Теорема гаусса для электростатического поля в веществе. Применение теоремы Гаусса для расчета электрических полей

Электростатическое поле наглядно можно изобразить с помощью силовых линий (линий напряженности). Силовыми линиями называют кривые, касательные к которым в каждой точке совпадают с вектором напряженности Е .

Силовые линии являются условным понятием и реально не существуют. Силовые линии одиночного отрицательного и одиночного положительного зарядов изображены на рис. 5 - это радиальные прямые, выходящие от положительного заряда или идущие к отрицательному заряду.

Если густота и направление силовых линий по всему объему поля сохраняются неизменными, такое электростатическое поле считается однородным (выделение">число линий должно быть численно равно напряженности поля Е .

Число силовых линий пометка">dS, перпендикулярную к ним, определяет поток вектора напряженности электростатического поля:

формула" src="http://hi-edu.ru/e-books/xbook785/files/17-1.gif" border="0" align="absmiddle" alt=" - проекция вектора Е на направление нормали n к площадке dS (рис. 6 ).

Соответственно поток вектора Е сквозь произвольную замкнутую поверхность S

пометка">S не только величина, но и знак потока могут меняться:

1) при формула" src="http://hi-edu.ru/e-books/xbook785/files/17-4.gif" border="0" align="absmiddle" alt="

3) при выделение">Найдем поток вектора Е сквозь сферическую поверхность S, в центре которой находится точечный заряд q.

В этом случае пометка">Е и n во всех точках сферической поверхности совпадают.

С учетом напряженности поля точечного заряда формула" src="http://hi-edu.ru/e-books/xbook785/files/18-2.gif" border="0" align="absmiddle" alt=" получим

формула" src="http://hi-edu.ru/e-books/xbook785/files/Fe.gif" border="0" align="absmiddle" alt=" - алгебраическая величина, зависящая от знака заряда. Например, при q <0 линии Е направлены к заряду и противоположны направлению внешней нормали n ..gif" border="0" align="absmiddle" alt=" вокруг заряда q имеет произвольную форму. Очевидно, что поверхность пометка">Е, что и поверхность S. Следовательно, поток вектора Е сквозь произвольную поверхность формула" src="http://hi-edu.ru/e-books/xbook785/files/Fe.gif" border="0" align="absmiddle" alt=".

Если заряд будет находиться вне замкнутой поверхности, то, очевидно, сколько линий войдет в замкнутую область, столько же из нее и выйдет. В результате поток вектора Е будет равен нулю.

Если электрическое поле создается системой точечных зарядов формула" src="http://hi-edu.ru/e-books/xbook785/files/18-4.gif" border="0" align="absmiddle" alt="

Эта формула является математическим выражением теоремы Гаусса: поток вектора напряженности Е электрического поля в вакууме через произвольную замкнутую поверхность равен алгебраической сумме зарядов, которые она охватывает, деленной на формула" src="http://hi-edu.ru/e-books/xbook785/files/18-6.gif" border="0" align="absmiddle" alt="

Для полноты описания представим теорему Гаусса еще и в локальной форме, опираясь не на интегральные соотношения, а на параметры поля в данной точке пространства. Для этого удобно использовать дифференциальный оператор - дивергенцию вектора, -

формула" src="http://hi-edu.ru/e-books/xbook785/files/nabla.gif" border="0" align="absmiddle" alt=" («набла») -

формула" src="http://hi-edu.ru/e-books/xbook785/files/19-1.gif" border="0" align="absmiddle" alt="

В математическом анализе известна теорема Гаусса-Остроградского: поток вектора через замкнутую поверхность равен интегралу от его дивергенции по объему, ограниченному этой поверхностью, -

формула" src="http://hi-edu.ru/e-books/xbook785/files/ro.gif" border="0" align="absmiddle" alt=":

формула" src="http://hi-edu.ru/e-books/xbook785/files/19-4.gif" border="0" align="absmiddle" alt="

Это выражение и есть теорема Гаусса в локальной (дифференциальной) форме.

