В каком городе произошел взрыв атомной станции. Аварии на атомных электростанциях: вероятность глобального исхода

Шведские ученые пришли к выводу, что во время аварии на Чернобыльской АЭС произошел слабый ядерный взрыв. Специалисты проанализировали самый вероятный ход ядерных реакций в реакторе и смоделировали метеорологические условия распространения продуктов распада. рассказывает о статье исследователей, опубликованной в журнале Nuclear Technology.

Авария на Чернобыльской АЭС произошла 26 апреля 1986 года. Катастрофа поставила под угрозу развитие ядерной энергетики во всем мире. Вокруг станции была создана 30-километровая зона отчуждения. Радиоактивные осадки выпадали даже в Ленинградской области, а изотопы цезия обнаруживали в повышенных концентрациях в лишайнике и мясе оленей в арктических областях России.

Существуют различные версии причин катастрофы. Чаще всего указывают на неправильные действия персонала ЧАЭС, повлекшие за собой возгорание водорода и разрушение реактора. Однако некоторые ученые полагают, что произошел настоящий ядерный взрыв.

Кипящий ад

В атомном реакторе поддерживается цепная ядерная реакция. Ядро тяжелого атома, например, урана, сталкивается с нейтроном, становится нестабильным и распадается на два более мелких ядра - продукты распада. В процессе деления выделяется энергия и два-три быстрых свободных нейтрона, которые в свою очередь вызывают распад других ядер урана в ядерном топливе. Количество распадов, таким образом, увеличивается в геометрической прогрессии, однако цепная реакция внутри реактора находится под контролем, что предотвращает ядерный взрыв.

В тепловых ядерных реакторах быстрые нейтроны не годятся для возбуждения тяжелых атомов, поэтому их кинетическую энергию уменьшают с помощью замедлителя. Медленные нейтроны, именуемые тепловыми, с большей вероятностью вызывают распад атомов урана-235, используемого в качестве топлива. В таких случаях говорят о высоком сечении взаимодействия ядер урана с нейтронами. Сами тепловые нейтроны называются так, поскольку находятся в термодинамическом равновесии с окружающей средой.

Сердцем Чернобыльской АЭС был реактор РБМК-1000 (реактор большой мощности канальный мощностью 1000 мегаватт). По сути, это графитовый цилиндр с множеством отверстий (каналов). Графит выполняет роль замедлителя, а через технологические каналы загружается ядерное топливо в тепловыделяющих элементах (ТВЭЛах). ТВЭЛы сделаны из циркония, металла с очень маленьким сечением захвата нейтронов. Они пропускают нейтроны и тепло, которое нагревает теплоноситель, препятствуя утечке продуктов распада. ТВЭЛы могут объединяться в тепловыделяющие сборки (ТВС). Тепловыделяющие элементы характерны для гетерогенных ядерных реакторов, в которых замедлитель отделен от горючего.

РБМК - одноконтурный реактор. В качестве теплоносителя используется вода, которая частично превращается в пар. Пароводяная смесь поступает в сепараторы, где пар отделяется от воды и направляется на турбогенераторы. Отработанный пар конденсируется и вновь поступает в реактор.

В конструкции РБМК имелся недостаток, сыгравший роковую роль в катастрофе на Чернобыльской АЭС. Дело в том, что расстояние между каналами было слишком большим и слишком много быстрых нейтронов тормозилось графитом, превращаясь в тепловые нейтроны. Они хорошо поглощаются водой, но там постоянно образуются пузырьки пара, что снижает абсорбционные характеристики теплоносителя. В результате повышается реактивность, вода еще сильнее нагревается. То есть РБМК отличается достаточно высоким паровым коэффициентом реактивности, что осложняет контроль за протеканием ядерной реакции. Реактор должен оснащаться дополнительными системами безопасности, работать на нем должен только высококвалифицированный персонал.

