Сравнительная характеристика оксидов углерода. Угольная кислота и её соли

Все, что нас окружает, состоит из соединений различных химических элементов. Мы дышим не просто воздухом, а сложным органическим соединением, имеющим в своем составе кислород, азот, водород, двуокись углерода и другие необходимые составляющие. Влияние множества этих элементов на организм человека в частности и на жизнь на Земле в целом еще не изучено до конца. Для того чтобы понимать процессы взаимодействия элементов, газов, солей и других образований друг с другом, в школьный курс и был введен предмет «Химия». 8 класс - это старт уроков химии по утвержденной общеобразовательной программе.

Одним из самых распространенных соединений, содержащихся как в земной коре, так и в атмосфере, является оксид. Оксидом называется соединение любого химического элемента с атомом кислорода. Даже источник всего живого на Земле - вода, является оксидом водорода. Но в данной статье речь пойдет не об оксидах в общем, а об одном из самых часто встречаемых соединений - оксиде углерода. Данные соединения получаются путем слияния атомов кислорода и углерода. Эти соединения могут иметь в своем составе различные количества атомов углерода и кислорода, однако следует выделить два основных соединения углерода с кислородом: угарный газ и углекислый газ.

Химическая формула и способ получения угарного газа

Какова же его формула? Оксид углерода довольно легко запомнить - CO. Молекула угарного газа образуется тройной связью, в связи с чем обладает довольно высокой прочностью соединения и имеет очень небольшое межъядерное расстояние (0,1128 нм). Энергия разрыва данного химического соединения составляет 1076 кДж/Моль. Тройная связь возникает вследствие того, что элемент углерод имеет в своей структуре атома p-орбиталь, не занятую электронами. Это обстоятельство создает для атома углерода возможность стать акцептором электронной пары. А атом кислорода, наоборот, имеет на одной из p-орбиталей неразделенную пару электронов, а значит имеет электронно-донорные возможности. При соединении этих двух атомов кроме двух ковалентных связей появляется еще и третья - донорно-акцепторная ковалентная связь.

Существуют различные способы получения CO. Одним из самых простейших является пропускание углекислого газа над раскаленным углем. В лабораторных условиях угарный газ получают при помощи следующей реакции: муравьиную кислоту нагревают с серной кислотой, которая разделяет муравьиную кислоту на воду и угарный газ.

Также CO выделяется при нагревании щавелевой и серной кислоты.

Физические свойства CO

Оксид углерода (2) обладает следующими физическими свойствами - это бесцветный газ, не имеющий ярко выраженного запаха. Все посторонние запахи, появляющиеся при утечке угарного газа, являются продуктами распада органических примесей. Он намного легче воздуха, чрезвычайно токсичен, очень плохо растворяется в воде и отличается высокой степенью горючести.

Самое главное свойство CO - его отрицательное воздействие на организм человека. Отравление угарным газом может привести к летальному исходу. Более подробно о воздействии оксида углерода на организм человека будет рассказано ниже.

Химические свойства CO

Основные химические реакции, в которых могут применяться оксиды углерода (2) - это окислительно-восстановительная реакция, а также реакция присоединения. Окислительно-восстановительная реакция выражается в способности CO восстанавливать металл из оксидов при помощи их смешивания с дальнейшим нагреванием.

При взаимодействии с кислородом происходит образование углекислого газа с выделением значительного количества теплоты. Угарный газ горит синеватым пламенем. Очень важная функция оксида углерода - его взаимодействие с металлами. В результате подобных реакций образуются карбонилы металлов, подавляющее большинство которых являются кристаллическими веществами. Они применяются для изготовления сверхчистых металлов, а также для нанесения металлического покрытия. Кстати, карбонилы неплохо себя зарекомендовали в качестве катализаторов химических реакций.

Химическая формула и способ получения углекислого газа

Углекислый газ, или двуокись углерода, имеет химическую формулу CO 2 . Структура молекулы несколько отличается от структуры CO. В данном образовании углерод имеет степень окисления, равную +4. Структура молекулы линейная, а значит, неполярная. Молекула CO 2 не обладает такой сильной прочностью, как CO. В земной атмосфере содержится около 0,03% углекислоты по общему объему. Увеличение этого показателя разрушает озоновый слой Земли. В науке это явление называется парниковым эффектом.

Получить углекислый газ можно различными путями. В промышленности он образуется в результате горения дымовых газов. Может быть побочным продуктом в процессе изготовления алкоголя. Его можно получить в процессе разложения воздуха на основные составляющие, такие как азот, кислород, аргон и другие. В лабораторных условиях оксид углерода (4) можно получить в процессе обжига известняка, а в домашних условиях добыть углекислый газ можно при помощи реакции лимонной кислоты и пищевой соды. Кстати, именно таким образом изготавливались газированные напитки в самом начале их производства.

Физические свойства CO 2

Углекислый газ представляет собой бесцветное газообразное вещество без характерного резкого запаха. Из-за высокого числа окисления данный газ обладает слегка кисловатым привкусом. Данный продукт не поддерживает процесс горения, так как сам является результатом горения. При повышенной концентрации углекислого газа человек утрачивает способность дышать, что приводит к летальному исходу. Более подробно о воздействии углекислого газа на организм человека будет рассказано далее. CO 2 намного тяжелее воздуха и прекрасно растворяется в воде даже при комнатной температуре.

Одним из самых интересных свойств углекислого газа является то, что у него нет жидкого агрегатного состояния при нормальном атмосферном давлении. Однако если воздействовать на структуру углекислого газа воздействие температурой в -56,6 °С и давлением около 519 кПа, то он трансформируется в бесцветную жидкость.

При существенном понижении температуры газ находится в состоянии так называемого «сухого льда» и испаряется при температуре выше чем -78 о С.

Химические свойства CO 2

По своим химическим свойствам оксид углерода (4), формула которого CO 2 , является типичным кислотным оксидом и обладает всеми его свойствами.

1. При взаимодействии с водой образуется угольная кислота, обладающая слабой кислотностью и малой устойчивостью в растворах.

2. При взаимодействии с щелочами углекислый газ образует соответствующую соль и воду.

3. Во время взаимодействия с оксидами активного металла способствует образованию солей.

4. Не поддерживает процесс горения. Активировать данный процесс могут только некоторые активные металлы, такие как литий, калий, натрий.

Влияние угарного газа на организм человека

Вернемся к основной проблеме всех газов - влиянию на организм человека. Угарный газ относится к группе крайне опасных для жизни газов. Для человека и животного он является чрезвычайно сильным ядовитым веществом, которое при попадании в организм серьезно поражает кровь, нервную систему организма и мышцы (в том числе и сердце).

Оксид углерода в воздухе невозможно распознать, так как этот газ не имеет никакого ярко выраженного запаха. Именно этим он и опасен. Попадая через легкие в организм человека, угарный газ активизирует свою разрушительную деятельность в крови и в сотни раз быстрее кислорода начинает взаимодействовать с гемоглобином. В результате этого появляется очень стойкое соединение под названием карбоксигемоглобин. Оно препятствует доставке кислорода из легких к мышцам, что приводит к мышечному голоданию тканей. Особенно серьезно страдает от этого головной мозг.