Теорема Гаусса (2.2) позволяет определять напряженности различных электростатических полей. Рассмотрим несколько примеров применения теоремы Гаусса.

1. Вычислим Е электростатического поля, создаваемого равномерно заряженной сферической поверхностью.

Предположим, что сферическая поверхность радиуса R несет на себе равномерно распределенный заряд q, т.е. поверхностная плотность заряда всюду одинакова пометка">r >R от центра сферы мысленно построим новую сферическую поверхность S, симметричную заряженной сфере. В соответствии с теоремой Гаусса

формула" src="http://hi-edu.ru/e-books/xbook785/files/20-1.gif" border="0" align="absmiddle" alt="

Для точек, находящихся на поверхности заряженной сферы радиуса R, по аналогии можно записать:

выделение">внутри заряженной сферы, не содержит внутри себя электрических зарядов, поэтому поток пометка">Е = 0.

Для полноценного описания электростатического поля заданной системы зарядов в вакууме достаточно экспериментально подтвержденного закона Кулона и принципа суперпозиции. Но при этом существует возможность свойства электростатического поля охарактеризовать в ином обобщенном виде, не опираясь на утверждения касательно кулоновского поля точечного заряда.

Зададим новую физическую величину, описывающую электрическое поле – поток Φ вектора напряженности электрического поля. Предположим, что в пространстве, содержащем заданное электрическое поле, имеется некая достаточно малая площадка Δ S .

Определение 1

Элементарный поток вектора напряженности (через площадку S) – это физическая величина, равная произведению модуля вектора E → , площади Δ S и косинуса угла α между вектором и нормалью к площадке:

Δ Φ = E Δ S cos α = E n Δ S.

В данной формуле E n является модулем нормальной составляющей поля E → .

Рисунок 1 . 3 . 1 . Иллюстрация элементарного потока Δ Φ .

Пример 1

Теперь возьмем для рассмотрения некую произвольную замкнутую поверхность S . Разобьем заданную поверхность на площадки небольшого размера Δ S i , рассчитаем элементарные потоки Δ Φ i поля через эти малые площадки, после чего найдем их сумму, что в итоге даст нам поток Φ вектора через замкнутую поверхность S (рис. 1 . 3 . 2):

Φ = ∑ ∆ Φ i = ∑ E m ∆ S i

Когда речь идет о поверхности замкнутого типа, всегда используется внешняя нормаль.

Рисунок 1 . 3 . 2 . Расчет потока Ф через произвольную замкнутую поверхность S .

Теорема или закон Гаусса для электростатического поля в вакууме является одним из основных электродинамических законов.

Теорема 1

Поток вектора напряженности электростатического поля E → через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную ε 0 .

Уравнение Гаусса имеет вид:

Φ = 1 ε 0 ∑ q в н у т р

Доказательство 1

Докажем указанную теорию: для этого исследуем сферическую поверхность (или поверхность шара) S . В центре заданной поверхности расположен точечный заряд q . Любая точка сферы обладает электрическим полем, перпендикулярным поверхности сферы и равным по модулю:

E = E n = 1 4 π ε 0 · q R 2 ,

где R является радиусом сферы.

Поток Φ через поверхность шара запишется, как произведение E и площади сферы 4 π R 2 . Тогда: Φ = 1 ε 0 q .

Следующим нашим шагом будет окружение точечного заряда произвольной поверхностью S замкнутого типа; зададим также вспомогательную сферу R 0 (рис. 1 . 3 . 3).

Рисунок 1 . 3 . 3 . Поток электрического поля точечного заряда через произвольную поверхность S , окружающую заряд.

Возьмем для рассмотрения конус с малым телесным углом Δ Ω при вершине. Рассматриваемый конус задаст на сфере малую площадку Δ S 0 , а на поверхности S – площадку Δ S . Элементарные потоки Δ Φ 0 и Δ Φ через эти площадки являются одинаковыми. В самом деле:

Δ Φ 0 = E 0 Δ S 0 , Δ Φ = E Δ S cos α = E Δ S " ,

где выражением Δ S " = Δ S cos α определяется площадка, которая задастся конусом с телесным углом Δ Ω на поверхности сферы радиуса n .