Наломали дров

25 апреля 1986 года на Чернобыльской АЭС была запланирована остановка четвертого энергоблока для планового ремонта и проведения эксперимента. Специалисты научно-исследовательского института «Гидропроект» предложили способ аварийного электроснабжения насосов станции за счет кинетической энергии вращающегося по инерции турбогенератора. Это позволило бы даже при отключении электричества поддерживать циркуляцию теплоносителя в контуре до тех пор, пока не включится резервное питание.

Согласно плану, эксперимент должен был начаться, когда тепловая мощность реактора снизится до 700 мегаватт. Мощность успели понизить на 50 процентов (1600 мегаватт), и процесс остановки реактора был отложен примерно на девять часов по запросу из Киева. Как только снижение мощности возобновилось, она неожиданно упала почти до нуля из-за ошибочных действий персонала АЭС и ксенонового отравления реактора - накопления изотопа ксенона-135, снижающего реактивность. Чтобы справиться с внезапной проблемой, из РБМК были извлечены аварийные стержни, поглощающие нейтроны, однако мощность не поднялась выше 200 мегаватт. Несмотря на нестабильную работу реактора, в 01:23:04 начался эксперимент.

Ввод дополнительных насосов усилил нагрузку на выбегающий турбогенератор, что снизило объемы воды, поступающей в активную зону реактора. Вместе с высоким паровым коэффициентом реактивности это быстро увеличило мощность реактора. Попытка внедрения поглощающих стержней из-за их неудачной конструкции лишь усугубила ситуацию. Всего лишь через 43 секунды после начала эксперимента реактор разрушился в результате одного-двух мощных взрывов.

Концы в воду

Очевидцы утверждают, что четвертый энергоблок АЭС был разрушен двумя взрывами: второй, самый мощный, случился через несколько секунд после первого. Считается, что аварийная ситуация возникла из-за разрыва труб в системе охлаждения, вызванного быстрым испарением воды. Вода или пар вступили в реакцию с цирконием в тепловыделяющих элементах, что привело к образованию большого количества водорода и его взрыву.

Шведские ученые полагают, что к взрывам, один из которых был ядерным, привели два различных механизма. Во-первых, высокий паровой коэффициент реактивности способствовал увеличению объема перегретого пара внутри реактора. В результате реактор лопнул, и его 2000-тонная верхняя крышка взлетела на несколько десятков метров. Поскольку к ней были прикреплены тепловыделяющие элементы, возникла первичная утечка ядерного топлива.

Во-вторых, аварийное опускание поглощающих стержней привело к так называемому «концевому эффекту». На чернобыльском РБМК-1000 стержни состояли из двух частей - поглотителя нейтронов и графитового вытеснителя воды. При введении стержня в активную зону реактора графит замещает поглощающую нейтроны воду в нижней части каналов, что только усиливает паровой коэффициент реактивности. Число тепловых нейтронов увеличивается, и цепная реакция становится неконтролируемой. Происходит небольшой ядерный взрыв. Потоки продуктов ядерного деления еще до разрушения реактора проникли в зал, а затем - через тонкую крышу энергоблока - попали в атмосферу.

Впервые о ядерной природе взрыва специалисты заговорили еще в 1986 году. Тогда ученые из Радиевого института Хлопина провели анализ фракций благородных газов, полученных на череповецкой фабрике, где производились жидкий азот и кислород. Череповец находится в тысяче километров к северу от Чернобыля, и радиоактивное облако прошло над городом 29 апреля. Советские исследователи выявили, что соотношение активностей изотопов 133 Xe и 133m Xe равнялось 44,5 ± 5,5. Эти изотопы - короткоживущие продукты ядерного распада, что указывает на слабый ядерный взрыв.

Шведские ученые рассчитали, сколько ксенона образовалось в реакторе до взрыва, во время взрыва, и как менялись соотношения радиоактивных изотопов вплоть до их выпадения в Череповце. Оказалось, что наблюдавшееся на заводе соотношение реактивностей могло возникнуть в случае ядерного взрыва мощностью 75 тонн в тротиловом эквиваленте. Согласно анализу метеорологических условий на период 25 апреля - 5 мая 1986 года, изотопы ксенона поднялись на высоту до трех километров, что предотвратило его смешение с тем ксеноном, который образовался в реакторе еще до аварии.