Из-за отсутствия возможности распознать отравление угарным газом через обоняние, следует знать некоторые основные признаки, которые проявляются на ранних этапах:

  • головокружение, сопровождающееся головной болью;
  • шум в ушах и мерцание перед глазами;
  • сильное сердцебиение и одышка;
  • покраснение лица.

В дальнейшем у жертвы отравления появляется сильная слабость, иногда рвота. В тяжелых случаях отравления возможны непроизвольные судороги, сопровождающиеся дальнейшей потерей сознания и комой. Если же пациенту своевременно не будет оказана соответствующая медицинская помощь, то возможен летальный исход.

Влияние углекислого газа на организм человека

Оксиды углерода с кислотностью +4 относятся к разделу удушающих газов. Иными словами, углекислый газ не является токсичным веществом, однако может существенно влиять на приток кислорода к организму. При повышении уровня углекислого газа до 3-4% у человека возникает серьезная слабость, его начинает клонить в сон. При повышении уровня до 10% начинают развиваться сильнейшие головные боли, головокружение, ухудшение слуха, иногда наблюдается потеря сознания. Если концентрация углекислого газа поднимается до уровня 20%, то наступает смерть от кислородного голодания.

Лечение отравления углекислым газом очень простое - дать жертве доступ к чистому воздуху, при необходимости сделать искусственное дыхание. В крайнем случае нужно подключить пострадавшего к аппарату искусственной вентиляции легких.

Из описаний влияния двух данных оксидов углерода на организм мы можем сделать вывод, что большую опасность для человека все же представляет угарный газ с его высокой токсичностью и направленным воздействием на организм изнутри.

Углекислый газ не отличается таким коварством и менее вреден для человека, поэтому именно это вещество человек активно применяет даже в пищевой промышленности.

Применение оксидов углерода в промышленности и их влияние на различные аспекты жизни

Оксиды углерода имеют очень широкое применение в разных сферах деятельности человека, причем спектр их чрезвычайно богат. Так, окись углерода вовсю применяется в металлургии в процессе выплавки чугуна. Широкую популярность CO получил в качестве материала для хранения продуктов питания в охлажденном виде. Данный оксид применяют для обработки мяса и рыбы, чтобы придать им свежий вид и не изменить вкус. Важно не забывать про токсичность данного газа и помнить, что допустимая доза не должна превышать 200 мг на 1 кг продукта. CO в последнее время все чаще применяют в автомобильной промышленности в качестве топлива для автомобилей на газу.

Диоксид углерода нетоксичен, поэтому сфера его применения широко внедрена в пищевую промышленность, где его применяют в качестве консерванта или разрыхлителя. Также CO 2 применяется при изготовлении минеральных и газированных вод. В твердом состоянии («сухой лед») он часто используется в морозильных установках для поддержания стабильно низкой температуры в помещении или приборе.

Большую популярность приобрели углекислотные огнетушители, пена из которых полностью изолирует огонь от кислорода и не дает пожару разгореться. Соответственно, еще одна сфера применения - пожарная безопасность. Баллоны в пневматических пистолетах также заряжены углекислотой. И конечно же, практически каждый из нас читал, из чего состоит освежитель воздуха для помещений. Да, одной из составляющих является углекислый газ.

Как видим, из-за своей минимальной токсичности углекислый газ больше и чаще встречается в повседневной жизни человека, тогда как угарный газ нашел применение в тяжелой промышленности.

Существуют и другие углеродные соединения с кислородом, благо формула углерода и кислорода позволяет применять различные варианты соединений с разным количеством атомов углерода и кислорода. Ряд оксидов может разниться от C 2 O 2 до C 32 O 8 . И чтобы описать каждый из них, потребуется не одна страница.

Оксиды углерода в природе

Оба вида рассматриваемых здесь оксидов углерода так или иначе присутствуют в природном мире. Так, угарный газ может быть продуктом сгорания лесов или результатом жизнедеятельности человека (выхлопные газы и вредные отходы промышленных предприятий).

Уже известный нам диоксид углерода также является частью сложного состава воздуха. Его содержание в нем составляет около 0,03 % от всего объема. При увеличении этого показателя возникает так называемый «парниковый эффект», которого так опасаются современные ученые.

Углекислый газ выделяют животные и человек путем выдыхания. Он является основным источником такого полезного для растений элемента, как углерод, поэтому многие ученые и бьют на сполох, указывая на недопустимость масштабных вырубок леса. Если растения перестанут поглощать углекислый газ, то процент его содержания в воздухе может повыситься до критических для человеческой жизнедеятельности показателей.

Видимо, многие власть держащие забыли пройденный в детстве материал учебника «Общая химия. 8 класс», иначе вопросу вырубки лесов во многих частях света уделялось бы более серьезное внимание. Это, кстати, касается и проблемы наличия угарного газа в окружающей среде. Количество отходов человеческой жизнедеятельности и процент выбросов этого необычайно токсичного материала в окружающую среду растет изо дня в день. И не факт, что не повторится судьба мира, описанная в прекрасном мультфильме «Волли», когда человечеству пришлось покинуть загаженную до основания Землю и отправиться в другие миры на поиски лучшей жизни.

0,00125 (при 0 °C) г/см³ Термические свойства Температура плавления −205 °C Температура кипения −191,5 °C Энтальпия образования (ст. усл.) −110,52 кДж/моль Химические свойства Растворимость в воде 0.0026 г/100 мл Классификация Рег. номер CAS 630-08-0 Рег. номер PubChem 281 Рег. номер EINECS 211-128-3 SMILES # Регистрационный номер EC 006-001-00-2 RTECS FG3500000

Оксид углерода (II) (угарный газ , окись углерода , монооксид углерода ) - бесцветный ядовитый газ (при нормальных условиях) без вкуса и запаха. Химическая формула - CO. Нижний и верхний концентрационные пределы распространения пламени: от 12,5 до 74 % (по объёму) .

Строение молекулы

Молекула CO имеет тройную связь, как и молекула азота N 2 . Так как эти молекулы сходны по строению (изоэлектронны, двухатомны, имеют близкую молярную массу), то и свойства их также схожи - очень низкие температуры плавления и кипения, близкие значения стандартных энтропий и т. п.

Благодаря наличию тройной связи молекула CO весьма прочна (энергия диссоциации 1069 кДж/моль, или 256 ккал/моль, что больше, чем у любых других двухатомных молекул) и имеет малое межъядерное расстояние (d C≡O =0,1128 нм или 1,13Å).

Молекула слабо поляризована, электрический момент её диполя μ = 0,04·10 −29 Кл·м. Многочисленные исследования показали, что отрицательный заряд в молекуле CO сосредоточен на атоме углерода C − ←O + (направление дипольного момента в молекуле противоположно предполагавшемуся ранее). Ионизационный потенциал 14,0 в, силовая константа связи k = 18,6.