Поскольку ∆ S 0 ∆ S " = R 0 2 r 2 , то ∆ Φ 0 = ∆ Φ . Из полученного следует вывод о том, что полный поток электрического поля точечного заряда через произвольную поверхность, охватывающую заряд, равен потоку Φ 0 через поверхность вспомогательной сферы:

Φ = Φ 0 = q ε 0 .

Так же мы можем продемонстрировать, что, когда замкнутая поверхность S не охватывает точечный заряд q , поток Φ равен нулю. Этот случай проиллюстрирован на рис. 1 . 3 . 2 . Все силовые линии электрического поля точечного заряда пронизывают замкнутую поверхность S насквозь. Внутри поверхности S зарядов нет, т.е. в этой области не наблюдается обрыва или зарождения силовых линий.

Обобщение теоремы Гаусса на случай произвольного распределения зарядов является следствием из принципа суперпозиции. Поле любого распределения зарядов возможно записать в виде векторной суммы электрических полей точечных зарядов. Поток Φ системы зарядов через произвольную замкнутую поверхность S сложится из потоков Φ i электрических полей отдельных зарядов. Когда заряд q i расположен внутри поверхности S , он дает вклад в поток, равный q i ε 0 . В случае расположения заряда снаружи поверхности его вклад в поток есть нуль.

Так, мы доказали теорему Гаусса.

Замечание 1

Теорема Гаусса, по сути, есть следствие закона Кулона и принципа суперпозиции. Однако, взяв за изначальную аксиому утверждения теоремы, следствием станет закон Кулона, в связи с чем теорему Гаусса порой называют альтернативной формулировкой закона Кулона .

Опираясь на теорему Гаусса, в определенных случаях легко определить напряженность электрического поля вокруг заряженного тела (при наличии заранее угаданных симметрии заданного распределения зарядов и общей структуры поля).

Пример 2

В качестве примера можно рассмотреть задачу, в которой необходимо вычислить поле тонкостенного полого однородно заряженного длинного цилиндра с радиусом R . Такая задача имеет осевую симметрию, и из соображений симметрии электрическое поле должно иметь направление по радиусу. Таким образом, чтобы иметь возможность применить теорему Гаусса, оптимально выбрать поверхность замкнутого типа S в виде соосного цилиндра некоторого радиуса r и длины l , закрытого с обоих торцов (рис. 1 . 3 . 4).

Рисунок 1 . 3 . 4 . Иллюстрация поля однородно заряженного цилиндра. O O " – ось симметрии.

Если r ≥ R , то весь поток вектора напряженности пройдет через боковую поверхность цилиндра, поскольку поток через оба основания есть нуль. Формула площади боковой поверхности цилиндра запишется как: 2 π r l . Применим закон Гаусса и получим:

Φ = E 2 π r l = τ l ε 0 .

В указанном выражении τ является зарядом длины цилиндра. Далее можно записать:

E = τ 2 π ε 0 r .

Данное выражение не имеет зависимости от радиуса R заряженного цилиндра, а значит оно применимо и к полю длинной однородно заряженной нити.

Чтобы найти напряженность поля внутри заряженного цилиндра, необходимо создать замкнутую поверхность для случая r < R . В соответствии с симметрией задачи поток вектора напряженности через боковую поверхность цилиндра должен быть, и в этом случае он равен Φ = E 2 π r l . Исходя из гауссовской теоремы, этот поток находится в пропорции к заряду, расположенному внутри замкнутой поверхности. Заряд этот равен нулю, откуда вытекает, что электрическое поле внутри однородно заряженного длинного полого цилиндра тоже есть нуль.

Точно так же теорема и формула Гаусса применимы для определения электрического поля в иных случаях, когда распределение зарядов охарактеризовано какой-либо симметрией, к примеру, симметрией относительно центра, плоскости или оси. Во всех этих случаях необходимо выбирать замкнутую гауссову поверхность подходящей формы.

