Солнечный ветер. Факты и теория

История

Вероятно, что первым предсказал существование солнечного ветра норвежский исследователь Кристиан Биркеланд (норв. Kristian Birkeland ) в г. «С физической точки зрения наиболее вероятно, что солнечные лучи не являются ни положительными ни отрицательными, но и теми и другими вместе». Другими словами, солнечный ветер состоит из отрицательных электронов и положительных ионов .

В 1930-х годах ученые определили, что температура солнечной короны должна достигать миллиона градусов, поскольку корона остается достаточно яркой при большом удалении от Солнца, что хорошо видно во время солнечных затмений. Позднее спектроскопические наблюдения подтвердили этот вывод. В середине 50-х британский математик и астроном Сидни Чепмен определил свойства газов при таких температурах. Оказалось, что газ становится великолепным проводником тепла и должен рассеивать его в пространство за пределы орбиты Земли. В то же время немецкий ученый Людвиг Бирманн (нем. Ludwig Franz Benedikt Biermann ) заинтересовался тем фактом, что хвосты комет всегда направлены прочь от Солнца. Бирманн постулировал, что Солнце испускает постоянный поток частиц, которые создают давление на газ, окружающий комету, образуя длинный хвост.

В 1955 году советские астрофизики С. К. Всехсвятский, Г. М. Никольский, Е. А. Пономарев и В. И. Чередниченко показали , что протяженная корона теряет энергию на излучение и может находиться в состоянии гидродинамического равновесия только при специальном распределении мощных внутренних источников энергии. Во всех других случаях должен существовать поток вещества и энергии. Этот процесс служит физическим основанием для важного явления - «динамической короны». Величина потока вещества была оценена из следующих соображений: если бы корона находилась в гидростатическом равновесии, то высоты однородной атмосферы для водорода и железа относились бы как 56/1, то есть ионов железа в дальней короне наблюдаться не должно. Но это не так. Железо светится во всей короне, причем FeXIV наблюдается в более высоких слоях, чем FeX, хотя кинетическая температура там ниже. Силой, поддерживающей ионы во «взвешенном» состоянии, может быть импульс, передаваемый при столкновениях восходящим потоком протонов ионам железа. Из условия баланса этих сил легко найти поток протонов. Он оказался таким же, какой следовал из гидродинамической теории, подтвержденной впоследствии прямыми измерениями. Для 1955 г. это было значительным достижением, но в «динамическую корону» никто тогда не поверил.

Тремя годами позже Юджин Паркер (англ. Eugene N. Parker ) сделал вывод, что горячее течение от Солнца в чепменовской модели и поток частиц, сдувающий кометные хвосты в гипотезе Бирманна - это два проявления одного и того же явления, которое он назвал «солнечным ветром» . Паркер показал, что даже несмотря на то, что солнечная корона сильно притягивается Солнцем, она столь хорошо проводит тепло, что остается горячей на большом расстоянии. Так как с расстоянием от Солнца его притяжение ослабевает, из верхней короны начинается сверхзвуковое истечение вещества в межпланетное пространство. Более того, Паркер был первым, кто указал, что эффект ослабления гравитации имеет то же влияние на гидродинамическое течение, что и сопло Лаваля : оно производит переход течения из дозвуковой в сверхзвуковую фазу.

Теория Паркера была подвергнута жесткой критике. Статья, посланная в 1958 году Astrophysical Journal была забракована двумя рецензентами и только благодаря редактору, Субраманьяну Чандрасекару попала на страницы журнала.

Однако, ускорение ветра до высоких скоростей еще не было понято и не могло быть объяснено из теории Паркера. Первые численные модели солнечного ветра в короне с использованием уравнений магнитной гидродинамики были созданы Пневманом и Кноппом (англ. Pneuman and Knopp ) в г.