Свойства

Оксид углерода (II) представляет собой бесцветный газ без вкуса и запаха. Горюч. Так называемый «запах угарного газа» на самом деле представляет собой запах органических примесей.

Основными типами химических реакций, в которых участвует оксид углерода (II), являются реакции присоединения и окислительно-восстановительные реакции , в которых он проявляет восстановительные свойства.

При комнатных температурах CO малоактивен, его химическая активность значительно повышается при нагревании и в растворах (так, в растворах он восстанавливает соли , , и других до металлов уже при комнатной температуре. При нагревании восстанавливает и другие металлы, например CO + CuO → Cu + CO 2 . Это широко используется в пирометаллургии . На реакции CO в растворе с хлоридом палладия основан способ качественного обнаружения CO, см. ниже).

Окисление СО в растворе часто идёт с заметной скоростью лишь в присутствии катализатора. При подборе последнего основную роль играет природа окислителя. Так, KMnO 4 быстрее всего окисляет СО в присутствии мелкораздробленного серебра , K 2 Cr 2 O 7 - в присутствии солей , KClO 3 - в присутствии OsO 4 . В общем, по своим восстановительным свойствам СО похож на молекулярный водород.

Ниже 830 °C более сильным восстановителем является CO, - выше - водород. Поэтому равновесие реакции:

до 830 °C смещено вправо, выше 830 °C влево.

Интересно, что существуют бактерии, способные за счёт окисления СО получать необходимую им для жизни энергию.

Оксид углерода (II) горит пламенем синего цвета (температура начала реакции 700 °C) на воздухе:

ΔG° 298 = −257 кДж, ΔS° 298 = −86 Дж/K

Температура горения CO может достигать 2100 °C, она является цепной, причём инициаторами служат небольшие количества водородсодержащих соединений (вода, аммиак , сероводород и др.)

Благодаря такой хорошей теплотворной способности, CO является компонентом разных технических газовых смесей (см., например генераторный газ), используемых, в том числе, для отопления.

галогенами . Наибольшее практическое применение получила реакция с хлором :

Реакция экзотермическая, её тепловой эффект 113 кДж, в присутствии катализатора (активированный уголь) она идёт уже при комнатной температуре. В результате реакции образуется фосген - вещество, получившее широкое распространение в разных отраслях химии (а также как боевое отравляющее вещество). По аналогичным реакцииям могут быть получены COF 2 (карбонилфторид) и COBr 2 (карбонилбромид). Карбонилиодид не получен. Экзотермичность реакций быстро снижается от F к I (для реакций с F 2 тепловой эффект 481 кДж, с Br 2 - 4 кДж). Можно также получать и смешанные производные, например COFCl (подробнее см. галогенпроизводные угольной кислоты).

Реакцией CO с F 2 , кроме карбонилфторида можно получить перекисное соединение (FCO) 2 O 2 . Его характеристики: температура плавления −42 °C, кипения +16 °C, обладает характерным запахом (похожим на запах озона), при нагревании выше 200 °C разлагается со взрывом (продукты реакции CO 2 , O 2 и COF 2), в кислой среде реагирует с иодидом калия по уравнению:

Оксид углерода (II) реагирует с халькогенами . С серой образует сероксид углерода COS, реакция идёт при нагревании, по уравнению:

ΔG° 298 = −229 кДж, ΔS° 298 = −134 Дж/K

Получены также аналогичные селеноксид углерода COSe и теллуроксид углерода COTe.

Восстанавливает SO 2:

C переходными металлами образует очень летучие, горючие и ядовитые соединения - Карбонилы , такие как Cr(CO) 6 , Ni(CO) 4 , Mn 2 CO 10 , Co 2 (CO) 9 и др.

Оксид углерода (II) незначительно растворяется в воде, однако не реагирует с ней. Также он не вступает в реакции с растворами щелочей и кислот . Однако реагирует с расплавами щелочей с образованием соответствующих формиатов:

Интересна реакция оксида углерода (II) с металлическим калием в аммиачном растворе. При этом образуется взрывчатое соединение диоксодикарбонат калия:

Токсическое действие оксида углерода (II) обусловлено образованием карбоксигемоглобина - значительно более прочного карбонильного комплекса с гемоглобином , в сравнении с комплексом гемоглобина с кислородом (оксигемоглобином) , блокируя, таким образом, процессы транспортировки кислорода и клеточного дыхания . Концентрация в воздухе более 0,1 % приводит к смерти в течение одного часа .

История открытия

Оксид углерода (II) был впервые получен французским химиком Жаком де Лассоном в при нагревании оксида цинка с углём, но первоначально его ошибочно приняли за водород, так как он сгорал синим пламенем.

То, что в состав этого газа входит углерод и кислород, выяснил в английский химик Вильям Крукшэнк. оксид углерода (II) вне атмосферы Земли впервые был обнаружен бельгийским ученым М. Мижотом (M. Migeotte) в 1949 году по наличию основной колебательно-вращательной полосы в ИК спектре Солнца.

Получение

Промышленный способ

  • Образуется при горении углерода или соединений на его основе (например, бензина) в условиях недостатка кислорода :
(тепловой эффект этой реакции 220 кДж),
  • или при восстановлении диоксида углерода раскалённым углём:
(ΔH=172 кДж, ΔS=176 Дж/К)

Эта реакция происходит при печной топке, когда слишком рано закрывают печную заслонку (пока окончательно не прогорели угли). Образующийся при этом оксид углерода (II), вследствие своей ядовитости, вызывает физиологические расстройства («угар») и даже смерть (см. ниже), отсюда и одно из тривиальных названий - «угарный газ» .

Реакция восстановления диоксида углерода обратимая, влияние температуры на состояние равновесия этой реакции приведено на графике. Протекание реакции вправо обеспечивает энтропийный фактор, а влево - энтальпийный. При температуре ниже 400 °C равновесие практически полностью сдвинуто влево, а при температуре выше 1000 °C вправо (в сторону образования CO). При низких температурах скорость этой реакции очень мала, поэтому оксид углерода (II) при нормальных условиях вполне устойчив. Это равновесие носит специальное название равновесие Будуара .

  • Смеси оксида углерода (II) с другими веществами получают при пропускании воздуха, водяного пара и т. п. сквозь слой раскалённого кокса, каменного или бурого угля и т. п. (см. генераторный газ , водяной газ , смешанный газ , синтез-газ).

