Строение хромосом человека. Хромосомы и здоровье человека

Порой преподносят нам удивительные сюрпризы. Например, знаете ли вы, что такое хромосомы, и как они влияют на ?

Предлагаем разобраться в этом вопросе, чтобы раз и навсегда расставить все точки над «i».

Рассматривая семейные фотографии, вы наверняка могли заметить, что члены одного родства похожи друг на друга: дети – на родителей, родители – на бабушек и дедушек. Это сходство передается от поколения к поколению с помощью удивительных механизмов .

У всех живых организмов, от одноклеточных до африканских слонов, в ядре клетки находятся хромосомы – тонкие длинные нити, которые можно рассмотреть только в электронный микроскоп.

Хромосо́мы (др.-греч. χρῶμα - цвет и σῶμα - тело) - это нуклеопротеидные структуры в ядре клетки, в которых сосредоточена бо́льшая часть наследственной информации (генов). Они предназначены для хранения этой информации, ее реализации и передачи.

Сколько хромосом у человека

Еще в конце XIX века ученые выяснили, что число хромосом у разных видов не одинаково.

Например, у гороха 14 хромосом, у – 42, а у человека – 46 (то есть 23 пары) . Отсюда возникает соблазн сделать вывод, что чем их больше – тем сложнее существо, обладающее ими. Однако на самом деле это совершенно не так.

Из 23 пар человеческих хромосом 22 пары — аутосомы и одна пара — гоносомы (половые хромосомы). Половые имеют морфологические и структурные (состав генов) различия.

У женского организма пара гоносом содержит две Х-хромосомы (ХХ-пара), а у мужского – по одной Х- и Y-хромосоме (XY-пара).

Именно от того, каков будет состав хромосом двадцать третьей пары (ХХ или XY), зависит пол будущего ребенка. Определяется это при оплодотворении и слиянии женской и мужской половой клетки.

Данный факт может показаться странным, но по числу хромосом человек уступает многим животным. Например, у какой-то несчастной козы 60 хромосом, а у улитки – 80.

Хромосомы состоят из белка и молекулы ДНК (дезоксирибонуклеиновой кислоты), похожей на двойную спираль. В каждой клетке находится около 2 метров ДНК, а всего в клетках нашего организма около 100 млрд. км ДНК.

Интересен факт, что при наличии лишней хромосомы или при отсутствии хотя бы одной из 46, — у человека наблюдается мутация и серьезные отклонения в развитии (болезнь Дауна и т.п.).

Хромосома - это содержащая ДНК нитевидная структура в клеточном ядре, которая несет в себе гены, единицы наследственности, расположенные в линейном порядке. У человека имеется 22 пары обычных хромосом и одна пара половых хромосом. Помимо генов хромосомы также содержат регуляторные элементы и нуклеотидные последовательности. Они вмещают ДНК-связывающие белки, которые контролируют функции ДНК. Интересно, что слово «хромосома» происходит от греческого слова «chrome», означающего «цвет». Хромосомы получили такое название из-за того, что имеют особенность окрашиваться в различные тона. Структура и природа хромосом разнятся от организма к организму. Человеческие хромосомы всегда были предметом постоянного интереса исследователей, работающих в области генетики. Широкий круг факторов, которые определяются человеческими хромосомами, аномалии, за которые они ответственны, и их сложная природа всегда привлекали внимание многих ученых.

Интересные факты о человеческих хромосомах

В человеческих клетках содержится 23 пары ядерных хромосом. Хромосомы состоят из молекул ДНК, которые содержат гены. Хромосомная молекула ДНК содержит три нуклеотидных последовательности, требующихся для репликации. При окрашивании хромосом становится очевидной полосчатая структура митотических хромосом. Каждая полоска содержит многочисленные нуклеотидные пары ДНК.

Человек - это биологический вид, размножающийся половым путем и имеющий диплоидные соматические клетки, содержащие два набора хромосом. Один набор наследуется от матери, тогда как другой - от отца. Репродуктивные клети, в отличие от клеток тела, имеют один набор хромосом. Кроссинговер (перекрёст) между хромосомами приводит к созданию новых хромосом. Новые хромосомы не наследуются от кого-то одного из родителей. Это служит причиной того факта, что не у всех у нас проявляются черты, получаемые нами непосредственно от одного из наших родителей.

Аутосомным хромосомам присвоены номера от 1 до 22 в порядке убывания по мере уменьшения их размера. У каждого человека имеется два набора из 22-х хромосом, X-хромосома от матери и X- или Y-хромосома от отца.

Аномалия в содержимом хромосом клетки может вызывать у людей определенные генетические нарушения. Хромосомные аномалии у людей часто оказываются ответственными за появление генетических заболеваний у их детей. Те у кого, имеются хромосомные аномалии, зачастую являются только носителями заболевания, тогда как у их детей это заболевание проявляется.

Хромосомные аберрации (структурные изменения хромосом) бывают вызваны различными факторами, а именно делецией или дупликацией части хромосомы, инверсией, представляющей собой изменение направления хромосомы на противоположное, или транслокацией, при которой происходит отрыв части хромосомы и присоединение ее к другой хромосоме.