Пример 3

К примеру, в случае центральной симметрии поверхность оптимально выбрать в виде сферы, у которой центр расположен в точке симметрии. Когда мы имеем симметрию относительно оси, подходящим видом замкнутой поверхности будет соосный цилиндр, закрытый с обоих торцов (аналогично рассмотренному выше примеру).

При отсутствии симметрии и невозможности угадать общую структуру поля, теорема Гаусса не сможет быть применена для упрощения решения задачи по определению напряженности поля.

Пример 4

Разберем еще пример распределения зарядов при наличии симметрии: нахождение поля равномерно заряженной плоскости (рис. 1 . 3 . 5).

Рисунок 1 . 3 . 5 . Поле равномерно заряженной плоскости. σ – поверхностная плотность заряда. S – замкнутая гауссова поверхность.

Здесь гауссову поверхность S оптимально задать как цилиндр некой длины, замкнутый с обоих концов. Ось цилиндра является перпендикуляром к заряженной плоскости; в свою очередь, торцы цилиндра находятся на одинаковом расстоянии от нее. В соответствии с симметрией поле равномерно заряженной плоскости должно везде иметь направление по нормали. Применим теорему Гаусса и получим:

2 E ∆ S = σ ∆ S ε 0 или E = σ 2 ε 0 .

Здесь σ является поверхностной плотностью заряда или зарядом, приходящимся на единицу площади.

Выражение, которое мы получили для электрического поля однородно заряженной плоскости, возможно использовать и для плоских заряженных площадок конечного размера: здесь расстояние от точки, в которой мы определяем напряженность поля, до заряженной площадки должно быть значимо меньше размеров площадки.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Теорема Гаусса устанавливает точное соотношение между потоком напряженности электрического поля через замкнутую поверхность и суммарным зарядом Q внутри этой поверхности:

где ε 0 - та же константа (электрическая постоянная), что и в законе Кулона.
Подчеркнем, что Q - это заряд, заключенный внутри той поверхности, по которой берется интеграл в левой части. При этом не существенно, как именно распределен заряд внутри поверхности; заряды вне поверхности не учитываются. (Внешний заряд может повлиять на расположение силовых линий, но не на алгебраическую сумму линий, входящих внутрь поверхности и выходящих наружу.

Прежде чем переходить к обсуждению теоремы Гаусса, заметим, что интеграл по поверхности на практике не всегда легко вычисляется, однако необходимость в этом возникает не часто, за исключением самых простых ситуаций, которые мы рассмотрим ниже

Как же связаны между собой теорема Гаусса и закон Кулона? Покажем вначале, что закон Кулона следует из теоремы Гаусса. Рассмотрим уединенный точечный заряд Q . По предположению теорема Гаусса справедлива для произвольной замкнутой поверхности. Выберем поэтому такую поверхность, с которой удобнее всего иметь дело: симметричную поверхность сферы радиусом r , в центре которой находится наш заряд Q (рис. 23.7).

Поскольку сфера (конечно, воображаемая) симметрична относительно заряда, расположенного в ее центре, напряженность электрического поля Е должна иметь одно и то же значение в любой точке сферы; кроме того, вектор Е всюду направлен наружу (или всюду внутрь) параллельно вектору dA элемента поверхности. Тогда равенство

принимает вид

(площадь сферы радиусом r равна 4πr 2). Отсюда находим

В итоге мы получили закон Кулона.

Теперь об обратном. В общем случае теорему Гаусса нельзя вывести из закона Кулона: теорема Гаусса является более общим (и более тонким) утверждением, нежели закон Кулона. Однако для некоторых частных случаев теорему Гаусса удается получить из закона Кулона; мы используем общие рассуждения относительно силовых линий. Рассмотрим для начала уединенный точечный заряд, окруженный сферической поверхностью (рис. 23.7). Согласно закону Кулона, напряженность электрического поля в точке на поверхности сферы равна

Е = (1 /4πε 0)(Q/r)

Проделав в обратном порядке аналогичные рассуждения, получим

Это и есть теорема Гаусса, и мы вывели ее для частного случая точечного заряда в центре сферической поверхности. Но что можно сказать о поверхности неправильной формы, например поверхности А 2 на рис. 23.8 . Через эту поверхность проходит то же число силовых линий, что и через сферу А 1 , но поскольку поток напряженности электрического поля через поверхность пропорционален числу проходящих через нее силовых линий, поток через А 2 равен потоку через А 1 .