Лабораторный способ

  • Разложение жидкой муравьиной кислоты под действием горячей концентрированной серной кислоты , либо пропуская муравьиную кислоту над оксидом фосфора P 2 O 5 . Схема реакции:
Можно также обработать муравьиную кислоту хлорсульфоновой . Эта реакция идёт уже при обычной температуре по схеме:
  • Нагревание смеси щавелевой и концентрированной серной кислот. Реакция идёт по уравнению:
Выделяющийся совместно с CO диоксид углерода можно удалить, пропустив смесь через баритовую воду .
  • Нагревание смеси гексацианоферрата (II) калия с концентрированной серной кислотой. Реакция идёт по уравнению:

Определение оксида углерода (II)

Качественно можно определить наличие CO по потемнению растворов хлорида палладия (или пропитанной этим раствором бумаги). Потеменение связано с выделением мелкодисперсного металлического палладия по схеме:

Эта реакция очень чувствительная. Стандартный раствор: 1 грамма хлорида палладия на литр воды.

Количественное определение оксида углерода (II) основано на иодометрической реакции:

Применение

  • Оксид углерода (II) является промежуточным реагентом, используемым в реакциях с водородом в важнейших промышленных процессах для получения органических спиртов и неразветвлённых углеводородов.
  • Оксид углерода (II) применяется для обработки мяса животных и рыбы, придает им ярко красный цвет и вид свежести, не изменяя вкуса (en:Clear smoke или en:Tasteless smoke технология). Допустимая концентрация CO равна 200 мг/кг мяса.
  • Угарный газ от выхлопа двигателей применялся нацистами в годы Второй мировой войны для массового умерщвления людей путём отравления.

Оксид углерода (II) в атмосфере Земли

Различают природные и антропогенные источники поступления в

Углерод (С) – типичный неметалл; в периодической системе находится в 2-м периоде IV группе, главной подгруппе. Порядковый номер 6, Ar = 12,011 а.е.м., заряд ядра +6.

Физические свойства: углерод образует множество аллотропных модификаций: алмаз – одно из самых твердых веществ, графит, уголь, сажа .

Атом углерода имеет 6 электронов: 1s 2 2s 2 2p 2 . Последние два электрона располагаются на отдельных р-орбиталях и являются неспаренными. В принципе, эта пара могла бы занимать одну орбиталь, но в таком случае сильно возрастает межэлектронное отталкивание. По этой причине один из них занимает 2р х, а другой, либо 2р у , либо 2р z -орбитали.

Различие энергии s- и р-подуровней внешнего слоя невелико, поэтому атом довольно легко переходит в возбужденное состояние, при котором один из двух электронов с 2s-орбитали переходит на свободную 2р. Возникает валентное состояние, имеющее конфигурацию 1s 2 2s 1 2p x 1 2p y 1 2p z 1 . Именно такое состояние атома углерода характерно для решетки алмаза — тетраэдрическое пространственное расположение гибридных орбиталей, одинаковая длина и энергия связей.

Это явление, как известно, называют sp 3 -гибридизацией, а возникающие функции – sp 3 -гибридными. Образование четырех sp 3 -cвязeй обеспечивает атому углерода более устойчивое состояние, чем три р-р- и одна s-s-связи. Помимо sp 3 -гибридизации у атома углерода наблюдается также sp 2 — и sp-гибридизация. В первом случае возникает взаимное наложение s- и двух р-орбиталей. Образуются три равнозначные sp 2 — гибридных орбитали, расположенные в одной плоскости под углом 120° друг к другу. Третья орбиталь р неизменна и направлена перпендикулярно плоскости sp 2 .


При sp-гибридизации происходит наложение орбиталей s и р. Между двумя образующимися равноценными гибридными орбиталями возникает угол 180°, при этом две р-орбитали у каждого из атомов остаются неизменными.

Аллотрорпия углерода. Алмаз и графит

В кристалле графита атомы углерода расположены в параллельных плоскостях, занимая в них вершины правильных шестиугольников. Каждый из атомов углерода связан с тремя соседними sp 2 -гибридными связями. Между параллельными плоскостями связь осуществляется за счет ван-дер-ваальсовых сил. Свободные р-орбитали каждого из атомов направлены перпендикулярно плоскостям ковалентных связей. Их перекрыванием объясняется дополнительная π-связь между атомами углерода. Таким образом, от валентного состояния, в котором находятся атомы углерода в веществе, зависят свойства этого вещества .

Химические свойства углерода

Наиболее характерные степени окисления: +4, +2.

При низких температурах углерод инертен, но при нагревании его активность возрастает.

Углерод как восстановитель:

— с кислородом
C 0 + O 2 – t° = CO 2 углекислый газ
при недостатке кислорода — неполное сгорание:
2C 0 + O 2 – t° = 2C +2 O угарный газ

— со фтором
С + 2F 2 = CF 4

— с водяным паром
C 0 + H 2 O – 1200° = С +2 O + H 2 водяной газ

— с оксидами металлов. Таким образом выплавляют металл из руды.
C 0 + 2CuO – t° = 2Cu + C +4 O 2

— с кислотами – окислителями:
C 0 + 2H 2 SO 4 (конц.) = С +4 O 2 ­ + 2SO 2 ­ + 2H 2 O
С 0 + 4HNO 3 (конц.) = С +4 O 2 ­ + 4NO 2 ­ + 2H 2 O

— с серой образует сероуглерод:
С + 2S 2 = СS 2 .

Углерод как окислитель:

— с некоторыми металлами образует карбиды

4Al + 3C 0 = Al 4 C 3

Ca + 2C 0 = CaC 2 -4

— с водородом — метан (а также огромное количество органических соединений)

C 0 + 2H 2 = CH 4

— с кремнием, образует карборунд (при 2000 °C в электропечи):

Нахождение углерода в природе

Ссвободный углерод встречается в виде алмаза и графита. В виде соединений углерод находится в составе минералов: мела, мрамора, известняка – СаСО 3 , доломита – MgCO 3 *CaCO 3 ; гидрокарбонатов – Mg(НCO 3) 2 и Са(НCO 3) 2 , СО 2 входит в состав воздуха; углерод является главной составной частью природных органических соединений – газа, нефти, каменного угля, торфа, входит в состав органических веществ, белков, жиров, углеводов, аминокислот, входящих в состав живых организмов.

Неорганические соединения углерода

Ни ионы С 4+ , ни С 4- ‑ ни при каких обычных химических процессах не образуются: в соединениях углерода имеются ковалентные связи различной полярности.

Оксид углерода (II) СО

Угарный газ; бесцветный, без запаха, малорастворим в воде, растворим в органических растворителях, ядовит, t°кип = -192°C; t пл. = -205°C.

Получение
1) В промышленности (в газогенераторах):
C + O 2 = CO 2

2) В лаборатории — термическим разложением муравьиной или щавелевой кислоты в присутствии H 2 SO 4 (конц.):
HCOOH = H 2 O + CO­

H 2 C 2 O 4 = CO­ + CO 2 ­ + H 2 O

Химические свойства

При обычных условиях CO инертен; при нагревании – восстановитель; несолеобразующий оксид.