Четвертый энергоблок Чернобыльской АЭС, 2013 год

Arne Müseler / Creative Commons

Шведские ученые выяснили, что во время аварии на Чернобыльской АЭС в действительности произошел ядерный взрыв мощностью около 75 тонн в тротиловом эквиваленте. Для этого они проанализировали концентрации изотопов 133 Xe и 133m Xe в образцах череповецкой фабрики по сжижению воздуха, а та кже смоделировали погодные условия после катастрофы, используя недавно опубликованные подробные данные за 1986 год. Статья опубликована в Nuclear Technology .

Авария на Чернобыльской атомной электростанции произошла ночью 26 апреля 1986 года. В результате производственного эксперимента персонал станции потерял контроль над реакцией, аварийная защита не сработала, и мощность реактора резко возросла с 0,2 до 320 гигаватт (тепловых). Большинство свидетелей указывают на два мощных взрыва, хотя некоторые говорят о большем количестве.

Согласно общепринятой версии, первый из двух взрывов объясняется тем, что заполнявшая системы охлаждения вода мгновенно испарилась, давление в трубах резко возросло и разорвало их. Затем разогретый пар начал взаимодействовать с циркониевой оболочкой топливных элементов, что привело к активному образованию водорода (пароциркониевая реакция), который сгорел взрывным образом в кислороде воздуха. В данной работе ученые ставят под сомнение природу первого взрыва и заявляют, что в действительности он был небольшим ядерным взрывом.

В пользу этой гипотезы авторы статьи приводят два основных аргумента. Во-первых, через несколько дней после катастрофы ученые из зарегистрировали активность изотопов 133 Xe/ 133m Xe в жидком ксеноне, полученном на череповецкой фабрике по сжижению воздуха . Вообще говоря, фабрика в основном производила жидкий азот и кислород для обеспечения нужд череповецкого металлургического комбината , однако побочным результатом ее работы являлось также выделение благородных газов из воздуха. Радиоактивные изотопы ученые искали с помощью гамма-спектроскопии высокого разрешения. В результате приведенное к часу дня 29 апреля (примерно 83 часа после аварии) отношение активностей изотопов 133 Xe/ 133m Xe составило около 44,5 ± 5,5.


Изменение отношения активностей изотопов ксенона с течением времени для трех различных сценариев их образования. Короткая вертикальная черта отвечает данным с череповецкой фабрики


Чтобы объяснить это отношение, физики смоделировали происходящие в реакторе процессы с помощью разработанной ими ранее программы Xebate . Она учитывала, что помимо стандартной цепочки образования изотопов ксенона в результате изменения мощности реактора при подготовке к эксперименту (так называемое ксеноновое отравление) изотопы также производились в результате последовавшего ядерного взрыва мощностью около 75 тонн в тротиловом эквиваленте. В нулевой момент соотношение активностей ядер 133 Xe/ 133m Xe, образовавшихся по этим двум сценариям, составляло 34,6 и 0,17 соответственно. Затем из-за разности периодов полураспада элементов это соотношение менялось, так что к моменту их регистрации равнялось отношению активностей в образцах с череповецкой фабрики. Ученые отмечают, что из-за неопределенности в этом отношении мощность взрыва можно определить лишь приближенно, и на самом деле она лежит в интервале от 25 до 160 тонн с вероятностью 68 процентов (то есть в доверительном интервале 1σ).

Во-вторых, ученые смоделировали метеорологические условия над европейской частью СССР после аварии, используя недавно опубликованные подробные трехмерные погодные данные и современные алгоритмы расчета движения воздушных фронтов. Моделирование распространения изотопов ксенона ученые провели для семнадцати возможных высот его выброса в атмосферу, лежавших в интервале от нуля до восьми тысяч метров. В результате ученые выяснили, что наблюдаемые активности изотопов ксенона в образцах с череповецкой фабрики (которая, кстати, находится в тысяче километров от ЧАЭС) можно объяснить только при предположении, что выброшенные во время взрыва изотопы поднялись на высоту около трех километров - при других высотах они попали бы в окрестности Череповца либо раньше, либо позже. Нужную высоту как раз мог обеспечить предложенный 75-тонный ядерный взрыв.