Лишняя копия хромосомы 21 ответственна за очень хорошо известное генетическое заболевание под названием синдром Дауна.

Трисомия хромосомы 18 приводит к синдрому Эдвардса, который может вызывать смерть в младенческом возрасте.

Делеция части пятой хромосомы приводит к генетическому нарушению известному как синдром кошачьего крика. У людей, пораженных этим заболеванием, зачастую наблюдается задержка в умственном развитии, а их плач в детском возрасте напоминает кошачий крик.

Нарушения, обусловленные аномалиями половых хромосом, включают синдром Тернера, при котором женские половые признаки присутствуют, но характеризуются недоразвитостью, а также синдром XXX у девочек и синдром XXY у мальчиков, которые вызывают дислексию у пораженных ими индивидуумов.

Впервые хромосомы были обнаружены в клетках растений. Монография Ван Бенедена, посвященная оплодотворенным яйцам аскарид привела к дальнейшим исследованиям. Позже Август Вайсман показал, что зародышевая линия отличается от сомы, и обнаружил, что клеточные ядра содержат наследственный материал. Он также предположил, что фертилизация приводит к формированию новой комбинации хромосом.

Эти открытия стали краеугольными камнями в области генетики. Исследователи уже накопили достаточно значительное количество знаний о человеческих хромосомах и генах, однако многое еще только предстоит обнаружить.

Видео

ХРОМОСОМЫ (греческий chroma цвет, окраска + soma тело) - главные структурно-функциональные элементы клеточного ядра, содержащие расположенные в линейном порядке гены и обеспечивающие хранение, воспроизводство генетической информации, а также начальные этапы ее реализации в признаки; изменяют свою линейную структуру в клеточном цикле. Термин «хромосомы» предложен Вальдейером (W. Waldeyer) в 1888 году из-за палочковидной формы и интенсивного окрашивания этих элементов основными красителями в период деления клетки.

Термин «хромосома» в полном его значении применим к соответствующим ядерным структурам клеток многоклеточных эукариотных организмов (см.). В ядре таких клеток хромосом всегда несколько, они составляют хромосомный набор (см.). В соматических клетках хромосомы парны, так как происходят от двух родительских (диплоидный набор хромосом), в зрелых половых клетках содержится одинарный (гаплоидный) набор хромосом. Каждый биологический вид характеризуется постоянным числом, размерами и другими морфологическими признаками хромосом (см. Кариотип). У разнополых организмов хромосомный набор включает две хромосомы, несущие гены, определяющие пол особи (см. Ген , Пол), которые называют половыми, или гоносомами, в противоположность всем остальным, именуемым аутосомами. У человека пара половых хромосом составлена: у женщин из двух X-хромосом (XX набор), а у мужчин - из X и Y-хромосом (XY набор). Поэтому в зрелых половых клетках - гаметах у женщин содержится только X-хромосома, тогда как у мужчин половина сперматозоидов содержит X-хромосому, а другая - Y-хромосому.

История

Первые наблюдения хромосом в ядре клетки, выполненные в 70-х годах 19 века И. Д. Чистяковым, О. Гертвигом, Страсбургером (E. Strasburger), положили начало цитологическому направлению в изучении хромосом. До начала 20 века это направление было единственным. Применение светового микроскопа позволило получить сведения о поведении хромосом в митотическом и мейотическом делениях (см. Мейоз , Митоз), факты о постоянстве числа хромосом у данного вида, специальных типах хромосом. В 20-40-х годах 20 века преимущественное развитие получило сравнительное морфологическое изучение хромосом у разных видов организмов, включая человека, с целью выяснения общих принципов их организации, особенностей индивидуальных хромосом и изменений их в процессе эволюции. В изучение этой проблемы особый вклад внесли отечественные ученые С. Г. Навашин, Г. А. Левитский, Л. Н. Делоне, П. И. Живаго, А. Г. Андрес, М. С. Навашин, А. А. П рокофъева-Бельговская, а также зарубежные - Хейтц (E. Heitz), Дарлингтон (С. D. Darlington) и др. С 50-х годов для исследования хромосом стал использоваться электронный микроскоп. Началось изучение морфологических изменений хромосом в процессе их генетического функционирования. В 1956 году Тио (H. J. Tjio) и Леван (A. Levan) окончательно установили число хромосом у человека, равное 46, описали их морфологические признаки в метафазе митоза. Значительный прогресс в изучении хромосом был достигнут в 70-х годах после разработки различных методов их окраски, позволивших выявить неоднородность структуры хромосом по длине в мета фазе деления клеток.

Сопоставление поведения хромосом в мейотическом делении с закономерностями наследования признаков (см. Менделя законы) положило начало цитогенетическим исследованиям. В конце 19 - начале 20 века Сеттоном (W. Sutton), Бовери (Th. Boveri), Уилсоном (Е. В. Wilson) были заложены основы хромосомной теории наследственности (см.), согласно которой гены локализованы в хромосомах и поведение последних при созревании гамет и их слиянии в момент оплодотворения объясняет законы передачи признаков в поколениях. Теория получила окончательное обоснование в цитогенетических экспериментах, проведенных на дрозофиле (см.) Т. Морганом и его учениками, которые доказали, что каждая хромосома есть группа генов, сцепленно наследуемых и расположенных в линейном порядке, что в мейозе осуществляется рекомбинация генов (см. Рекомбинация) гомологичных (идентичных) хромосом.