1) с кислородом

2C +2 O + O 2 = 2C +4 O 2

2) с оксидами металлов

C +2 O + CuO = Сu + C +4 O 2

3) с хлором (на свету)

CO + Cl 2 – hn = COCl 2 (фосген)

4) реагирует с расплавами щелочей (под давлением)

CO + NaOH = HCOONa (формиат натрия)

5) с переходными металлами образует карбонилы

Ni + 4CO – t° = Ni(CO) 4

Fe + 5CO – t° = Fe(CO) 5

Оксид углерода (IV) СO 2

Углекислый газ, бесцветный, без запаха, растворимость в воде — в 1V H 2 O растворяется 0,9V CO 2 (при нормальных условиях); тяжелее воздуха; t°пл.= -78,5°C (твёрдый CO 2 называется «сухой лёд»); не поддерживает горение.

Получение

  1. Термическим разложением солей угольной кислоты (карбонатов). Обжиг известняка:

CaCO 3 – t° = CaO + CO 2

  1. Действием сильных кислот на карбонаты и гидрокарбонаты:

CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2 ­

NaHCO 3 + HCl = NaCl + H 2 O + CO 2 ­

Химические свойства СO 2
Кислотный оксид: реагирует с основными оксидами и основаниями, образуя соли угольной кислоты

Na 2 O + CO 2 = Na 2 CO 3

2NaOH + CO 2 = Na 2 CO 3 + H 2 O

NaOH + CO 2 = NaHCO 3

При повышенной температуре может проявлять окислительные свойства

С +4 O 2 + 2Mg – t° = 2Mg +2 O + C 0

Качественная реакция

Помутнение известковой воды:

Ca(OH) 2 + CO 2 = CaCO 3 ¯(белый осадок) + H 2 O

Оно исчезает при длительном пропускании CO 2 через известковую воду, т.к. нерастворимый карбонат кальция переходит в растворимый гидрокарбонат:

CaCO 3 + H 2 O + CO 2 = Сa(HCO 3) 2

Угольная кислота и её соли

H 2 CO 3 — Кислота слабая, существует только в водном растворе:

CO 2 + H 2 O ↔ H 2 CO 3

Двухосновная:
H 2 CO 3 ↔ H + + HCO 3 — Кислые соли — бикарбонаты, гидрокарбонаты
HCO 3 — ↔ H + + CO 3 2- Cредние соли — карбонаты

Характерны все свойства кислот.

Карбонаты и гидрокарбонаты могут превращаться друг в друга:

2NaHCO 3 – t° = Na 2 CO 3 + H 2 O + CO 2 ­

Na 2 CO 3 + H 2 O + CO 2 = 2NaHCO 3

Карбонаты металлов (кроме щелочных металлов) при нагревании декарбоксилируются с образованием оксида:

CuCO 3 – t° = CuO + CO 2 ­

Качественная реакция — «вскипание» при действии сильной кислоты:

Na 2 CO 3 + 2HCl = 2NaCl + H 2 O + CO 2 ­

CO 3 2- + 2H + = H 2 O + CO 2 ­

Карбиды

Карбид кальция:

CaO + 3 C = CaC 2 + CO

CaC 2 + 2 H 2 O = Ca(OH) 2 + C 2 H 2 .

Ацетилен выделяется при реакции с водой карбидов цинка, кадмия, лантана и церия:

2 LaC 2 + 6 H 2 O = 2La(OH) 3 + 2 C 2 H 2 + H 2 .

Be 2 C и Al 4 C 3 разлагаются водой с образованием метана:

Al 4 C 3 + 12 H 2 O = 4 Al(OH) 3 = 3 CH 4 .

В технике применяют карбиды титана TiC, вольфрама W 2 C (твердые сплавы), кремния SiC (карборунд – в качестве абразива и материала для нагревателей).

Цианиды

получают при нагревании соды в атмосфере аммиака и угарного газа:

Na 2 CO 3 + 2 NH 3 + 3 CO = 2 NaCN + 2 H 2 O + H 2 + 2 CO 2

Синильная кислота HCN – важный продукт химической промышленности, широко применяется в органическом синтезе. Ее мировое производство достигает 200 тыс. т в год. Электронное строение цианид-аниона аналогично оксиду углерода (II), такие частицы называют изоэлектронными:

C= O: [:C= N:] –

Цианиды (0,1-0,2%-ный водный раствор) применяют при добыче золота:

2 Au + 4 KCN + H 2 O + 0,5 O 2 = 2 K + 2 KOH.

При кипячении растворов цианидов с серой или сплавлении твердых веществ образуются роданиды :
KCN + S = KSCN.

При нагревании цианидов малоактивных металлов получается дициан: Hg(CN) 2 = Hg + (CN) 2 . Растворы цианидов окисляются до цианатов :

2 KCN + O 2 = 2 KOCN.

Циановая кислота существует в двух формах:

H-N=C=O; H-O-C= N:

В 1828 г. Фридрих Вёлер (1800-1882) получил из цианата аммония мочевину: NH 4 OCN = CO(NH 2) 2 при упаривании водного раствора.

Это событие обычно рассматривается как победа синтетической химии над «виталистической теорией».

Существует изомер циановой кислоты – гремучая кислота

H-O-N=C.
Ее соли (гремучая ртуть Hg(ONC) 2) используются в ударных воспламенителях.

Синтез мочевины (карбамида):

CO 2 + 2 NH 3 = CO(NH 2) 2 + H 2 O. При 130 0 С и 100 атм.

Мочевина является амидом угольной кислоты, существует и ее «азотный аналог» – гуанидин.

Карбонаты

Важнейшие неорганические соединения углерода – соли угольной кислоты (карбонаты). H 2 CO 3 – слабая кислота (К 1 =1,3·10 -4 ; К 2 =5·10 -11). Карбонатный буфер поддерживает углекислотное равновесие в атмосфере. Мировой океан обладает огромной буферной емкостью, потому что он является открытой системой. Основная буферная реакция – равновесие при диссоциации угольной кислоты:

H 2 CO 3 ↔ H + + HCO 3 — .

При понижении кислотности происходит дополнительное поглощение углекислого газа из атмосферы с образованием кислоты:
CO 2 + H 2 O ↔ H 2 CO 3 .

При повышении кислотности происходит растворение карбонатных пород (раковины, меловые и известняковые отложения в океане); этим компенсируется убыль гидрокарбонатных ионов:

H + + CO 3 2- ↔ HCO 3 —

CaCO 3 (тв.) ↔ Ca 2+ + CO 3 2-

Твердые карбонаты переходят в растворимые гидрокарбонаты. Именно этот процесс химического растворения избыточного углекислого газа противодействует «парниковому эффекту» – глобальному потеплению из-за поглощения углекислым газом теплового излучения Земли. Примерно треть мирового производства соды (карбонат натрия Na 2 CO 3) используется в производстве стекла.

Окись углерода - бесцветный газ без запаха и раздражающих свойств, образующийся всюду, где имеет место сгорание материалов, содержащих углерод, при недостаточном доступе кислорода; может выделяться также при синтезе некоторых химико-фармацевтических препаратов. Поступает в организм через дыхательные пути, не вызывая каких-либо явлений раздражения. Предельно допустимая концентрация в воздухе 20 мг/м 3 .