Результаты моделирования распространения изотопов ксенона над европейской частью СССР на момент 9:00 UTC 29 апреля. Черным кружком отмечен Чернобыль, белым - Череповец.

Lars-Erik De Geer et. al. / Nuclear Technology


Кроме того, физики приводят еще три косвенных свидетельства в пользу своей гипотезы. Во-первых, после взрыва было обнаружено, что в юго-восточном квадранте ядра реактора исчезла двухметровая серпентиновая плита, заключенная в железную оболочку толщиной около четырех сантиметров. Дальнейшие наблюдения показали, что ее расплавили тонкие направленные потоки высокотемпературной плазмы, которые как раз могли образоваться в результате ядерного взрыва. Во-вторых, сразу после аварии сейсмологи зарегистрировали два сигнала с амплитудами, соответствующими двум взрывам мощности около двухсот тонн, и разделенных двухсекундным интервалом. При этом второй из взрывов можно объяснить выбросом водорода, а общепринятая теория первого взрыва дает гораздо меньшую оценку для мощности (тогда как гипотеза ядерного взрыва как будто бы укладывается в эти рамки). В-третьих, несколько очевидцев заявляли , что они видели яркую голубую вспышку над реактором. С другой стороны, известно, что при неконтролируемых ядерных реакциях из-за возбуждения молекул кислорода и азота в воздухе возникает голубоватое свечение.

Тем не менее, профессор Рафаэль Арутюнян, заместитель директора Института безопасного развития атомной энергетики РАН, скептически относится к результатам, полученным шведскими учеными. По его словам, с одной стороны, сам факт разгона неуправляемой цепной реакции в момент первого взрыва в реакторе уже давно известен специалистам, с другой стороны, оценка мощности этого ядерного взрыва сильно завышена.

«В этом нет ничего особенно нового, все соответствует общепринятой версии, что там был разгон, общеизвестно. Но оценка в 75 тонн вызывает большие сомнения, потому что данные, из которых они ее получают, слишком косвенные, слишком много факторов могли на них повлиять. Большинство оценок примерно на порядок меньше - специалисты говорят о 2-3 тоннах тротилового эквивалента. Кроме того, 75 тонн можно исключить из тривиальных соображений: осталось бы что-то от реактора, если бы в него заложили 75 тонн тротила? При этом напрямую просчитать этот взрыв практически невозможно - одно дело считать процессы в целом реакторе, а другое - в таком разваливающемся устройстве. Там одновременно за миллионные доли секунды идут тысячи процессов, со всем этим не справится ни один суперкомпьютер. Эту задачу можно решить с привлечением разного рода упрощений и эмпирических методов, но ресурс, который в это нужно вложить, слишком велик. Неясно, в чем практический смысл такой работы, причины Чернобыльской аварии уже исследованы, изменения в конструкции реакторов внесены, знание точной механики взрыва в это ничего не добавит».


Посмотреть на все произошедшие за историю ядерные взрывы можно на , а на фотографии зверей из зоны отчуждения - в наших галереях и . Кроме того, польская компания The Farm 51 отправиться в виртуальную экскурсию по зоне отчуждения.

Дмитрий Трунин

"Мы предполагаем, что ядерные взрывы, вызванные тепловыми нейтронами в нижней части топливных каналов, породили мощные струи из расплавленного топлива и материи самого реактора, устремившиеся вверх. Они пробили 350 килограммовые "крышки" каналов, прошили крышу реактора и поднялись на высоту в 3 километра, где их подхватил ветер и донес до Череповца. Взрыв пара, разорвавший корпус реактора, случился через 2,7 секунды", - заявил Ларс-Эрик де Гир (Lars-Erik De Geer) из Агентства оборонных исследований Швеции .