В конце 1990-х с помощью Ультрафиолетового коронального спектрометра (англ. Ultraviolet Coronal Spectrometer (UVCS) ) на борту спутника SOHO были проведены наблюдения областей возникновения быстрого солнечного ветра на солнечных полюсах. Оказалось, что ускорение ветра много больше, чем предполагалось, исходя из чисто термодинамического расширения. Модель Паркера предсказывала, что скорость ветра становится сверхзвуковой на высоте 4 радиусов Солнца от фотосферы, а наблюдения показали, что этот переход происходит существенно ниже, примерно на высоте 1 радиуса Солнца, подтверждая, что существует дополнительный механизм ускорения солнечного ветра.

Характеристики

Из-за солнечного ветра Солнце теряет ежесекундно около одного миллиона тонн вещества. Солнечный ветер состоит в основном из электронов , протонов и ядер гелия (альфа-частиц); ядра других элементов и неионизированных частиц (электрически нейтральных) содержатся в очень незначительном количестве.

Хотя солнечный ветер исходит из внешнего слоя Солнца, он не отражает реального состава элементов в этом слое, так как в результате процессов дифференциации содержание некоторых элементов увеличивается, а некоторых - уменьшается (FIP-эффект).

Интенсивность солнечного ветра зависит от изменений солнечной активности и его источников. Многолетние наблюдения на орбите Земли (около 150 000 000 км от Солнца) показали, что солнечный ветер структурирован и обычно делится на спокойный и возмущенный (спорадический и рекуррентный). В зависимости от скорости, спокойные потоки солнечного ветра делятся на два класса: медленные (примерно 300-500 км/с около орбиты Земли) и быстрые (500-800 км/с около орбиты Земли). Иногда к стационарному ветру относят область гелиосферного токового слоя , который разделяет области различной полярности межпланетного магнитного поля, и по своим характеристикам близок к медленному ветру.

Медленный солнечный ветер

Медленный солнечный ветер порождается «спокойной» частью солнечной короны (областью корональных стримеров) при её газодинамическом расширении: при температуре короны около 2·10 6 К корона не может находиться в условиях гидростатического равновесия, и это расширение при имеющихся граничных условиях должно приводить к разгону коронального вещества до сверхзвуковых скоростей. Нагрев солнечной короны до таких температур происходит вследствие конвективной природы теплопереноса в фотосфере солнца: развитие конвективной турбулентности в плазме сопровождается генерацией интенсивных магнитозвуковых волн; в свою очередь при распространении в направлении уменьшения плотности солнечной атмосферы звуковые волны трансформируются в ударные; ударные волны эффективно поглощаются веществом короны и разогревают её до температуры (1-3)·10 6 К.

Быстрый солнечный ветер

Потоки рекуррентного быстрого солнечного ветра испускаются Солнцем в течение нескольких месяцев и имеют период повторяемости при наблюдениях с Земли в 27 суток (период вращения Солнца). Эти потоки ассоциированы с корональными дырами - областями короны с относительно низкой температурой (примерно 0,8·10 6 К), пониженной плотностью плазмы (всего четверть плотности спокойных областей короны) и радиальным по отношению к Солнцу магнитным полем .

Возмущенные потоки

К возмущенным потокам относят межпланетное проявление корональных выбросов массы (СМЕ), а также области сжатия перед быстрыми СМЕ (называемыми в англоязычной литературе Sheath) и перед быстрыми потоками из корональных дыр (называемыми в англоязычной литературе Corotating interaction region - CIR). Около половины случаев наблюдений Sheath и CIR могут иметь впереди себя межпланетную ударную волну. Именно в возмущенных типах солнечного ветра межпланетное магнитное поле может отклоняться от плоскости эклиптики и содержать южную компоненту поля, которая приводит ко многим эффектам космической погоды (геомагнитной активности , включая магнитные бури). Ранее предполагалось, что возмущенные спорадические потоки вызываются солнечными вспышками , однако в настоящее время считается, что спорадические потоки в солнечном ветре обусловлены корональными выбросами. Вместе с тем следует отметить, что и солнечные вспышки , и корональные выбросы связаны с одними и теми же источниками энергии на Солнце и между ними существует статистическая зависимость.

По времени наблюдения различных крупномасштабных типов солнечного ветра быстрые и медленные потоки составляют около 53%, гелиосферный токовый слой 6%, CIR – 10%, CME – 22%, Sheath – 9%, и соотношение между временем наблюдения различных типов сильно изменяется в цикле солнечной активности. .