Токсический эффект зависит от концентрации газа в воздухе и от длительности его воздействия. Уже при концентрации 50-60 мг/м 3 могут появиться легкие признаки отравления, а при содержании его в воздухе в количестве 0,1-0,2% интоксикация носит тяжелый характер. Токсичность окиси углерода объясняется тем, что, вытесняя кислород из окси-гемоглобина крови, она быстро вступает в соединение с гемоглобином и образует стойкий карбоксигемоглобин. Последний, будучи неспособным переносить кислород к тканям, влечет за собой недостаточное снабжение их кислородом - аноксемию. Быстрое образование в крови карбоксигемоглобина обусловлено тем, что окись углерода обладает в 300 раз более сильным сродством к гемоглобину, чем кислород. В результате возникающего кислородного голодания тканей нарушается нормальная деятельность организма, в первую очередь центральной нервной и сердечно-сосудистой систем. Количество и скорость образования карбоксигемоглобина определяют тяжесть интоксикации. В легких случаях наблюдаются головная боль, головокружение, шум в ушах, тошнота и позывы на рвоту, общая нарастающая слабость. В некоторых случаях наступает скованность движений, вследствие чего пострадавший не в состоянии сам выйти из отравленной зоны. Особенно выражен этот симптом при отравлениях средней тяжести и тяжелых. В этих случаях к указанным явлениям присоединяются покраснение лица, нарастающая сонливость, рвота, затемнение и потеря сознания. В особо тяжелых случаях наступает психическое возбуждение, возникают судороги, наблюдаются серьезные изменения сердечно-сосудистой системы (малый аритмичный пульс, глухие тоны сердца и др.). Возможен смертельный исход от паралича дыхательного центра. Если вынести пострадавшего на свежий воздух, довольно быстро (через 1-2 часа при легких отравлениях и 1-2 дня при тяжелых) происходит полная диссоциация карбоксигемоглобина. Острые симптомы отравления проходят, но длительно сохраняются остаточные явления - головные боли, головокружения, общая слабость и др.

Для профилактики отравлений окисью углерода необходим тщательный контроль ее содержания в воздухе (лучше автоматический, при помощи сигнализаторов, показывающих превышение концентрации СО сверх допустимой нормы). Должны быть применены все технологические мероприятия, устраняющие возможность выделения ее в воздух, а также установлена эффективно действующая вентиляция.

Индивидуальным средством защиты органов дыхания от поступления окиси углерода является специальный фильтрующий противогаз марки СО.

























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока: урок изучения нового материала

Цель: создать условия для усвоение учащимися материала курса химии по теме: “Оксиды углерода” на уровне компетенции посредством активного изучения теоретического материала.

Применяемые приемы, методы и технологии: проблемный подход в обучении, игровые технологии, беседа, индивидуальная и групповая работа, эксперимент.

Задачи:

  • Воспитательные - воспитание бережного отношения к своему здоровью, окружающей природе, формирование научного мировоззрения (о реальности существования этих оксидов и связанных с ними превращений), дать каждому ученику возможность достичь успеха
  • Образовательные – систематизировать знания учащихся о кислотных оксидах на примере оксидов углерода, усвоить строение, физические свойства, химические свойства, получение и применение угарного и углекислого газов, качественную реакцию на углекислый газ, физиологическое действие на организм человека угарного и углекислого газа, продолжить работу по развитию умений сравнивать, составлять уравнения реакций, работать с текстом учебника, получать информацию из сети Интернет
  • Развивающие - развивать умение работать в атмосфере поиска, познавательного интереса к химии, используя данные о значении изучаемых веществ и явлений в окружающей жизни, развитие коммуникативных умений и навыков, формирование умений парной и групповой работы враскрытии причинно-следственных связей, развитие умений самостоятельно ставить и формулировать для себя новые задачи, определять способы действий и соотносить с планируемыми результатами.

Методы: словесные, наглядные, исследовательские

Оборудование для учителя: компьютер, мультимедиа проектор.

Оборудование для учащихся: лабораторная посуда (пробирки, штатив для пробирок, химические стаканы), раздаточный материал (опорные конспекты, памятки для учащихся).

Ход урока

1. Организационный момент.

Здравствуйте. Приятно видеть знакомые лица. Мы с вами сегодня партнеры.

Девизом нашего сегодняшнего урока могут послужить слова Конфуция:

Перед человеком к разуму три пути:

  • Путь размышления - это самый благородный ;
  • Путь подражания - это самый легкий ;
  • Путь личного опыта - это самый тяжелый.

Я предлагаю выбрать сегодня 3 путь, но каждый из вас может и не прислушаться к моим словам и выбрать любой другой.

2. Подготовка к основному этапу урока

Учитель формулирует задачи урока

В произведении Одоевского В.Д. “Мороз Иванович” есть следующий отрывок:

"- А зачем ты, Мороз Иванович, - спросила Рукодельница, - зимою по улицам ходишь, да в окошки стучишься?

А я затем в окошки стучусь, - отвечал Мороз Иванович, - чтоб не забывали печей топить, да трубы вовремя закрывать; а не то ведь, я знаю, есть такие неряхи, что печку истопят, а трубу закрыть не закроют, или закрыть закроют, да не вовремя, когда ещё не все угольки прогорели, а от того в горнице угарно бывает, голова у людей болит, в глазах зелено; даже и совсем умереть от угара можно".

О чём пойдёт речь сегодня на уроке?

Учитель : В другом произведении В. Короткевича “Чёрный замок Ольшанский. Дикая охота короля Стаха” мы читаем:

"Вы слышали об эффекте "собачьей пещеры" в Италии. Есть там такая пещера-яма. Человек войдёт и ходит, а собака или кролик погибают через несколько минут.

Из вулканической трещины выделяется углекислый газ...".

А поскольку он...”

Закончите фразу. Объясните “ загадочную гибель животных”

ОТВЕТ: (А поскольку углекислый газ тяжелее воздуха, то он остаётся внизу. Человеческая голова выше этой зоны. Собачья – нет...”

Можете ли вы сейчас ответить на этот вопрос?

Тема сегодняшнего урока “Оксиды углерода (II) и (IV) – друзья или враги?”. Предложите план изучения данной темы (план заносится в таблицу)

Учитель : Владеете ли вы всей необходимой информацией, чтобы сейчас заполнить данную таблицу???

2. Усвоение новых знаний и способов действий

Учитель : а в природе эти оксиды существуют? Вместе с учащимися называет пути поступления оксидов углерода в атмосферу. Углекислый газ часто называют “парниковый газ”. Как вы думаете, почему? и с чем это связано?

Высказывают мнения, объясняют суть парникового эффекта

(Земля получает энергию от Солнца и сама излучает в космическое пространство часть тепла. Но многие содержащиеся в ее атмосфере газы, в том числе и СО2, удерживают часть тепла.