По следам катастрофы века

Авария на четвертом энергоблоке Чернобыльской АЭС произошла в ночь с 25 на 26 апреля 1986 года, когда персонал атомной станции проводил эксперимент, в рамках которого энергия вращения турбины остановленного реактора использовалась для его охлаждения и питания систем безопасности, защищавших энергоблок от развития неконтролируемых цепных реакций.

Начало этих опытов несколько раз откладывалось после остановки четвертого энергоблока, что, вкупе с некоторыми конструктивными особенностями реакторов типа РБМК, привело к тому, что 26 апреля в 01 час 24 минуты произошел неконтролируемый рост мощности. Он привел к взрывам, разрушению значительной части реакторной установки и выбросу огромного количества радиоактивных веществ.

По свидетельствам очевидцев, как рассказывает де Гир, в "час икс" на четвертом энергоблоке произошло как минимум два мощных взрыва, отделенных друг от друга несколькими секундами. Как сегодня считают ученые и историки, оба этих взрыва имели неядерную природу и были связаны с водой и нарушениями в ее циркуляции.

По их мнению, первый взрыв возник в результате того, что внезапное увеличение мощности реактора привело к тому, что вода в системе охлаждения почти мгновенно испарилась, что резко повысило давление в трубах и привело к их разрыву. Этот пар начал взаимодействовать с циркониевой оболочкой топливных элементов, что привело к выбросу огромных количеств водорода в реакторный зал и второму, еще более мощному взрыву.

Де Гир и его коллеги пришли к выводу, что первый взрыв имел совершенно иную природу, анализируя данные, которые были собраны европейскими и советскими учеными непосредственно сразу после катастрофы на ЧАЭС.

Внимание шведских физиков привлекли данные по изотопному составу атмосферы, полученные сотрудниками ленинградского Радиевого института имени Хлопина АН СССР в окрестностях Череповца через четыре дня после аварии. Советские ученые нашли в воздухе два относительно атипичных радиоактивных изотопа – ксенон-133 и ксенон-133м, не существующих в природе и обладающих коротким периодом полураспада.

Оба этих изотопа ксенона, по словам авторов статьи, не присутствуют в "главной" части выбросов ЧАЭС, унесенных ветром в сторону Беларуси, Швеции и других стран Северной Европы, что в прошлом уже порождало большие споры между сторонниками "ядерной" и "паровой" теорий взрывов на четвертом энергоблоке.

Изотопный детектив

Де Гир и его коллеги нашли первые доказательства того, что источником этого ксенона действительно является ЧАЭС и выяснили, что он был порожден в ходе ядерного взрыва, проанализировав то, как двигались потоки ветра над западной частью СССР в апреле 1986 года, и изучив следы разрушений в самом реакторе.

В первом случае ученые воспользовались тем, что ксенон-133 и ксенон-133м имеют разные периоды полураспада, а их общая масса внутри реактора была достаточно точно измерена раньше. Это позволило им определить время, когда они были выброшены из реактора – оно точно совпало с тем, когда произошла авария на ЧАЭС.

Это время, в свою очередь, указывает на крайне необычную вещь – изотопы ксенона могли попасть в окрестности Череповца через 3-4 дня только в том случае, если они были выброшены на высоту в примерно 2-3 километра от поверхности Земли. На такую высоту, как считают ученые, их мог забросить только небольшой ядерный взрыв мощностью в 75 тонн тротилового эквивалента, произошедший в двух-трех тепловыделяющих элементах АЭС в результате резкого повышения температуры в них.

В рождении этого взрыва сыграли особую роль пузыри из пара, возникавшие в кипящей воде в нижней части реактора. Эти области пустоты, как отмечают ученые, играли роль своеобразных усилителей цепной реакции, так как они не препятствовали движению нейтронов и ускоряли, а не замедляли разогрев топлива и способствовали формированию еще больших количеств пара.

В пользу этого говорит и то, что только некоторые регионы нижней "крышки" реактора были оплавлены – ни взрыв пара, ни любое другое событие, как считают шведские физики, не могло вызвать подобные повреждения, тогда как струя раскаленной плазмы, выброшенной ядерным взрывом, вполне могла их вызвать.