Изучение биохимической природы хромосом, начатое в 30-40-е годы 20 века, первоначально основывалось на цитохимическом качественном и количественном определении содержания ДНК, РНК и белков в ядре. С 50-х годов для этих целей стали применять фото- и спектрометрию (см. Спектрофотометрия), рентгеноструктурный анализ (см.) и другие физико-химические методы.

Физико-химическая природа хромосом

Физико-химическая природа хромосом зависит от сложности организации биологического вида. Хромосома эукариот состоит из молекулы дезоксирибонуклеиновой кислоты (см.), гистоновых и негистоновых белков (см. Гистоны), а также рибонуклеиновой кислоты (см.). Основным химическим компонентом хромосомы, заключающим в структуре своей молекулы генетическую информацию, является ДНК. В естественных условиях в отдельных участках хромосомы ДНК может быть свободной от структурных белков, однако в основном она существует в виде комплекса с гистонами, причем как и в интерфазе, так и в метафазе весовое отношение ДНК/гистон составляет единицу. Содержание кислых белков в хромосомах варьирует в зависимости от их активности и степени конденсации в клеточном цикле. В хроматине (см.) интерфазного ядра и на любой стадии митотической конденсации ДНК существует в комплексе с гистонами, и взаимодействие именно этих молекул создает элементарные структурные частицы хроматина - нуклеосомы. В нуклеосоме ее центральную часть составляют 8 молекул гистонов четырех типов (по 2 молекулы от каждого типа). Это гистоны Н2А, Н2В, НЗ и Н4, взаимодействующие между собой, по-видимому, С-концевыми участками молекул. N-концевые участки гистоновых молекул взаимодействуют с молекулой ДНК таким образом, что последняя оказывается накрученной на гистоновый остов, делая два витка на одной его стороне и один на другой. На одну нуклеосому приходится около 140 пар оснований ДНК. Между соседними нуклеосомами имеется варьирующий по длине отрезок ДНК (10-70 пар оснований). Когда он выпрямлен, ДНК принимает вид нити с бусинками. Если отрезок находится в сложенном состоянии, нуклеосомы тесно прилегают друг к другу, формируя фибриллу диаметром 10 нм. Строение из нуклеосомных частиц является принципом организации хроматина (см.) как в интерфазной, так и в метафазной хромосоме.

Индивидуально различимые хромосомы формируются ко времени клеточного деления, митоза или мейоза, в результате прогрессивно нарастающей конденсации хромосом. В профазе митотического деления хромосомы видны в световом микроскопе в виде длинных и переплетенных нитей, поэтому индивидуальные хромосомы на всем протяжении неразличимы. В профазе первого мейотического деления хромосомы претерпевают сложные специфические морфологические преобразования, связанные главным образом с конъюгацией гомологичных хромосом (см. Конъюгация хромосом) и генетической рекомбинацией (обменом участками) между ними. В пахитене (когда заканчивается конъюгация) особенно показательно чередование хромомер по длине хромосом, причем хромомерный рисунок специфичен для каждой хромосомы и меняется по мере конденсации. Многие хромосомы в оогенезе и Y-хромосома в сперматогенезе обладают высокой транскрипционной активностью. У некоторых видов организмов такие хромосомы получили название «ламповых щеток». Они состоят из оси, построенной из хромомер и межхромомерных участков, и многочисленных боковых петель - деконденсированных хромомер, находящихся в состоянии генетического функционирования (транскрипции).

В метафазе деления клетки хромосомы имеют наименьшую длину и их легко исследовать, поэтому описание индивидуальных хромосом, как и всего их набора в клетке, дают применительно к их состоянию в этой фазе. Размеры метафазных хромосом у одного и того же вида организмов сильно различаются: хромосомы размерами в доли микрона имеют точечный вид, при длине более 1 мкм они выглядят как палочковидные тела. Обычно это раздвоенные по длине образования, состоящие из двух сестринских хроматид (рис. 2, 3), поскольку в метафазе хромосомы редуплицированы.