За последние десятилетия концентрация СО 2 в атмосфере медленно, но неуклонно повышается, а с ней из-за парникового эффекта – и температура (за последние 100 лет – на полградуса). По прогнозам, к 2025 году содержание углекислого газа в воздухе может удвоиться. Казалось бы, мелочь, для дыхания человека это несущественно, а для растений это благоприятно. Но ведь среднегодовая температура вырастет на несколько градусов. Это очень много: начнут таять льды Арктики и Антарктики, уровень Мирового океана повысится, и под водой окажутся огромные территории. Если это произойдет, то будет уничтожена большая часть полей. Некоторые страны потеряют все культурные земли, в других странах лучшие сельскохозяйственные регионы изменят своё местонахождение. Кроме того, изменится климат Земли, и мы даже не знаем точно, к каким катастрофическим последствиям это приведет.

Ученые предсказывают, что двукратное повышение уровня СО 2 в атмосфере по сравнению с доиндустриальной эпохой поднимет общую среднюю температуру на 2,8 0 С. Наибольшее увеличение температуры произойдет в северном полушарии на широте около 40 0 , где больше всего сжигается топлива и значительнее сезонные влияния на жизнь растений.

По оценке американских специалистов, потепление климата в ближайшие 100 лет приведет США к затоплению 80% прибрежных территорий.)

Мы узнали, откуда берутся эти оксиды в природе и почему СО2 называют “парниковый газ”. Хватит ли нам этих знаний? А что же еще нам нужно знать об этих веществах? И как мы будем это делать?

Учитель . Мудрая китайская пословица гласит

“Я слышу – я забываю, Я вижу – я запоминаю, Я делаю – я понимаю”.

3. Первичная проверка понимания

Учитель предлагает использовать дополнительные материалы, которые лежат на столах для получения информации, необходимой для заполнения таблицы. Учащиеся изучают эту информацию.

1 группа Строение молекул СО и СО 2

I. Угарный газ - оксид углерода (II)

Рассмотрение строения СО начните с определения степени окисления элементов С +2 О -2 и соответственно с вывода, сколько электронов передал в общее пользование атом углерода (два), а значит, и сколько электронов оттянул к себе более электроотрицательный кислород - два.

Однако дальнейшее рассмотрение строения СО показывает, что при таком раскладе у углерода не будет заветной восьмерки электронов на внешнем уровне - четыре своих и два общих с атомом кислорода. Как быть? Очевидно, атому кислорода придется передать в общее пользование одну свою свободную электронную пару, т. е. выступить в качестве донора. Акцептором, разумеется, будет атом углерода:

т.е. ковалентных связей будет три, а оттянутых от углерода к кислороду электронов - два (с. о. +2).Связь в молекуле СО – ковалентная полярная. Число смещенных от углерода к кислороду электронов – два, значит степень окисления атома углерода +2. У атома углерода в молекуле СО имеется два свободных электрона, значит СО может участвовать в реакциях, проявляя восстановительные свойства. Такое возможно с такими окислителями как кислород, галогены и даже оксиды металлов

II Углекислый газ

Все четыре связи – ковалентные полярные и образовались за счет обобществления электронов атомами углерода и кислорода. Однако из-за линейного строения молекула CO 2 в целом неполярна. Проявляет окислительные свойства.

2 группа Физические свойства оксидов

Газ без цвета, без запаха (почувствовать его невозможно) - тем и коварен! Этот газ коварен еще и тем, что распределяется в воздухе равномерно. Мr (СО) = 28 и приблизительно равна Мr (воздуха) = 29 В воде нерастворим. Горит голубоватым пламенем. Ядовит, ПДК (СО) = 20 мг/м 3 Соединяясь с гемоглобином красных кровяных телец, переносчиков кислорода от легких к тканям организма, угарный газ вызывает кислородное голодание, и человек может погибнуть. При вдыхании воздуха, содержащего до 0,1% CO человек может потерять сознание и умереть. При отравлении наблюдается резкая потеря сознания, в тяжелых случаях - смерть. Угарный газ необратимо связывается с гемоглобином крови, препятствуя газообмену, человек - задыхается. Оказание помощи - дышать чистым кислородом, переливание крови. Где же можно встретить такого “монстра”? Наблюдать его можно в пламени свечи, топке. Присутствует он и в выхлопных газах двигателей внутреннего сгорания, и в сигаретном дыме. Образуется при сгорании большинства горючих материалов в условиях ограниченного доступа воздуха.

Газ без цвета, без запаха, хорошо растворим в воде, Мr(СО2) = 44. Сравним с Мr(воздуха) = 29. В 1,5 раза тяжелее воздуха. При t = - 76 0 С – сухой лёд.

Оказывает на человека наркотическое действие, раздражает кожу и слизистые оболочки, оказывает центральное сосудосуживающее и местное сосудорасширяющее действие, вызывает повышение содержания аминокислот в крови, ингибирует действие ферментов в тканях. ПДК (СО 2) = 30 мг/м 3 Для человека вреден как избыток его, так и недостаток. В небольших количествах (до 2%) углекислый газ стимулирует деятельность дыхательного центра. С увеличением концентрации возникают серьёзные расстройства, и при 10%-й концентрации дыхание останавливается, происходит потеря сознания, при 20% - паралич жизненных центров в течение нескольких секунд. К счастью, человек редко сталкивается с такими большими концентрациями СО 2 в воздухе (это возможно, например, в подвалах без вентиляции, где хранят сухой лёд).

Как помочь человеку, отравившемуся углекислым газом? - вывести на свежий воздух.

3 группа Химические свойства оксидов

I СО - горючий газ, горит голубым пламенем:

2CO +O 2 = 2CO 2 (углекислый газ) +577 кдж

CO +Cl 2 =COCl 2 (фосген)

Оксид углерода (II) может восстановить большинство металлов из их оксидов, например:

CO + СuО -> Сu+ CO 2

CO +FeO =CO 2 +Fe

СO +2H 2 =CH 3 OH (метанол)

II Углекислый газ – кислотный оксид, он взаимодействует с основными оксидами и основаниями с образованием кислых и средних солей, с некоторыми солями, водой:

CaО+ CO 2 -> CaCO 3

Ca(OH) 2 + CO 2 -> CaCO 3 + H 2 O (качественная реакция на CO 2)

Ca(OH) 2 + 2CO 2 -> Ca(HCO 3) 2

СаСО 3 + СО 2 + Н 2 О -> Са(НСО 3) 2

СО 2 + Н 2 О = Н 2 СО 3

СО 2 – окислитель

а) СО 2 + С = 2СО

б)Магний способен гореть в атмосфере CO 2 , восстанавливая при этом углерод.

2Mg + CO 2 -> 2MgO+ C(500 0 C)

Не тушите загоревшуюся пиротехнику углекислотным огнетушителем!