Есть и другие свидетельства этого – сейсмические станции в Норинске и других близлежащих городах зафиксировали слабые толчки за три секунды до аварии, эквивалентные по силе взрыву бомбы мощностью в 225 тонн тротила. Вдобавок, очевидцы заявляли о громком хлопке и синей вспышке, предварявшей второй взрыв, а также ионизации воздуха перед уничтожением реакторного зала. И то, и другое, и третье, как считают Де Гир и его коллеги, было вызвано струей плазмы, пробившей крышу АЭС и устремившейся в небо.

Как отмечают ученые, проверить их теорию можно, если будут получены более детальные данные по изменениям в концентрации изотопов ксенона в атмосфере Германии и других стран, через которые проходило "основное" облако радиоактивных выбросов. Если различия в концентрации ксенона сохранятся, то тогда их идея, по словам Де Гира, обретет полное право на жизнь.

На днях премьер-министр Владимир Путин поручил проверить состояние российской атомной отрасли на предмет безопасности, дав на инспекцию месяц. В Росатоме не дождавшись даже предварительных результатов ревизии, уверяют, что на российских АЭС все хорошо. Собеседник.ру попросил экологов из группы «Экозащита!» провести независимый анализ отрасли - выводы оказались плачевны.

Вот что сообщил Собеседник.ру сопредседатель группы Владимир Сливяк:

Практически все АЭС в России далеки от современных технологий. Особую озабоченность вызывают реакторы «чернобыльского типа» - РБМК-1000, которые работают на Ленинградской, Курской и Смоленской атомных станциях. Всего 11 блоков. Также чрезвычайно низкий уровень безопасности на реакторах ВВЭР-440 первого поколения, которые есть на Кольской и Нововоронежской атомных станциях. Но даже несколько более «продвинутые» ВВЭР-1000 строились по проектам, созданным более 30 лет назад, то есть задолго до Чернобыльской аварии. А ведь руководство атомной промышленности утверждает, что серьезная переоценка норм безопасности произошла после крупнейшей ядерной аварии в 1986 году. Наиболее старые реакторы РБМК-1000 и ВВЭР-440 не получили бы лицензии на эксплуатацию ни в одной стране Западной Европы из-за своих конструктивных недостатков. За пределами России такие реакторы были в нескольких странах Восточной Европы, однако там они были закрыты при вступлении стран в Европейский Союз. Некоторые из блоков первого поколения уже отслужили свой ресурс (30 лет), однако Росатом решил продлит срок их эксплуатации еще на 15 лет. Это реакторы на Ленинградской, Кольской и Нововоронежской атомных станциях.

Итак, наиболее опасны в России Ленинградская, Курская, Смоленская, Кольская и Нововоронежская АЭС , где устанвлены реакторы, по уровню безопасности даже уступающие горящей Фукусима-1.

Владимир Сливяк выделил несколько технических подробностей по реакторам РБМК и ВВЭР-440, которые с его точки зрения необходимо закрыть как можно скорее во избежание крупных аварий:

ВВЭР-440

Главные недостатки этого типа реакторов состоят в том, что отсутствует железобетонная защитная оболочка (в современных реакторах в обязательном порядка должна быть), а также отсутствуют технические средства для контроля основного металла и сварных соединений оборудования и трубопроводов. По мнению экспертов, существенной проблемой обеспечения безопасности является нейтронное облучение корпуса реактора, которое приводит к тому, что сталь становится хрупкой.

Реакторы ВВЭР-440/230 сделаны из сваренных цилиндров. Сварные швы в особенности подвержены разрушению при нейтронном облучении.

В качестве охлаждающего вещества применяется вода. Под воздействием ионизирующего излучения вода разлагается на кислород и водород (радиолиз). При определенном соотношении эта смесь образует гремучий газ, и поэтому на водоохлаждаемой АЭС всегда остается опасность возникновения химического взрыва.

По самым разным причинам может возникнуть интенсивное парообразование в первом контуре и произойти паровой взрыв, энергии при этом будет достаточно, чтобы сбросить крышку реактора или разрушить первый контур.