Индивидуальные хромосомы набора различаются между собой по длине и другим морфологическим признакам. Методы, применявшиеся до 70-х годов, обеспечивали равномерное окрашивание хромосомы по ее длине. Тем не менее такая хромосома в качестве обязательного элемента структуры имеет первичную перетяжку - участок, где обе хроматиды сужаются, видимо не отделяясь одна от другой, и плохо окрашиваются. Этот район хромосомы называется центромерой, он содержит специализированную структуру - кинетохор, который участвует в формировании нитей веретена деления хромосом. По соотношению размеров лежащих по обе стороны от первичной перетяжки хромосомных плеч хромосомы подразделяются на три типа: метацентрические (со срединно расположенной перетяжкой), субметацентрические (перетяжка смещена от середины), акроцентрические (центромера расположена близко к концу хромосомы, рис. 3). У человека имеются все три типа хромосом. Концы хромосом называют теломерами. По длине хромосом с той или иной степенью постоянства могут встречаться не имеющие отношения к центромере, так называемые вторичные перетяжки. Если они располагаются близко к теломере, отделяемый перетяжкой дистальный участок хромосомы называют спутником, а перетяжку - спутничной (рис. 2). У человека десять со вторичной перетяжкой хромосом, все они являются акроцентрическими, спутники локализованы в коротком плече. Некоторые вторичные перетяжки содержат рибосомные гены и называются ядрышкообразующими, поскольку благодаря их функционированию в продукции РНК в интерфазном ядре формируется ядрышко (см.). Другие вторичные перетяжки образуются гетерохроматиновыми районами хромосом; у человека из таких перетяжек наиболее выражены околоцентромерные перетяжки в 1, 9 и 16-й хромосомах.

Первоначальный метод использования красителя Гимзы и других хромосомных красителей давал равномерную окраску по всей длине хромосомы. С начала 70-х годов разработан ряд методов окраски и обработки метафазных хромосом, которые позволили обнаружить дифференцированность (деление на светлые и темные полосы) линейной структуры каждой хромосомы по всей ее длине: Q-окраска (Q - от английского quinacrine акрихин), получаемая с помощью акрихина, акрихиниприта и других флюорохромов; G-окраска (G - от фамилии Giemsa), получаемая с помощью красителя Гимзы (см. Романовского - Гимзы метод) после инкубации препаратов хромосом в специальных условиях; R-окраска (R - от англ. reverse обратный; хромосомы окрашиваются обратно G-окраске). Тело хромосомы оказывается подразделенным на сегменты разной интенсивности окрашивания или флюоресценции. Число, положение и размер таких сегментов специфичны для каждой хромосомы, поэтому любой хромосомный набор может быть идентифицирован. Другие методы позволяют дифференциально окрашивать отдельные специфические районы хромосом. Возможно избирательное окрашивание красителем Гимзы гетерохроматиновых районов хромосомы (С-окраска; С - от centromere центромера), располагающихся рядом с центромерой - С-сегментов (рис. 4). У человека С-сегменты обнаружены в околоцентромерном районе всех аутосом и длинном плече Y -хромосомы. Гетерохроматиновые районы варьируют по величине у разных индивидуумов, обусловливая полиморфизм хромосом (см. Хромосомный полиморфизм). Специфические окраски позволяют выявить в метафазных хромосомах функционировавшие в интерфазе ядрышкообразующие районы, а также кинетохоры.

На электронномикроскопическом уровне основной ультраструктурой единицей интерфазного хроматина при просвечивающей электронной микроскопии (см.) является нить диаметром 20-30 нм. Плотность упаковки нитей различна в участках плотного и диффузного хроматина.

Метафазная хромосома на срезе в просвечивающем электронном микроскопе представляется равномерно заполненной фибриллами 20-30 нм в поперечнике, которые в зависимости от плоскости сечения имеют вид округлых, овальных или удлиненных образований. В профазе и телофазе в хромосоме можно обнаружить более толстые нити (до 300 нм). При электронной микроскопии поверхность метафазной хромосомы представлена хаотично уложенными многочисленными фибриллами разного диаметра, видимыми, как правило, на коротком отрезке (рис. 5). Преобладают нити диаметром 30-60 нм.

Изменчивость хромосом в онтогенезе и эволюции

Постоянство числа хромосом в хромосомном наборе и структуры каждой хромосомы - непременное условие нормального развития в онтогенезе (см.) и сохранения биол. вида. В течение жизни организма могут происходить изменения числа отдельных хромосом и даже их гаплоидных наборов (геномные мутации) или структуры хромосом (хромосомные мутации). Необычные варианты хромосом, обусловливающие уникальность хромосомного набора индивидуума, применяются в качестве генетических маркеров (маркерных хромосом). Геномные и хромосомные мутации играют важную роль в эволюции биол. видов. Данные, полученные при изучении хромосом, вносят большой вклад в систематику видов (кариосистематику). У животных одним из главных механизмов эволюционной изменчивости является изменение числа и структуры отдельных хромосом. Важное значение имеет также изменение содержания гетерохроматина в отдельных или нескольких хромосомах. Сравнительное изучение хромосом человека и современных человекообразных обезьян позволило на основании сходства и различия индивидуальных хромосом установить степень филогенетического родства этих видов и смоделировать кариотип их общего ближайшего предка.