Феномены, порождаемые солнечным ветром

Солнечный ветер порождает на планетах Солнечной системы , обладающих магнитным полем , такие явления, как магнитосфера , полярные сияния и радиационные пояса планет.

В культуре

«Солнечный ветер» - рассказ известного писателя-фантаста Артура Кларка , написанный в 1963 году .

Примечания

  1. Kristian Birkeland, «Are the Solar Corpuscular Rays that penetrate the Earth’s Atmosphere Negative or Positive Rays?» in Videnskapsselskapets Skrifter , I Mat - Naturv. Klasse No.1, Christiania, 1916.
  2. Philosophical Magazine , Series 6, Vol. 38, No. 228, December, 1919, 674 (on the Solar Wind)
  3. Ludwig Biermann (1951). «Kometenschweife und solare Korpuskularstrahlung». Zeitschrift für Astrophysik 29 : 274.
  4. Всехсвятский С.К., Никольский Г.М., Пономарев Е.А., Чередниченко В.И. (1955). «К вопросу о корпускулярном излучении Солнца». Астрономический журнал 32 : 165.
  5. Christopher T. Russell . Institute of Geophysics and Planetary Physics University of California, Los Angeles . Архивировано из первоисточника 22 августа 2011. Проверено 7 февраля 2007.
  6. Roach, John . Astrophysicist Recognized for Discovery of Solar Wind , National Geographic News (August 27, 2003). Проверено 13 июня 2006.
  7. Eugene Parker (1958). «Dynamics of the Interplanetary Gas and Magnetic Fields ». The Astrophysical Journal 128 : 664.
  8. Luna 1 . NASA National Space Science Data Center. Архивировано из первоисточника 22 августа 2011. Проверено 4 августа 2007.
  9. (рус.) 40th Anniversary of the Space Era in the Nuclear Physics Scientific Research Institute of the Moscow State University , contains the graph showing particle detection by Луна-1 at various altitudes.
  10. M. Neugebauer and C. W. Snyder (1962). «Solar Plasma Experiment». Science 138 : 1095–1097.
  11. G. W. Pneuman and R. A. Kopp (1971). «Gas-magnetic field interactions in the solar corona». Solar Physics 18 : 258.
  12. Ермолаев Ю. И., Николаева Н. С., Лодкина И. Г., Ермолаев М. Ю. Относительная частота появления и геоэффективность крупномасштабных типов солнечного ветра // Космические исследования . - 2010. - Т. 48. - № 1. - С. 3–32.
  13. Cosmic Rays Hit Space Age High . НАСА (28 сентября 2009). Архивировано из первоисточника 22 августа 2011. Проверено 30 сентября 2009. (англ.)

Литература

  • Паркер Е. Н. Динамические процессы в межпланетной среде / Пер. с англ. М.: Мир, 1965
  • Пудовкин М. И. Солнечный ветер// Соросовский образовательный журнал, 1996, No 12, с. 87-94.
  • Хундхаузен А. Расширение короны и солнечный ветер / Пер. с англ. М.: Мир, 1976
  • Физическая энциклопедия, т.4 - М.:Большая Российская Энциклопедия стр.586 , стр.587 и стр.588
  • Физика космоса. Маленькая энциклопедия, М.: Советская Энциклопедия, 1986
  • Гелиосфера (Под ред. И.С. Веселовского, Ю.И. Ермолаева) в монографии Плазменная гелиогеофизика / Под ред. Л. М. Зеленого, И. С. Веселовского. В 2-х т. М.: Физ-матлит, 2008. Т. 1. 672 с.; Т. 2. 560 с.

См. также

Ссылки

Министерство образования республики Беларусь

Солнечный ветер

Выполнил:

ученик 11 «Д» класса

Чаплинский Виктор Сергеевич

Проверил:

учитель по физике

Симонович Н. Н.

Борисов 2004 г.

Введение

Немного теории, связанной с теоретическим предсказанием солнечного ветра

Представления об однородном истечении плазмы из солнечной короны.

Однородно и стационарно ли вытекает солнечный ветер с поверхности Солнца?