В конструкционных материалах стенок корпуса реактора и трубопроводов неизбежно возникают трещины, развитие которых может привести к аварии.

«Водоохлаждаемые реакторы, несмотря на весь опыт, полученный при работе на них, в принципе не могут быть высокобезопасными... Нельзя создать безопасную атомную энергетику на базе водоохлаждаемых реакторов» - это еще в 1995 году написал один из пионеров советской атомной энергетики академик В.И.Субботин в своих «Размышлениях об атомной энергетике».

РБМК

Первый реактор типа РБМК-1000 был введен в строй в 1973г. На Ленинградской АЭС. Строительство АЭС с реакторами РБМК было предусмотрено долгосрочной программой по увеличению производства электроэнергии, принятой Правительством Советского Союза. За десять лет после пуска первого энергоблока Ленинградской АЭС было сооружено еще 12 энергоблоков с реакторами РБМК-1000, в том числе на Курской, Чернобыльской и Смоленской АЭС. К апрелю 1986 г. электроэнергию вырабатывали уже 14 энергоблоков с РБМК (кроме реакторов упомянутых АЭС были пущены блоки РБМК-1500 на Игналинской АЭС в Литве). 26 апреля 1986 года на Чернобыльской АЭС произошла самая крупная ядерная авария в истории человечества, что вызвало отказ многих стран от дальнейшего развития атомной энергетики.

К конструктивным недостаткам РБМК можно отнести:

Положительный коэффициент реактивности и эффект обезвоживания активной зоны;

Недостаточное быстродействие аварийной защиты в условиях допустимого снижения реактивности;

Недостаточное число автоматических технических средств, способных привести реакторную установку в безопасное состояние при нарушениях требований эксплуатационного регламента;

Незащищенность техническими средствами устройств ввода и вывода из работы части аварийных защит реактора;

Отсутствие защитной оболочки.

Не смотря на то, что за последние 15 лет многие работающие реакторы типа РБМК были модернизированы, эксперты по-прежнему сомневаются в том, что авария с разрушением активной зоны на модернизированных блоках невозможна.

До последнего времени японская Фукусима-1 считалась более безопасной, чем многие российские АЭС. А к этому часу из-за всплеска уровня радиации с этой станции эвакуирован персонал. Топлевные стержни первого реактора уже практически разрушены, а это значит, катастрофы избежать уже точно не удастся (пока была просто прелюдия).

За 25 лет после Чернобыля атомная промышленность успела убедить многих политиков в том, что она безопасна, но за четыре дня марта 2011 года этот миф был окончательно разрушен, - считает Владимир Сливяк. - Реальность такова, что крупная авария на АЭС может случиться в любой стране мира, как только будет потерян источник энергии для систем безопасности реакторов и для этого не обязательно должно происходить землетрясение. Ни один западный инвестор не рискнет теперь вкладывать деньги в атомную энергетику, многие из утвержденных проектов новых АЭС будут отменены также, как и после Чернобыля. Те, кто все еще мечтает сделать бизнес на атомной энергии, должны понять простой факт - скоро реакторы будет некому продавать, может быть за исключением нескольких неплатежеспособных развивающихся стран.

Одной из таких стран буквально вчера стала соседняя Белоруссия. Владимир Путин специально слетал в Минск, чтобы договориться о строительстве там АЭС на российские 6 миллиардов долларов. Учитывая, что Минск находится на грани дефолта (по прогнозам МВФ, к концу года внешний долг Белоруссии достигнет 57,3% ВВП, а прощать такое Лукашенко Запад не станет), есть большая вероятнось того, что деньги будут частично пущены на непрофильные нужды, урезав расходы на безопасность. А АЭС, между прочим, будет находится недалеко от российских границ.

В условиях, когда весь мир в массовом порядке начал отказываться от катастрофичной атомной энергетики, для чиновников по прежнему главное - деньги, на которые они, в отличие от нас, смогут выстроить себе персональное убежище от радиации.