Бочков Н. П., Захаров А. Ф. и Иванов В. И. Медицинская генетика, М., 1984; Дарлингтон С. Д. и Ла Кур Л. Ф. Хромосомы, Методы работы, пер. с англ., М., 1980, библиогр.; Захаров А. Ф. Хромосомы человека (проблемы линейной организации;, М., 1977, библиогр.; Захаров А. Ф. и др. Хромосомы человека, Атлас, М., 1982; Кикнадзе И. И. Функциональная организация хромосом, Л., 1972, библиогр.; Основы цитогенетики человека, под ред. А. А. Прокофьевой-Бельговской, М., 1969: Суонсо н К., Мерц Т. и Янг У. Цитогенетика, пер. с англ., М., 1969; Cell biology, A comprehensive treatise, ed. by L. Goldstein a. D. M. Prescott, p. 267, N. Y. a. o., 1979; Seuanez H. N, The phylogeny of human chromosomes, v. 2, B. a. o. 1979; Sharm a A. K. a. Sharma A. Chromosome techniques, L. a. o., 1980; ThermanE. Human chromosomes, N. Y. a. o., 1980.

А. Ф. Захаров.

Хромосомы - наиважнейший элемент клетки. Они отвечают за передачу и реализацию наследственной информации и в эукариотической клетке локализуются в ядре.

По химическому строению хромосомы представляют собой комплексы дезоксирибонуклеиновых кислот (ДНК) и связанных с ними белков, а также небольшого количества других веществ и ионов. Таким образом, хромосомы являются дезоксирибонуклеопротеидами (ДНП).

Каждая хромосома в интерфазе включает одну длинную двухцепочечную молекулу ДНК. Ген - это последовательность определенного количество следующих друг за другом нуклеотид, составляющих ДНК. Гены, входящие в состав ДНК одной хромосомы, следуют друг за другом. В интерфазе в клетке протекает множество процессов, многие участки хромосомы деспирализованы в разной степени. На многих участках ДНК идет синтез РНК.

В период клеточного деления (как при митозе, так и при мейозе) хромосомы спирализуются (происходит их компактизация). При этом их длина сокращается, а синтез на них РНК становится невозможным. До спирализации каждая хромосома удваивается . Говорят, что хромосома становится состоящей из двух хроматид . То есть в период интерфазы хромосома состояла из одной хроматиды.

В компактизации хроматид важную роль играют белки, входящие в состав хромосомы.

Таким образом, в зависимости от фазы клеточного цикла по внешнему строению хромосомы могут быть представлены 1) в виде невидимого в световой микроскоп хроматина (в интерфазе) и состоять из одной хроматиды или 2) в форме двух спирализованных хроматид, видимых в световой микроскоп (в фазах клеточного деления, начиная с метафазы).

В строении хромосом есть еще один важный элемент - центромера (первичная перетяжка). Она имеет белковую природу и отвечает за движение хромосомы, также к ней крепятся нити веретена деления. В зависимости от места расположения центромеры различают равноплечие (метацентрические), неравноплечие (субметацентрические) и палочковидные (акроцентрические) хромосомы. У первых центромера находится по-середине, разделяя каждую хроматиду на два равных плеча, у вторых плечи неравной длины, а у третьих центромера находится у одного из концов хроматиды.

В удвоенных хромосомах хроматиды соединены между собой в области центромеры.

Строение удвоенной хромосомы.
1 - хроматида; 2 - центромера; 3 - короткое плечо; 4 - длинное плечо.

Наличие первичной перетяжки в строении хромосом обязательно. Однако кроме них бывают вторичные перетяжки (ядрышковые организаторы ), они наблюдаются не у всех хромосом. В ядре на вторичных перетяжках хромосом происходит синтез ядрышек.

На концах хроматид находятся так называемые теломеры . Они препятствуют слипанию хромосом.

В гаплоидном наборе каждая хромосома по своему строению уникальна. Положение центромеры (и обусловленные этим длины плеч хромосомы) позволяет отличать каждую среди остальных.

В диплоидном наборе у каждой хромосомы есть гомологичная ей, имеющая такое же строение и тот же набор генов (но возможно других их аллелей) и доставшаяся от другого родителя.

Для каждого вида живых организмов характерен свой кариотип , т. е. свое количество хромосом и их особенности (длина, положение центромер, особенности химического строения). По кариотипу можно определить биологический вид.

Выше уже говорилось, что в ядре клетки молекулы ДНК расположены в особых структурах, получивших название хромосомы . Их исследование началось еще свыше 100 лет назад с помощью обычного светового микроскопа. Уже к концу XIX века выяснилось кое-что о поведении хромосом в процессе деления клеток и высказывалась мысль об их участии в передаче наследственности.

Хромосомы становятся видимыми в микроскопе при делении клетки на определенной стадии клеточного цикла, называемой митозом . Хромосомы в этом состоянии представляют собой компактные палочковидные структуры разной длины с довольно постоянной толщиной, у большей части хромосом имеется перетяжка, которая делит хромосому на два плеча. В области перетяжки расположена важная для удвоения хромосом структура, называемая центромерой . При делении клетки в ходе митоза происходит удвоение числа хромосом, в результате которого обе вновь образующиеся клетки в конечном итоге обеспечиваются одним и тем же стандартным набором хромосом.

Лишь в 1956 г. впервые Ю. Тио и A. Леван описали хромосомный набор человека, определили количественный состав хромосом и дали их общую морфологическую характеристику. По сути дела эти работы и положили начало изучению структуры генома человека. У человека в каждой клетке тела содержится 46 хромосом, физические длины которых находятся в пределах от 1,5 до 10 мкм (рис. 7).