Следует ожидать поэтому, что формула

справедлива для любой замкнутой поверхности, окружающей точечный заряд.

Рассмотрим, наконец, случай, когда внутри поверхности находится не единственный заряд. Для каждого заряда в отдельности

Но коль скоро полная напряженность электрического поля Е есть сумма напряженностей, обусловленных отдельными зарядами, , то

где - суммарный заряд, заключенный внутри поверхности.
Итак, эти простые рассуждения подсказывают нам, что теорема Гаусса справедлива для любого распределения электрических зарядов внутри любой замкнутой поверхности. Следует иметь в виду, однако, что поле Е не обязательно обусловлено только зарядами Q , которые находятся внутри поверхности. Например, на рис. 23.3 рассмотренном ранее, электрическое поле Е существует во всех точках поверхности, однако оно создается вовсе не зарядом внутри поверхности (здесь Q = 0). Теорема Гаусса справедлива для потока напряженности электрического поля через любую замкнутую поверхность; она утверждает, что если поток, направленный внутрь поверхности, не равен потоку, направленному наружу, то это обусловлено наличием зарядов внутри поверхности.

Теорема Гаусса справедлива для любого векторного поля, обратно пропорционального квадрату расстояния, например, для гравитационного поля. Но для полей другого типа она не будет выполняться. Допустим, например, что поле точечного заряда убывает как kQ/r ; тогда поток через сферу радиусом r определялся бы выражением

Чем больше радиус сферы, тем больше был бы поток, несмотря на то что заряд внутри сферы остается постоянным.

Применения теоремы Гаусса

Теорема Гаусса позволяет выразить связь между электрическим зарядом и напряженностью электрического поля в очень компактной и элегантной форме. С помощью этой теоремы удается легко найти напряженность поля в случае, когда распределение зарядов оказывается достаточно простым и симметричным. При этом, однако, необходимо позаботиться о надлежащем выборе поверхности интегрирования. Обычно стремятся выбрать поверхность так, чтобы напряженность электрического поля Е была постоянна по всей поверхности, или по крайней мере на определенных ее участках.

Чтобы получить эти результаты на основании закона Кулона, нам пришлось бы потрудиться, интегрируя по объему шара. Благодаря использованию теоремы Гаусса и симметрии задачи решение оказалось почти тривиальным. Это демонстрирует огромные возможности теоремы Гаусса. Однако подобное использование этой теоремы ограничено в основном случаями, когда распределение зарядов обладает высокой симметрией. В подобных ситуациях мы выбираем простую поверхность, на которой Е = const , и интеграл берется без труда. Разумеется, теорема Гаусса справедлива для любой поверхности, «простые» поверхности выбираются лишь для облегчения интегрирования.

Заключение

Поток напряженности однородного электрического поля Е через плоскую площадку А равен Ф E = Е А . Если поле неоднородно, то поток определяется интегралом Ф E = ∫Е dA .
Вектор А (или dA ) направлен перпендикулярно площадке А (или dA ); для замкнутой поверхности вектор А направлен наружу. Поток через поверхность пропорционален числу силовых линий, проходящих через эту поверхность.

Теорема Гаусса утверждает, что результирующий поток напряженности электрического поля, проходящий через замкнутую поверхность, равен суммарному заряду внутри поверхности, деленному на ε 0 :

В принципе теорему Гаусса можно использовать для определения напряженности электрического поля, создаваемого заданным распределением зарядов. Однако на практике ее применение ограничено в основном несколькими частными случаями, когда распределение зарядов имеет высокую симметрию. Истинная ценность теоремы Гаусса состоит в том, что она устанавливает в более общем и более элегантном виде, чем закон Кулона, связь между электрическим зарядом и напряженностью электрического поля. Теорема Гаусса является одним из фундаментальных уравнений электромагнитной теории.