Как изменяются характеристики солнечного ветра с удалением от Солнца?

Спокойный солнечный ветер.

Высокоскоростной солнечный ветер

Рекуррентные потоки

Спорадические высокоскоростные потоки.

Заключение

Введение.

Прошло 40 лет с тех пор, как американский физик Е.Паркер теоретически предсказал явление, которое получило название "солнечный ветер" и которое через пару лет было подтверждено экспериментально группой советского ученого К. Грингауза при помощи приборов, установленных на космических аппаратах "Луна-2" и "Луна-3". Солнечный ветер представляет собой поток полностью ионизированной водородной плазмы, то есть газа, состоящего из электронов и протонов примерно одинаковой плотности (условие квазинейтральности), который с большой сверхзвуковой скоростью движется от Солнца. На орбите Земли (1 А.Е. от Солнца) скорость этого потока равна примерно 400-500 км/с, концентрация протонов (или электронов) 10-20 частиц в кубическом сантиметре, а их температура примерно 100 000 К. (температура электронов несколько выше).

Кроме электронов и протонов в межпланетном пространстве были обнаружены альфа-частицы (порядка нескольких процентов), небольшое количество более тяжелых частиц, а также магнитное поле, средняя величина индукции которого оказалась на орбите Земли порядка нескольких гамм (g=10 -5 Гс.).

Как показывают наблюдения, выполненные на борту космических спутников Земли и других космических аппаратах с высоким апогеем орбиты, межпланетное пространство заполнено чрезвычайно активной средой – плазмой солнечного ветра. Солнечный ветер зарождается в верхних слоях атмосферы Солнца, и его основные параметры определяются соответствующими параметрами солнечной атмосферы. Однако связь между физическими характеристиками солнечного ветра вблизи орбиты Земли и физическими явлениями в атмосфере Солнца оказывается чрезвычайно сложной, и, кроме того, меняется в зависимости от солнечной активности конкретной ситуации на Солнце. Поэтому для простоты описания предполагается, что наблюдаемый солнечный ветер состоит из трех компонент :

1. Спокойный солнечный ветер, – постоянно существующий поток солнечной плазмы, заполняющий все межпланетное пространство вплоть до границ гелиосферы (50 – 200 А.Е.)

2. Квазистационарные высокоскоростные потоки солнечной плазмы, ответственные за рекуррентные геомагнитные возмущения

3. Спорадические высокоскоростные потоки – относительно кратковременные, чрезвычайно неоднородные и сложные по структуре образования, ответственные за спорадические геомагнитные возмущения.

Немного теории, связанной с теоретическим предсказанием солнечного ветра.

В течение не столь уж длительной истории теоретической астрофизики считалось, что все атмосферы звезд находятся в гидростатическом равновесии, то есть в состоянии, когда сила гравитационного притяжения звезды уравновешивается силой, связанной с градиентом давления ее в атмосфере (с изменением давления на единицу расстояния r от центра звезды). Математически это можно представить в виде:

Если распределение температуры T в атмосфере задано, то из уравнения равновесия (1) и уравнения состояния идеального газа.

получается так называемая барометрическая формула, которая в частном случае постоянной температуры T будет иметь вид

Из формулы (3) видно, что при r®¥ то есть на очень больших расстояниях от звезды давление p стремится к конечному пределу, который зависит от p 0 .

Поскольку считалось, что солнечная атмосфера, так же как и атмосферы других звезд, находится в состоянии гидростатического равновесия, то ее состояние описывалось формулами, аналогичными формулам (1)-(3).Учитывая необычное и до конца еще непонятное явление резкого возрастания температуры примерно от 10 000 градусов на поверхности Солнца до 1 000 000 градусов в солнечной короне, Чепмен развил теорию статической солнечной короны, которая должна была плавно переходить в межзвездную среду, окружающую Солнечную систему.