Рис. 7 . Вид под микроскопом полного набора хромосом, содержащихся в ядре каждой отдельной клетки человека

Напомним читателю, что набор хромосом во всех клетках человека (за исключением половых) называют диплоидным (двойным), поскольку каждая из хромосом представлена двумя копиями (всего 23 пары). Каждая соматическая клетка человека (кроме красных кровяных клеток крови) содержит по 2 полных набора хромосом. В каждом единичном (гаплоидном) наборе присутствует 23 хромосомы — 22 обычные хромосомы (аутосомы) и по одной половой хромосоме — X или Y. Таким образом, геном каждого конкретного человека состоит из 23 пар гигантских молекул ДНК, распределенных в разных хромосомах, а если говорить о геноме человека вообще (мужчин и женщин), то общее число таких молекул равно 24. Это первое базовое сведение, которое было получено о геноме человека при анализе хромосом.

Изучение строения (размера и формы) хромосом человека показало, что большинство из них по внешнему виду напоминают кегли, состоящие из двух толстых частей (хроматид) и тонкой перетяжки (центромеры) между ними. Сходство с кеглями, а не с гантелями заключается в том, что центромера чаще всего расположена не в центре хромосомы, а смещена к одному из ее концов. Размеры хромосом сильно варьируют, самая короткая хромосома примерно в десять раз меньше, чем самая длинная. Это второе принципиально важное сведение о структуре генома человека — составляющие его 24 молекулы ДНК имеют разный размер.

Если сравнивать число и размер хромосом у человека и у других видов организмов, то можно увидеть огромные отличия. Например, у коровы, размер генома которой примерно равен геному человека, имеется 60 пар хромосом. У шпорцевой лягушки содержится всего 18 хромосом, но даже самые маленькие из них больше, чем самые крупные хромосомы человека. У птиц, наоборот, число хромосом достигает 40 и более и все они очень небольшие по размерам. Таким образом, разнообразие хромосом в природе весьма велико.

С помощью световой микроскопии были определены размеры всех хромосом человека. Затем все неполовые хромосомы были пронумерованы по уменьшению размера — от 1 до 22. Половым хромосомам не присвоили номер, а назвали X и Y. Как показали более точные последующие исследования, хромосома 21 реально оказалась чуть меньше 22, однако нумерацию хромосом не изменили (чтобы не вносить путаницу). Различие в хромосомных наборах между мужчинами и женщинами состоит в том, что у женщин имеются две половые X-хромосомы (т. е. хромосомы во всех 23-х парах одинаковы), а у мужчин пару с X-хромосомой образует мужская половая хромосома — Y. Каждую хромосому можно рассматривать как отдельный том большого двадцатичетырехтомного собрания сочинений под названием Энциклопедия человека.

Половые клетки человека, в отличие от клеток тела взрослого организма (соматических клеток), содержат не 2 набора томов ДНКового текста, а всего лишь один. Перед зачатием каждая отдельная хромосома (отдельный том в Энциклопедии человека) сперматозоида отца и яйцеклетки матери состоят из смешанных в разном сочетании различных глав ДНКового текста их родителей. Любая из хромосом, полученная нами от отца, образовалась в его семенниках незадолго до того, как мы были зачаты. Ранее, за всю историю человечества, точно такая хромосома никогда не существовала. Она была сформирована в процессе случайного перемешивания, происходящего при делении, постепенно образуясь из объединяющихся друг с другом участков хромосом предков со стороны отца. Также обстоит дело и с хромосомами яйцеклеток, за исключением того, что они формируются в организме нашей матери задолго до нашего рождения (почти сразу после рождения самой матери).

В зиготе, образующейся в результате слияния сперматозоида и яйцеклетки, материнские и отцовские гены смешиваются и перетасовываются в разных сочетаниях. Это происходит в результате того, что хромосомы не остаются неизменными в поколениях — они вступают во взаимодействие со своей случайно встреченной парой, обмениваясь с ней материалом. Такой постоянно идущий процесс получил название рекомбинации . И следующему поколению часто достается уже гибридная хромосома — часть от дедушки и часть от бабушки. Далее в ряду поколений пути генов постоянно пересекаются и расходятся. В результате слияния уникальной яйцеклетки с уникальным сперматозоидом и возникает уникальный во всех отношениях геном. И в этом смысле все мы уникумы. Каждый человеческий индивид хранит уникальную генетическую информацию, состоящую из случайной комбинации разных вариантов генов.