Продолжение следует. Коротко о следующей публикации:

Замечания и предложения принимаются и приветствуются!

Как было сказано выше, силовые линии условились проводить с такой густотой, чтобы количество линий, пронизывающих единицу поверхности, перпендикулярной к линиям площадки, было бы равно модулю вектора . Тогда по картине линий напряженности можно судить не только о направлении, но и величине вектора в различных точках пространства.

Рассмотрим силовые линии неподвижного положительного точечного заряда. Они представляют собой радиальные прямые, выходящие из заряда и заканчивающиеся на бесконечности. Проведем N таких линий. Тогда на расстоянии r от заряда число силовых линий, пересекающих единицу поверхности сферы радиуса r , будет равно . Эта величина пропорциональна напряженности поля точечного заряда на расстоянии r. Число N всегда можно выбрать таким, чтобы выполнялось равенство

откуда . Поскольку силовые линии непрерывны, то такое же число силовых линий пересекает замкнутую поверхность любой формы, охватывающую заряд q. В зависимости от знака заряда силовые линии либо входят в эту замкнутую поверхность, либо выходят наружу. Если число выходящих линий считать положительным, а входящих – отрицательным, то можно опустить знак модуля и записать:

. (1.4)

Поток вектора напряженности. Поместим в электрическое поле элементарную площадку, имеющую площадь . Площадка должна быть настолько малой, чтобы напряженность электрического поля во всех ее точках можно было считать одинаковой. Проведем нормаль к площадке (рис. 1.17). Направление этой нормали выбирается произвольно. Нормаль составляет угол с вектором . Потоком вектора напряженности электрического поля через выделенную поверхность называется произведение площади поверхности на проекцию вектора напряженности электрического поля на нормаль к площадке:

где – проекция вектора на нормаль к площадке .

Поскольку число силовых линий, пронизывающих единичную площадку, равно модулю вектора напряженности в окрестности выделенной площадки, то поток вектора напряженности через поверхность пропорционален числу силовых линий, пересекающих эту поверхность. Поэтому, в общем случае, наглядно поток вектора напряженности поля через площадку можно интерпретировать как величину, равную числу силовых линий, пронизывающих эту площадку:

. (1.5)

Заметим, что выбор направления нормали условен, ее можно направить и в другую сторону. Следовательно, поток – величина алгебраическая: знак потока зависит не только от конфигурации поля, но и от взаимной ориентации вектора нормали и вектора напряженности. Если эти два вектора образуют острый угол, поток положителен, если тупой – отрицателен. В случае замкнутой поверхности принято нормаль брать наружу области, охватываемой этой поверхностью, то есть выбирать внешнюю нормаль.

Если поле неоднородно и поверхность произвольна, то поток определяется так. Всю поверхность надо разбить на малые элементы площадью , вычислить потоки напряженности через каждый из этих элементов, а потом просуммировать потоки через все элементы:

Таким образом, напряженность поля характеризует электрическое поле в точке пространства. Поток напряженности зависит не от значения напряженности поля в данной точке, а от распределения поля по поверхности той или иной площади.

Силовые линии электрического поля могут начинаться только на положительных зарядах и заканчиваться на отрицательных. Они не могут начинаться или обрываться в пространстве. Поэтому, если внутри некоторого замкнутого объема нет электрического заряда, то полное число линий, входящих в данный объем и выходящих из него, должно равняться нулю. Если из объема выходит больше линий, чем входит в него, то внутри объема находится положительный заряд; если входит линий больше, чем выходит, то внутри должен быть отрицательный заряд. При равенстве полного заряда внутри объема нулю или при отсутствии в нем электрического заряда линии поля пронизывают его насквозь, и полный поток равен нулю.

Эти простые соображения не зависят от того, как электрический заряд распределен внутри объема. Он может находиться в центре объема или вблизи поверхности, ограничивающей объем. В объеме может находиться несколько положительных и отрицательных зарядов, распределенных внутри объема любым способом. Только суммарный заряд определяет полное число входящих или выходящих линий напряженности.