Однако в своей работе Паркер обратил внимание на то, что давление на бесконечности, получаемое из формулы (3) для статической короны, оказывается почти на порядок величины больше значения давления, которое оценивалось для межзвездного газа на основе наблюдений. Чтобы устранить это расхождение, Паркер предложил, что солнечная корона не находится в состоянии статического равновесия, а непрерывно расширяется в окружающую Солнце межпланетную среду. При этом вместо уравнения (1) он предложил использовать гидродинамическое уравнение движения вида

где в системе координат, связанной с Солнцем, величина V представляет собой радиальную скорость движения плазмы. Под M подразумевается масса Солнца.

При заданном распределении температуры T система уравнений (2) и (4) имеет решения представленные на рис.1.

На этом рисунке через a обозначена скорость звука, r * - расстояние от начала координат, на котором скорость газа равна скорости звука (V = a). Очевидно, что только кривые 1 и 2 на рис1. имеют физический смысл для проблемы истечения газа из Солнца, поскольку кривые 3 и 4 имеют неединственные значения скорости в каждой точке, а кривые 5 и 6 соответствуют очень большим скоростям в солнечной атмосфере, что не наблюдается в телескопы. Паркер проанализировал условия, при которых в природе осуществляется решение, соответствующее кривой 1. Он показал, что для согласования давления, получаемого из такого решения, с давлением в межзвездной среде наиболее реален случай перехода газа от дозвукового течения (при r < r *) к сверхзвуковому (при r > r *), и назвал такое течение солнечным ветром.

История экспериментов в космическом пространстве блестяще доказала правильность представлений Паркера о солнечном ветре. Подробный материал о теории солнечного ветра можно найти, например, в монографии .

Представления об однородном истечении плазмы из солнечной короны.

Из одномерных уравнений газовой динамики можно получить известный результат: при отсутствии массовых сил сферически – симметричное течение газа от точечного источника может быть всюду либо дозвуковым, либо сверхзвуковым. Присутствие в уравнении (4) гравитационной силы (правая часть) приводит к тому, что появляются решения типа кривой 1 на рис.1., то есть с переходом через скорость звука.

Проведем аналогию с классическим течением в сопле Лаваля, которое представляет собой основу всех сверхзвуковых реактивных двигателей. Схематически это течение показано на рис.2. В бак 1, называемый ресивером, с очень маленькой скоростью подается газ, нагретый до очень высокой температуры (внутренняя энергия газа много больше кинетической энергии направленного движения). Путем геометрического сжатия канала газ ускоряется в области 2 (дозвуковое течение) до тех пор, пока его скорость не достигнет скорости звука. Для дальнейшего его ускорения необходимо канал расширять (область 3 сверхзвукового течения). Во всей области течения ускорение газа происходит за счет его адиабатического (без подвода тепла) охлаждения (внутренняя энергия хаотического движения переходит в энергию направленного движения).

В рассматриваемой проблеме образования солнечного ветра роль ресивера играет солнечная корона, а роль стенок сопла Лаваля – гравитационная сила солнечного происхождения. Согласно теории Паркера, переход через скорость звука должен происходить где-то на расстоянии в несколько солнечных радиусов. Однако анализ получаемых в теории решений показал, что температуры солнечной короны недостаточно, чтобы ее газ мог ускориться до сверхзвуковых скоростей, как это имеет место в теории сопла Лаваля. Должен существовать какой-то дополнительный источник энергии. Таким источником в настоящее время считается диссипация всегда присутствующих в солнечном ветре волновых движений (плазменная турбулентность), накладывающихся на среднее течение, а само течение уже не является адиабатическим. (см. Спокойный солнечный ветер) Количественный пример таких процессов еще требует дальнейшего исследования. Интересно, что наземные телескопы обнаруживают на поверхности Солнца магнитные поля. Средняя величина их магнитной индукции B оценивается в 1 Гс, хотя в отдельных фотосферных образованиях, например в пятнах, магнитное поле может быть на порядок больше. Поскольку плазма является хорошим проводником электричества, то естественно, что солнечные потоки и магнитные поля взаимодействуют с ее потоками от Солнца. В этом случае чисто газодинамическая теория дает неполное описание рассматриваемого явления. Влияние магнитного поля на течение солнечного ветра можно рассмотреть в рамках магнитной гидродинамики. К чему же это приводит? Согласно пионерской в этом направлении работе (см. также ), магнитное поле приводит к появлению пондемоторной силы j x B, которая направлена в перпендикулярном к радиальному направлении. В результате у солнечного ветра появляется тангенциальная компонента скорости. Эта компонента почти на два порядка меньше, радиальной, однако она играет существенную роль в выносе из Солнца момента количества движения. Предполагают, что последнее обстоятельство может играть существенную роль в эволюции не только Солнца, но и других звезд, у которых обнаружен "звездный ветер". В частности, для объяснения резкого уменьшения угловой скорости звезд позднего спектрального класса часто привлекается гипотеза о передаче вращательного момента образующимся вокруг них планетам. Рассмотренный механизм потери углового момента Солнца путем истечения их него плазмы открывает возможность пересмотра этой гипотезы.