Пероксид натрия поглощает углекислый газ:

2Na 2 O 2 + 2CO 2 -> 2Na 2 CO 3 +O 2 ^

Это реакцию используют в подводных лодках и в космических кораблях для регенерации воздуха.

Огромная масса углекислого газа превращается в органические вещества и кислород в результате фотосинтеза:

6CO 2 + 6H 2 O -> C 6 H 12 O 6 + 6O 2 ^

4 группа Получение оксидов и применение

1. В промышленности С + О 2 = 2СО

2. В лаборатории НСООН = Н 2 О + СО^

1. В промышленности СаСО 3 = СаО + СО 2 ^

2. В лаборатории СаСО 3 +2НСl=СаСl 2 +СО 2 ^+Н 2 О

Применение оксидов

1) Топливо.

2) Основная часть генераторного газа – одного из видов газообразного топлива.

3) Как восстановитель в металлургии.

4) Исходное вещество при синтезе органических веществ.

5) Применяется для обработки мяса животных и рыбы , придает им ярко красный цвет и свежий вид, не изменяя вкуса

6) Недавно выяснилось, что угарный газ может уменьшить поражение мозга при инсульте: по результатам исследований на мышах ученые установили, что лечение малыми дозами угарного газа может помочь ограничить повреждение головного мозга.

1) В производстве сахара, соды, газированных напитков;

2) Не поддерживает жизнедеятельность бактерий и плесени – в его атмосфере сохраняют продукты. Сухой лёд – для хранения продуктов.

3) В жидком виде – в огнетушителях;

4. Закрепление знаний и способов действий

Представители каждой группы освещают свой вопрос. Остальные слушают, заносят материал в таблицу, задают вопросы

5. Обобщение и систематизация знаний.

Учитель: давайте обобщение проведем в практическом применение полученных знаний

1. В вулканической зоне близ Неаполя находится “собачья пещера”. Страшная тайна долгое время будоражила воображение местного населения. Ответим на вопрос, прозвучавший в начале урока.

2. Лаборант нашей школы не уважает углекислый газ за то, что из-за него баночки с растворами щелочей невозможно открыть после школьных каникул. Объясните - почему лаборант обвиняет в этом углекислый газ?

3. Проблема очищения воздуха от углекислого газа на космических станциях и подводных лодках - больная проблема. Еще писатель-фантаст Ж. Верн пытался решить ее. А какой выход нашли современные ученые?

4. Шумная компания городских жителей решила отметить Новый год на природе, в деревенском домике с печкой. Когда дрова прогорели, они закрыли вьюшку у печки, не заглянув вовнутрь, чтобы, как они решили, тепло сохранилось дольше. Что могло случиться, но, к счастью, не произошло, так как дверь в домике очень часто была открыта?

5. Водитель, нарушая привычные для себя правила, заехал в гараж задним ходом, чтобы утром быстрее выехать. Но утром было очень холодно и водитель, не открыв ворота, решил прогреть двигатель. Через некоторое время случилось непредвиденное...

6. Основной вопрос урока “Оксиды углерода – друзья или враги?”

7. Объясните выражение: “Угорел в избе (бане)”.

8. Установите признак, объединяющий указанные объекты

9. Провести качественный анализ шипучих прохладительных напитков на содержание углекислого газа.

а. Собрать прибор для получения газов.

б.Определителем наличия углекислого газа является известковая вода.

в.Осторожно нагреть напиток, пропуская образующийся газ через известковую воду.

г. Наблюдается помутнение известковой воды. Образуется осадок белого цвета.

10. Известно, что при прохождении технического осмотра автомобиля водитель предоставляет справку о состоянии выхлопных газов автомобиля. Концентрация какого газа указывается в справке?

11. В большую открытую ёмкость поместили свечу и зажгли её (рис.1).

Свеча горела нормально.Затем по краю сосуда поместили кольцо из ваты и подожгли его.

Вата загорелась, и через несколько секунд свеча погасла (рис. 2). Объясните происходящее.


Рис. 1 Рис. 2

12. У вас есть все необходимое для проведения качественной реакции на оксид углерода (IV). Проделайте эту реакцию.

6. Закрепление знаний

“Пятый лишний”

У четырех веществ можно найти что-то общее, а пятое вещество выбивается из ряда, лишнее. Найдите это вещество.

1. Углерод, алмаз, графит, карбид, карбин.

2. Антрацит, торф, кокс, нефть, стекло.

3. Известняк, мел, мрамор, малахит, кальцит.

4. Кристаллическая сода, мрамор, поташ, каустик, малахит.

5. Фосген, фосфин, синильная кислота, цианид калия, сероуглерод

6. Морская вода, минеральная вода, дистиллированная вода, грунтовая вода, жесткая вода.

7. Известковое молоко, пушонка, гашеная известь, известняк, известковая вода.

8. Li 2 СО 3 ; (NH 4) 2 CO 3 ; СаСО 3 ; K 2 CO 3 , Na 2 CO 3 .

“Синонимы”

Напишите химические формулы веществ или их названия.

1. Генераторный газ-....

2. Парниковый газ – ...

3. Несолеобразующий оксид- .....

4. Соединение СО с гемоглобином – ...

5. Реактив на СО 2 – ...

6. “ Сухой лед” – ...

7. Компонент выхлопных газов автомобиля-.....

8. Условно ядовитый газ-.....

9. Природный газ – ...

“Антонимы”

Напишите химические термины, противоположные по значению предложенным.

1. Окислитель – ...

2. Донор электронов – ...

3. Кислотные свойства – ...

4. Ковалентная полярная связь – ...

5. Адсорбция – ...

6. Избыток – ...

7. Анион – .....

8. Металл – ...

9. Исходные вещества – ...

“Поиск закономерностей”

Установите признак, объединяющий указанные вещества и явления.

1. Алмаз, карбин, графит – ...

2. Стекло, цемент, кирпич – ...

3. Дыхание, гниение, извержение вулкана – ...

4. СО, NO, N 2 O- ...

5. NaHCO 3 ,СО, CaCO 3 , CO 2 , H 2 CO 3 – ...

“Крестики и нолики”. Определить выигрышные пути:

Вещества, с которыми взаимодействует оксид углерода (IV)

7. Подведение итогов

Что мы сегодня изучили на уроке и ответили ли на главный вопрос: оксиды углерода – друзья или враги?

8. Рефлексия

  • Я узнал(а)....
  • Я научился....
  • Я почувствовал, что.....
  • Мне это пригодится в жизни...
  • На уроке я работал(а) .....
  • Цели урока достиг(ла) .....
  • Я получил(а) оценку-.........

9. Информация о домашнем задании

Дома посмотрите содержимое аптечки, ванной комнаты, кухни и найдите предметы бытовой химии, содержащие в своём составе СО 2 и другие соединения углерода. Заполнить таблицу до конца. П.30.

Благодарю вас за урок и те знания, которые вы сегодня показали. И пусть по жизни вас ведет мудрая русская поговорка: “Не стыдно не знать, стыдно не учить”. Урок окончен. До свидания!