Отдельный ген можно рассматривать как единицу, продолжающую существовать в ряду многочисленных поколений. И в этом смысле ген бессмертен! Существует даже такая оригинальная точка зрения, что не сами люди, а их гены правят миром, а каждый конкретный живой организм служит лишь временным прибежищем для них. Эта не бесспорная мысль принадлежит Ричарду Докинзу, автору книги «Эгоистичный ген». По его мнению, гены практически бессмертны в отличие от живых организмов, в которых они существуют. Некоторым генам десятки и даже сотни миллионов лет. Гены, пользуясь терминологией Докинза, делают все возможное, чтобы выжить. Приспосабливаются к жаре и холоду, выбирая себе местечко получше, мигрируют с помощью человека и вступают в новые комбинации. Человек оказался довольно непоседливым хозяином. За тысячи лет он сильно исколесил мир, распространяя свое присутствие, влияние и свою начинку — гены. (Подробнее с идеями и аргументацией Р. Докинза любознательный читатель может познакомиться в Приложении 1 ). Такая точка зрения далеко не бесспорна, и из дальнейшего изложения нам станет понятно, что гены — это в первую очередь не эгоисты, а трудоголики. Имеются гены — «сторожа» генома, гены — «дворники», гены — «повара» и гены — «домоуправители». Обеспечивая свое существование, они обеспечивают и существование нас.

Сразу после зачатия будущий человек представляет собой всего одну клетку (зиготу), наделенную одной исходной ДНКовой библиотекой, содержащей 46 томов. Среди 46 томов всегда 23 получены от отца, а другие 23 — от матери. Тексты 23 отцовских и 23 материнских томов хотя и очень сходны в целом, тем не менее отличаются в деталях. Например, в отцовском томе № 18 на странице 253 существует предложение-предписание (в виде гена), в котором сказано, что глаза у ребенка должны быть карими, а в этом же материнском томе на той же странице тоже написано о цвете глаз, но согласно этому тексту цвет должен быть голубыми. Первое указание более строгое (доминирующее), чем второе, и в результате у ребенка глаза будут иметь карий цвет. Ген, который диктует свои права, называют доминирующим , а тот, который уступает свои права, — рецессивным . Голубой цвет глаз имеют только те люди, у которых и в материнском, и в отцовском тексте содержатся рецессивные гены, в которых есть указание на голубоглазость. Затем зигота делится на две клетки, каждая из них вновь делится и так до появления миллиардов клеток. Схематически процесс деления клеток изображен на рис. 8.

При каждом делении клетки содержащиеся в библиотеках тома ДНКового текста точно копируются, причем практически без ошибок. Организм взрослого человека состоит в среднем из 1014 клеток. Например, в головном мозге и печени насчитывается примерно по 10 млрд. клеток, в иммунной системе — 300 млрд. клеток. В течение всей жизни человека в его организме происходит около 1016 клеточных делений. Клеточный состав многих органов за 70 лет жизни обновляется несколько раз. И каждая из этих клеток содержит одни и те же 46 томов ДНКового текста.

В конце 60-х годов XX века был осуществлен важный прорыв в исследовании хромосом. Обусловлен он был всего лишь тем, что для их окраски стали использовать специальное контрастное вещество — акрихин-иприт, а затем и другие сходные с ним соединения. Такая окраска позволила выявить внутри хромосом большое число разных субструктур, которые не обнаруживались под микроскопом без окрашивания. После окрашивания хромосом специфическим красителем Гимза-Романовского они выглядят как зебры: вдоль всей длины видны поперечные светлые и темные полосы, имеющие окраску разной интенсивности.

Рис. 8 . Основные стадии клеточного цикла, приводящего к делению клетки

Эти полосы получили название хромосомных G-сегментов или полос (рис. 9). Картина сегментации сильно отличается у разных хромосом, но расположение хромосомных сегментов постоянно у каждой из хромосом во всех типах клеток человека.

Природа полос, выявляемых при окраске, до конца еще не ясна. Сейчас установлено только, что участки хромосом, соответствующие темным полосам (названные R-полосами), реплицируются раньше, чем светлые участки (названные G-полосами). Таким образом, полосатость хромосом скорее всего все же имеет некий до конца еще не понятый смысл.

Окрашивание хромосом очень облегчило их идентификацию, а в дальнейшем способствовало определению расположения на них генов (картированию генов).

Рис. 9 . Специфические хромосомные G-сегменты, выявляемые при окраске хромосом человека, и система их обозначения согласно решению международной конференции в Париже в 1971 году. Цифрами под хромосомами указаны их номера. X и Y — половые хромосомы, p — короткое плечо, q — длинное плечо хромосом

Хотя детальные процессы, происходящие при окрашивании, еще не до конца ясны, очевидно, что картина окраски зависит от такого параметра, как увеличенное или уменьшенное содержание в отдельных полосах хромосом АТ или ГЦ-пар. И это еще одно общее сведение о геноме — он не однороден, в нем есть районы, обогащенные определенными парами нуклеотидов.

Это, в частности, может быть связано с повторяемостью некоторых типов нуклеотидных последовательностей ДНК в определенных районах.

Дифференциальная окраска хромосом нашла широкое применение для выявления и идентификации небольших индивидуальных изменений генома конкретного человека (полиморфизма ), в частности, приводящих к различным патологиям. Примером этому может служить обнаружение так называемой филадельфийской хромосомы, встречающейся у больных с хроническим миелоидным лейкозом. С помощью окраски хромосом установлено, что у пациентов с этим заболеванием определенный фрагмент исчезает на хромосоме 21 и появляется на конце длинного плеча хромосомы 9 (перенос фрагмента или транслокация , сокращенно t). Генетики обозначают такое событие как t (9; 21). Таким образом, хромосомный анализ свидетельствует о том, что разные молекулы ДНК могут обмениваться между собой отдельными участками, в результате чего в геноме образуются «гибриды», состоящие из молекул ДНК разных хромосом. Анализ уже изученных свойств хромосом позволил сформировать представление о полиморфизме генома человека.