Также можно отметить, что измерения среднего магнитного поля в районе орбиты Земли показали, что его величина и направление хорошо описываются формулами полученными из более простых рассмотрений Паркером ().

В формулах (5), описывающих паркеровскую спираль Архимеда для межпланетного магнитного поля в плоскости солнечного экватора, почти совпадающей с плоскостью эклиптики, величины B r , B j - радиальная и азимутальная компоненты вектора магнитной индукции, W - угловая скорость вращения Солнца, V – радиальная скорость солнечного ветра, индекс 0 относится к точке солнечной короны, в которой величина магнитного поля известна.

Однородно и стационарно ли вытекает солнечный ветер с поверхности Солнца?

Рассмотренное ранее представление об истечении плазмы из солнечной короны исходит из предположения о том, что солнечная корона является однородной и стационарной, то есть ее температура и плотность не зависят от солнечной долготы и времени. В этом случае солнечный ветер можно рассматривать как сферически – симметричное (зависящее только от гелиоцентрического расстояния) стационарное течение. До 1990 года все космические аппараты летали вблизи солнечной эклиптики, что не позволяло прямыми методами измерений проверить степень зависимости параметров солнечного ветра от солнечной широты. Косвенные же наблюдения отклонения хвостов комет, пролетавших вне плоскости эклиптики, указывали на то, что в первом приближении такой зависимости нет. Однако измерения в плоскости эклиптики показали, что в межпланетном пространстве могут существовать так называемые секторные структуры с различными параметрами солнечного ветра и различным направлением магнитного поля. Такие структуры вращаются вместе с Солнцем и явно указывают на то, что они являются следствием аналогичной структуры в солнечной атмосфере, параметры которой зависят от долготы. Качественно четырехсекторная структура показана на рис.3.

Вывод же о независимости солнечного ветра по широте на основании кометных наблюдений не был достаточно надежным из-за сложности их инерпритации, а наблюдения солнечной короны показывали, что она неоднородна и по широте и по долготе, а также подвержена сильным временным изменениям, связанным с 11 – летним циклом солнечной активности, так и с различными нестационарными процессами с более коротким временным интервалом. (Например, со вспышками)

Ситуация резко изменилась с запуском Европейским космическим агентством в октябре 1990 года космического аппарата "Улисс", основной целью которого является исследование межпланетной плазмы вне плоскости солнечной эклиптики. Эти исследования начались в феврале 1992 года, когда, используя гравитационное поле Юпитера, аппарат вышел из эклиптической плоскости и направился сначала к областям южного полюса Солнца (май – сентябрь 1994), а затем к областям со стороны северного полюса (май – сентябрь 1995). Большинство полученных результатов сейчас тщательно исследуется, но уже можно сделать некоторые выводы о зависимости параметров солнечного ветра от солнечной широты (большое число научных сообщений по этим проблемам помещено в американском журнале "Science", 1995, volume 268, May 19).

В частности, оказалось, что скорость солнечного ветра возрастает, а плотность резко уменьшается с гелиографической широтой. Измеренная, например, на аппарате "Улисс" скорость солнечного ветра изменилась от 450 км/с в плоскости эклиптики примерно до 700 км/с на – 75 о солнечной широты. Надо, однако, отметить что степень различия параметров солнечного ветра в плоскости эклиптики и вне ее зависит от цикла солнечной активности.