Как видно из (1.4) и (1.5), поток вектора напряженности электрического поля через произвольную замкнутую поверхность, охватывающую заряд q, равен . Если внутри поверхности находится n зарядов, то, согласно принципу суперпозиции полей, полный поток будет складываться из потоков напряженностей полей всех зарядов и будет равен , где под в этом случае подразумевается алгебраическая сумма всех зарядов, охватываемых замкнутой поверхностью.

Теорема Гаусса. Гаусс первым обнаружил тот простой факт, что поток вектора напряженности электрического поля через произвольную замкнутую поверхность должен быть связан с полным зарядом, находящимся внутри этого объема:

Гаусс Карл Фридрих (1777–1855)

Великий немецкий математик, физик и астроном, создатель абсолютной системы единиц в физике. Разработал теорию электростатического потенциала и доказал важнейшую теорему электростатики (теорема Гаусса). Создал теорию построения изображений в сложных оптических системах. Одним из первых пришел к мысли о возможности существования неевклидовой геометрии. Кроме того, Гаусс внес выдающийся вклад практически во все разделы математики.

Последнее соотношение и представляет собой теорему Гаусса для электрического поля:поток вектора напряженности через произвольную замкнутую поверхность пропорционален алгебраической сумме зарядов, расположенных внутри этой поверхности.Коэффициент пропорциональности зависит от выбора системы единиц.

Следует отметить, что теорема Гаусса получается как следствие закона Кулона и принципа суперпозиции. Если бы напряженность электрического поля изменялась бы не обратно пропорционально квадрату расстояния, то теорема оказалась бы несправедливой. Поэтому теорема Гаусса применима к любым полям, в которых строго выполняется закон обратных квадратов и принцип суперпозиции, например, к гравитационному полю. В случае гравитационного поля роль зарядов, создающих поле, играют массы тел. Поток линий гравитационного поля через замкнутую поверхность пропорционален полной массе, заключенной внутри этой поверхности.

Напряженность поля заряженной плоскости. Применим теорему Гаусса для определения напряженности электрического поля бесконечной заряженной плоскости. Если плоскость бесконечна и заряжена равномерно, то есть поверхностная плотность заряда одинакова в любом ее месте, то линии напряженности электрического поля в любой точке перпендикулярны этой плоскости. Чтобы показать это, воспользуемся принципом суперпозиции для вектора напряженности. Выделим два элементарных участка на плоскости, которые можно считать точечными для точки А , в которой необходимо определить напряженность поля. Как видно из рис. 1.18, результирующий вектор напряженности будет направлен перпендикулярно плоскости. Поскольку плоскость можно разбить на бесконечное количество пар таких участков для любой точки наблюдения, то, очевидно, что силовые линии поля заряженной плоскости перпендикулярны к плоскости, и поле является однородным (рис. 1.19). Если бы это было не так, то при перемещении плоскости вдоль самой себя поле в каждой точке пространства менялось, но это противоречит симметрии заряженной системы (плоскость бесконечна). В случае положительно заряженной плоскости силовые линии начинаются на плоскости и заканчиваются на бесконечности, а для отрицательно заряженной плоскости силовые линии начинаются на бесконечности и входят в плоскость.

Рис. 1.18 Рис. 1.19

Для определения напряженности электрического поля бесконечной положительно заряженной плоскости мысленно выделим в пространстве цилиндр, ось которого перпендикулярна заряженной плоскости, а основания параллельны ей, и одно из оснований проходит через интересующую нас точку поля (рис. 1.19). Цилиндр вырезает из заряженной плоскости участок площадью , и такую же площадь имеют основания цилиндра, расположенные по разные стороны от плоскости.

Согласно теореме Гаусса поток вектора напряженности электрического поля через поверхность цилиндра связан с электрическим зарядом внутри цилиндра выражением:

.