Для выяснения локализации отдельных генов на хромосомах (то есть картирования генов) используют целый арсенал специальных зачастую весьма сложных по замыслу и исполнению методов. Один из основных — молекулярная гибридизация (образование гибрида) гена или его фрагмента с фиксированными на твердой подложке препаратами хромосом, выделенными из клеток в чистом виде (это называют гибридизацией in situ ). Суть метода гибридизации in situ заключается во взаимодействии (гибридизации) между денатурированными (расплетенными) нитями ДНК в хромосомах и комплементарными нуклеотидными последовательностями добавленных к препарату хромосом, индивидуальных однонитевых ДНК или РНК (их называют зондами ). При наличии комплементарности между одной из нитей хромосомной ДНК и зондом между ними образуются довольно стабильные молекулярные гибриды. Зонды маркируют предварительно с помощью разных меток (радиоактивных, флуоресцентных или др.). Места образования гибридов на хромосомах выявляют по положению этих меток на препаратах хромосом. Так, еще до появления методов генной инженерии и секвенирования ДНК выяснили, например, расположение в геноме человека генов, кодирующих большие и малые рибосомные РНК (рРНК). Гены первых оказались локализованными в пяти разных хромосомах человека (13, 14, 15, 21 и 22), тогда как основная масса генов малой рРНК (5S РНК) сконцентрирована в одном месте на длинном плече хромосомы 1.

Пример картины, получаемой при гибридизации меченых флюоресцентным красителем генов-зондов, приведен на рис. 10 на цветной вклейке.

Рис. 10 . Гибридизация хромосом человека с генами-зондами, мечеными красным и зеленым флюоресцентными красителями. Стрелками указано расположение соответствующих генов на концах двух разных хромосом (справа вверху дано увеличение картины гибридизующихся хромосом).

Гены, расположенные на одной хромосоме, определяют как сцепленные (связанные) гены. Если гены расположены на разных хромосомах, они наследуются независимо (независимая сегрегация). Когда же гены находятся на одной и той же хромосоме (т. е. сцеплены), они неспособны к независимой сегрегации. Изредка в половых клетках могут происходить различные изменения хромосом в результате рекомбинационных процессов между гомологичными хромосомами. Один из таких процессов получил название кроссинговера . Из-за кроссинговера сцепление между генами одной группы никогда не бывает полным. Чем ближе расположены друг к другу сцепленные гены, тем меньше вероятность изменения расположения таких генов у детей по сравнению с родителями. Измерение частоты рекомбинаций (кроссинговера) используется для установления линейного порядка генов на хромосоме внутри группы сцепления. Таким образом, при картировании хромосом первоначально устанавливают, находятся ли данные гены в одной и той же хромосоме, без уточнения, в какой именно. После того, как хотя бы один из генов данной группы сцепления локализуют в определенной хромосоме (например, с помощью гибридизации in situ ), становится ясным, что все другие гены этой группы сцепления находятся в той же самой хромосоме.

Первым примером связи генов с определенными хромосомами может служить обнаружение сцепления определенных наследуемых признаков с половыми хромосомами. Чтобы доказать локализацию гена в мужской половой Y-хромосоме, достаточно показать, что данный признак всегда встречается только у мужчин и никогда не обнаруживается у женщин. Группа сцепления женской X-хромосомы однозначно характеризуется отсутствием наследуемых признаков, передающихся от отца к сыну, и наследованием признаков матери.

Особенно важным для изучения генома человека на первых этапах его исследования стал метод, называемый гибридизацией соматических клеток . При смешивании соматических (неполовых) клеток человека с клетками других видов животных (чаще всего для этой цели использовали клетки мышей или китайских хомячков) в присутствии определенных агентов может происходить слияние их ядер (гибридизация). При размножении таких гибридных клеток происходят потери некоторых хромосом. По счастливой для экспериментаторов случайности в гибридных клетках человек-мышь происходит потеря большей части хромосом человека. Далее отбираются гибриды, в которых остается только какая-нибудь одна человеческая хромосома. Исследования таких гибридов позволили связать некоторые биохимические признаки, свойственные клеткам человека, с определенными хромосомами человека. Постепенно благодаря использованию селективных сред научились добиваться сохранения или потери отдельных хромосом человека, несущих определенные гены. Схема отбора, хотя и не очень проста на первый взгляд, довольно хорошо показала себя в эксперименте. Так, придумали специальную селективную среду, на которой могут выживать только те клетки, в которых синтезируется фермент тимидинкиназа. Если для гибридизации с клетками человека взять в качестве партнера мутантные клетки мыши, не синтезирующие тимидинкиназу, то будут выживать только те гибриды, которые содержат хромосомы человека с геном тимидинкиназы. Таким путем впервые удалось установить локализацию гена тимидинкиназы на хромосоме 17 человека.