Вспышки на Солнце и разные скорости истечения плазмы из разных областей его поверхности приводят к тому, что в межпланетном пространстве образуются ударные волны, которые характеризуются резким скачком скорости, плотности и температуры. Качественно такой механизм их образования показан на рис.4.

Когда быстрый поток догоняет медленный, то в месте их соприкосновения возникает произвольный разрыв параметров, на котором не выполняются законы сохранения массы, импульса и энергии. Такой разрыв не может существовать в природе и распадается, в частности на две ударные волны и тангенциальный разрыв (на последнем нормальная компонента скорости непрерывны), как это показано на рис.4,а для вспышечного процесса на Солнце и на рис.4,б в том случае, когда более быстрый поток от одной области солнечной короны догоняет более медленный, вытекающий из другой. Ударные волны и тангенциальные разрывы, изображенные на рис.4, сносятся солнечным ветром на большие гелиоцентрические расстояния и регулярно регистрируются космическими аппаратами.

Как изменяются характеристики солнечного ветра с удалением от Солнца?

Как видно из уравнения (4), изменение скорости солнечного ветра определяется двумя силами: силой солнечной гравитации и силой, связанной с изменением давления. Расчеты показывают, что на больших расстояниях от Солнца (практически уже с 1а.е.) давление почти не изменяется по величине, то есть его изменение очень мало, и сила, связанная с давлением, практически отсутствует. Сила гравитации убывает как квадрат расстояния от Солнца и тоже мала на достаточно больших гелиоцентрических расстояниях. Поскольку обе силы становятся очень малы, то, согласно теории, скорость солнечного ветра становится почти постоянной и при этом значительно превосходит звуковую (как говорят течение гиперзвуковое). Американские космические аппараты "Вояджер – 1 и –2 " и "Пионер – 10 и –11 ", запущенные еще в 70-х годах и находящиеся сейчас на расстоянии от Солнца в несколько десятков астрономических единиц, экспериментально подтвердили теоретические предсказания о солнечном ветре. В частности, его скорость оказалась в среднем почти постоянной, а плотность r убывает как 1/r 2 в соответствии с уравнением сохранения массы для сферически – симметричного случая:

Температура же не следует адиабатическому закону, что означает существование каких-то источников тепла. Такими источниками могут быть упоминавшаяся ранее диссипация волн или нейтральные атомы водорода, проникающие из межзвездной среды в Солнечную систему. ()

Очевидно, что скорость солнечного ветра не может быть до бесконечности постоянной, как это следует из уравнения газовой динамики (см., например рис.1.), поскольку Солнечная система окружена межзвездным газом с конечным давлением. Поэтому солнечный ветер на больших расстояниях от Солнца должен тормозиться газом межзвездной среды. Эта проблема подробно рассмотрена в . Здесь только отметим, что плавное торможение газодинамического потока от сверхзвуковых до дозвуковых, например, в сопле Лаваля (рис.2.), путем сужения канала невозможно: обязательно должен образоваться скачок параметров газа в виде ударной волны. Аналогичная ситуация может возникнуть и в солнечном ветре. Торможение солнечного ветра из-за противодавления межзвездной среды должно происходить через ударную волну (Termination shock, или TS). Ее положение сильно зависит от параметров межзвездной среды. Согласно теоретическим расчетам, ударная волна TS находится на расстоянии 80 – 100 А.Е. от Солнца , что позволяет в ближайшие несколько лет детектировать ее измерительными приборами, установленными на космических аппаратах "Вояджер".

Спокойный солнечный ветер.

Согласно современным представлениям, энергия в недрах Солнца вырабатывается в ходе процессов ядерного синтеза:

где e + - означает позитрон, n- нейтрино, g - g- квант. В результате перечисленных процессов 1,0078 г водорода переходит в 1,0000 г гелия, а оставшаяся масса переходит кинетическую энергию частиц и энергию радиации. Скорость выделения энергии в ходе реакций протон – протонного цикла определяется выражением:

Известно, что в звездах типа Солнца теплопроводность играет незначительную роль, так что произведенная в недрах Солнца энергия передается к его поверхности в основном путем радиационного переноса, то есть в результате ее поглощения и последующего переизлучения .

