + N Y + mg Y = 0 Þ 0 + N – mg cosa = 0 Þ

N = mg cosa. (14.4)

Тогда сила трения скольжения согласно формуле (14.3) равна:

F тр.ск = mN = mmg cosa. (14.5)

Если тело покоится , то сумма проекций всех сил, действующих на тело, на ось Х должна равняться нулю:

F трХ + N Х + mg Х = 0 Þ –F тр + 0 + mg sina = 0 Þ

F тр.п = mg sina. (14.6)

Если мы будем постепенно увеличивать угол наклона, то величина mg sina будет постепенно увеличиваться, а значит, будет уве­личиваться и сила трения покоя, которая всегда «автоматически подстраивается» под внешнее воздействие и компенсирует его.

Но, как мы знаем, «возможности» силы трения покоя не безгранич­ны. При каком-то угле a 0 весь «ресурс» силы трения покоя будет исчерпан: она достигнет своего максимального значения, равного силе трения скольжения. Тогда будет справедливо равенство:

F тр.ск = mg sina 0 .

Подставив в это равенство значение F тр.ск из формулы (14.5), получим: mmg cosa 0 = mg sina 0 .

Разделив обе части последнего равенства на mg cosa 0 , получим:

Þ a 0 = arctgm.

Итак, угол a, при котором начинается скольжение тела по наклонной плоскости, задается формулой:

a 0 = arctgm. (14.7)

Заметим, что если a = a 0 , то тело может или лежать неподвижно (если к нему не прикасаться), или скользить с постоянной скоростью вниз по наклонной плоскости (если его чуть-чуть толкнуть). Если a < a 0 , то тело «стабильно» неподвижно, и легкий толчок не произведет на него никакого «впечатления». А если a > a 0 , то тело будет соскальзывать с наклонной плоскости с ускорением и безо всяких толчков.

Задача 14.1. Человек везет двое связанных между собой саней (рис. 14.4,а ), прикладывая силу F под углом a к горизонту. Массы саней одинаковы и равны т . Коэффициент трения полозьев по снегу m. Найти ускорение саней и силу натяжения Т веревки между санями, а также силу F 1 , с которой должен тянуть веревку человек для того, чтобы сани двигались равномерно.

F a m m а) б) Рис. 14.4
а = ? Т = ? F 1 = ?

Решение . Запишем второй закон Ньютона для каждых саней в проекциях на оси х и у (рис. 14.4,б ):

I у : N 1 + F sina – mg = 0, (1)

x : F cosa – T – mN 1 = ma ; (2)

II у : N 2 – mg = 0, (3)

x : T – mN 2 = ma . (4)

Из (1) находим N 1 = mg – F sina, из (3) и (4) находим Т = mmg+ + ma. Подставляя эти значения N 1 и Т в (2), получаем

.

Подставляя а в (4), получаем

T = mN 2 + ma = mmg + та =

Mmg + т .

Чтобы найти F 1 , приравняем выражение для а к нулю:

Ответ : ; ;

.

СТОП! Решите самостоятельно: В1, В6, С3.

Задача 14.2. Два тела массами т и М связаны нитью, как показано на рис. 14.5,а . С каким ускорением движется тело М , если коэффициент трения о поверхность стола m. Каково натяжение нити Т ? Какова сила давления на ось блока?

т М m Решение. Запишем второй закон Ньютона в проекциях на оси х 1 и х 2 (рис. 14.5,б ), учитывая, что : х 1: Т – mMg = Ма , (1) х 2: mg – T = ma . (2) Решая систему уравнений (1) и (2), находим:
а = ? Т = ? R = ?

Если грузы не движутся, то .

Ответ : 1) если т < mМ , то а = 0, Т = mg , ; 2) если т ³ mМ , то , , .

СТОП! Решите самостоятельно: В9–В11, С5.

Задача 15.3. Два тела массами т 1 и т 2 связаны нитью, перекинутой через блок (рис. 14.6). Тело т 1 находится на наклонной плоскости с углом наклона a. Коэффициент трения о плоскость m. Тело массой т 2 висит на нити. Найти ускорение тел, силу натяжения нити и силу давления блока на ось при условии, когда т 2 < т 1 . Считать tga > m.

Рис. 14.7

Запишем второй закон Ньютона в проекциях на оси х 1 и х 2 , учитывая, что и :

х 1: т 1 g sina – Т – mm 1 g cosa = m 1 a ,

х 2: T – m 2 g = m 2 a .

, .

Так как а >0, то

Если неравенство (1) не выполняется, то груз т 2 точно не движется вверх! Тогда возможны еще два варианта: 1) система неподвижна; 2) груз т 2 движется вниз (а груз т 1 , соответственно, вверх).

Предположим, что груз т 2 движется вниз (рис. 14.8).

Рис. 14.8

Тогда уравнения второго закона Ньютона на оси х 1 и х 2 будут иметь вид:

х 1: Т – т 1 g sina mm 1 g cosa = m 1 a ,

х 2: m 2 g – Т = m 2 a .