Так как линии напряженности пересекают лишь основания цилиндра, поток через боковую поверхность цилиндра равен нулю. Поэтому поток вектора напряженности через цилиндрическую поверхность будет складываться только из потоков через основания цилиндра, следовательно,

Сравнивая два последних выражения для потока вектора напряженности, получим

Напряженность электрического поля между разноименно заряженными пластинами. Если размеры пластин значительно превосходят расстояние между ними, то электрическое поле каждой из пластин можно считать близким к полю бесконечной равномерно заряженной плоскости. Так как линии напряженности электрического поля разноименно заряженных пластин между пластинами направлены в одну сторону (рис. 1.20), то напряженность поля между пластинами равна

.

Во внешнем пространстве линии напряженности электрического поля разноименно заряженных пластин имеют противоположные направления, поэтому вне этих пластин результирующая напряженность электрического поля равна нулю. Полученное для напряженности выражение справедливо для больших заряженных пластин, когда напряженность определяется в точке, расположенной далеко от их краев.

Напряженность электрического поля равномерно заряженной тонкой проволоки бесконечной длины. Найдем зависимость напряженности электрического поля равномерно заряженной тонкой проволоки бесконечной длины от расстояния до оси проволоки, используя теорему Гаусса. Выделим участок проволоки конечной длины . Если линейная плотность заряда на проволоке , то заряд выделенного участка равен .

Вычисление напряженности поля системы электрических зарядов с помощью при­нципа суперпозиции электростатических полей можно значительно упростить, ис­пользуя выведенную немецким ученым К. Гауссом (1777-1855) теорему, опреде­ляющую поток вектора напряженности электрического поля через произвольную замкнутую поверхность.

В соответствии с формулой (79.3) по­ток вектора напряженности сквозь сфери­ческую поверхность радиуса r, охватывающую точечный заряд Q , находящийся в ее центре (рис. 124),

Этот результат справедлив для замкнутой поверхности любой формы. Действитель­но, если окружить сферу (рис. 124) про­извольной замкнутой поверхностью, то каждая линия напряженности, пронизыва­ющая сферу, пройдет и сквозь эту по­верхность.

Если замкнутая поверхность произ­вольной формы охватывает заряд (рис. 125), то при пересечении любой вы­бранной линии напряженности с поверхно­стью она то входит в нее, то выходит из нее. Нечетное число пересечений при вы­числении потока в конечном счете сводит­ся к одному пересечению, так как поток считается положительным, если линии на­пряженности выходят из поверхности, и отрицательным для линий, входящих

в поверхность. Если замкнутая поверх­ность не охватывает заряда, то поток сквозь нее равен нулю, так как число линий напряженности, входящих в повер­хность, равно числу линий напряженности, выходящих из нее.

Таким образом, для поверхности лю­бой формы, если она замкнута и заключа­ет в себя точечный заряд Q, поток вектора Е будет равен Q/e 0 , т. е.

Знак потока совпадает со знаком заряда Q. Рассмотрим общий случай произволь­ной поверхности, окружающей n зарядов. В соответствии с принципом суперпозиции (80.2) напряженность Е поля, создаваемо­го всеми зарядами, равна сумме напря-женностей Е i , создаваемых каждым за­рядом в отдельности: ; . Поэтому

Согласно (81.1), каждый из интегралов, стоящий под знаком суммы, равен Q i /e 0 . Следовательно,

Формула (81.2) выражает теорему Га­усса для электростатического поля в ваку­уме: поток вектора напряженности элек­тростатического поля в вакууме сквозь произвольную замкнутую поверхность ра­вен алгебраической сумме заключенных внутри этой поверхности зарядов, делен­ной на e 0 . Эта теорема выведена матема­тически для векторного поля любой при­роды русским математиком М. В. Остро­градским (1801 -1862), а затем неза­висимо от него применительно к электро­статическому полю - К. Гауссом.

В общем случае электрические заряды могут быть «размазаны» с некоторой

объемной плотностью r=dQ/dV, различной

в разных местах пространства. Тогда сум­марный заряд, заключенный внутри замкнутой поверхности S, охватывающей не­который объем V,



Используя формулу (81.3), теорему Гаус­са (81.2) можно записать так.