Решая эту систему уравнений, находим:

, .

Так как а >0, то

Итак, если выполняется неравенство (1), то груз т 2 едет вверх, а если выполняется неравенство (2), то – вниз. Следовательно, если не выполняется ни одно из этих условий, т.е.

,

система неподвижна.

Осталось найти силу давления на ось блока (рис. 14.9). Силу давления на ось блока R в данном случае можно найти как диагональ ромба АВСD . Так как

ÐADC = 180° – 2 ,

где b = 90°– a, то по теореме косинусов

R 2 = .

Отсюда .

Ответ :

1) если , то , ;

2) если , то , ;

3) если , то а = 0; Т = т 2 g .

Во всех случаях .

СТОП! Решите самостоятельно: В13, В15.

Задача 14.4. На тележку массой М действует горизонтальная сила F (рис. 14.10,а ). Коэффициент трения между грузом т и тележкой равен m. Определить ускорение грузов. Какой должна быть минимальная сила F 0 , чтобы груз т начал скользить по тележке?

M , т F m а) б) Рис. 14.10
а 1 = ? а 2 = ? F 0 = ?

Решение . Сначала заметим, что сила, приводящая груз т в движение, – это сила трения покоя , с которой тележка действует на груз. Максимально возможное значение этой силы равно mmg .

По третьему закону Ньютона груз действует на тележку с такой же по величине силой – (рис. 14.10,б ). Проскальзывание начинается в тот момент, когда уже достигла своего максимального значения , но система еще движется как одно тело массой т +М с ускорением . Тогда по второму закону Ньютона

Тело массой 2 кг под действием силы F перемещается вверх по наклонной плоскости на расстояние расстояние тела от поверхности Земли при этом увеличивается на

Вектор силы F направлен параллельно наклонной плоскости, модуль силы F равен 30 Н. Какую работу при этом перемещении совершила сила тяжести? (Ответ дайте в джоулях.) Ускорение свободного падения примите равным коэффициент трения

Решение.

Работа силы определяется как скалярное произведение вектора силы и вектора перемещения тела. Следовательно, сила тяжести при подъеме тела вверх по наклонной плоскости совершила работу ( - угол при основании наклонной плоскости)

Ответ: −60.

Альтернативный способ решения.

Сила тяжести относится к типу сил, называемых потенциальными. Эти силы обладают таким свойством, что их работа по любому замкнутому пути всегда равна нулю (это можно считать определением). В качестве других примеров потенциальных сил можно упомянуть силу упругости, подчиняющуюся закону Гука кулоновскую силу взаимодействия зарядов силу всемирного тяготения (как обобщение простой силы тяжести) Примером непотенциальной силы, то есть не обладающей вышеописанным свойством, может служить, например, сила трения.

Как легко заметить, для всех сил, которые здесь названы потенциальными определена величина потенциальной энергии: - для силы тяжести, - для силы упругости, - для сил кулоновского взаимодействия, и, наконец, - для силы всемирного тяготения. Оказывается, что именно замечательное свойство потенциальных сил, легшее в основу их определения, и позволяется ввести для них понятия соответствующих потенциальных энергий. В общем случае это делается следующим образом. Пусть при переносе тела из точки 1 в точку 2 потенциальная сила совершила работу Тогда, по определению, говорят, что разность значений соответствующей потенциальной энергии в точках 2 и 1 равна Поскольку это определение содержит всегда только разность потенциальных энергий в двух точках, потенциальная энергия всегда оказывается определенной с точностью до константы. Это должен быть хорошо известный вам факт. Применим теперь это к данной задаче.

Нам требуется найти работу силы тяжести, для силы тяжести мы знаем, что такое потенциальная энергия. По выписанной ранее формуле получаем. Что искомая работа равна изменению потенциальной энергии тела, взятой со знаком минус. Высота тела над поверхностностью Земли увеличилась на следовательно, его энергия увеличилась на

А значит, работа силы тяжести равна

В качестве закрепления материала, предлагаю рассмотреть следующую задачу. С поверхности Земли стартует ракета массой Определите, какую работу совершит сила притяжения со стороны Земли к тому моменту, когда ракета будет находиться на расстоянии двух земных радиусов от центра Земли.

Решение.

Использовать в лоб формулу «» не удастся, поскольку сила притяжения уменьшается по мере удаления от Земли, единственный шанс применить эту формулу - начать интегрировать. Мы это оставим и попробуем ещё раз применить наши знания. Сила притяжения к Земле является потенциальной. Для неё мы знаем величину потенциальной энергии. Определим на сколько изменится потенциальная энергия ракеты.

Следовательно, сила притяжения совершила работу

Как и ожидалось, эта работа отрицательна.

Пример для самостоятельного разбора:

Пружина жесткостью 10 Н/м растянута на 5 см, какую работу совершит сила упругости при её растяжении ещё на 5 см?