Однако радиационный перенос солнечной энергии становится малоэффективным в верхних слоях Солнца. Дело в том, что по мере уменьшения температуры солнечного вещества степень его ионизации уменьшается и присутствие в нем нейтральных атомов водорода заметно снижает его прозрачность. Это, в свою очередь, приводит к еще более быстрому уменьшению температуры Солнца с расстоянием от центра, вследствие чего любой элементарный объем солнечного вещества, всплывающий из недр Солнца, обладает большей температурой меньшей плотностью, чем окружающая плазма, что приводит к развитию так называемой конвективной неустойчивости. Условия ее возбуждения уверенно выполняются в поверхностных слоях Солнца r > 0.86R o , где энергия переносится главным образом в форме тепловой энергии плазмы, заключенной в элементах вещества, поднимающихся из недр Солнца. Развитие интенсивной турбулентности в поверхностных слоях Солнца не только обеспечивает перенос энергии к его поверхности, но и приводит к развитию явлений, играющих ключевую роль в солнечно-земной физике. Прежде всего развитие конвективной турбулентности в плазме сопровождается генерацией интенсивных магнитозвуковых волн. Распространяясь в атмосфере Солнца, где плотность плазмы быстро уменьшается с высотой, звуковые волны трансформируются в ударные. Они эффективно поглощаются веществом, в результате чего температура последнего увеличивается, достигая величины (1-3) 10 6 в солнечной короне. При этом значительная часть протонов в короне Солнца не может удерживаться его гравитационным полем, что приводит в непрерывному расширению короны в космическое пространство, то есть к генерации солнечного ветра.

Высокоскоростной солнечный ветер.

Как видно из данных, представленных в табл.1, высокоскоростной ветер характеризуется повышенной скоростью (около 700 км/с), пониженной плотностью плазмы (n=4 см -3) и повышенной ионной температурой. Однако, прежде чем обсуждать возможные источники этих потоков, напомним, что существуют по меньшей мере два рода таких потоков: рекуррентные и магнитные.

Рекуррентные потоки.

Рекуррентные потоки высокоскоростного солнечного ветра отличаются прежде всего тем, что существуют в течение многих месяцев, регулярно появляясь в окрестностях Земли примерно через 27 дней (период оборота Солнца), что свидетельствует об относительно большом времени жизни их источников. В течение многих лет происхождение этих потоков оставалось загадкой, поскольку им не соответствовали какие-либо видимые особенности на поверхности Солнца. Однако в настоящее время можно считать доказанным, что обсуждаемые потоки зарождаются на Солнце в области так называемых дыр.

Корональные дыры отчетливо видны на фотографиях солнца, полученных с космических аппаратов, в рентгеновском и крайнем ультрафиолетовым диапазонах солнечного излучения. (см. рис.6.), где они фиксируются как обширные области пониженной (в несколько раз) интенсивности излучения, простирающиеся от полярных широт до экватора или даже в противоположное полушарие. Протяженность корональных дыр по долготе составляет 30 о -90 о. Соответственно время прохождения корональной дыры через центральный меридиан Солнца (вследствие вращения последнего) составляет 4 – 6 суток, что вполне согласуется с длительностью существования соответствующих высокоскоростных потоков в окрестностях Земли . Пониженная интенсивность рентгеновского излучения в области корональных дыр может определяться как пониженной плотностью плазмы в этих областях, так и ее пониженной температурой. Действительно, наземные наблюдения короны во время солнечных затмений показывают, что в короне существуют, особенно в высоких широтах, области с относительно низкой плотностью плазмы. В то же время и температура плазмы в области корональных дыр составляет около 0,8*10 6 К, что существенно ниже температуры спокойной короны и плотность плазмы в корональной дыре составляет 0,25 плотности спокойной короны.

Таким образом, корональные дыры действительно представляют собой области пониженной плотности и температуры плазмы. Чем вызываются указанные особенности короны в этих областях, не совсем ясно. В связи с этим обращает на себя внимание то, что корональные дыры, как правило, совпадают с областями униполярного магнитного поля с квазирадиальными или слегка расходящимися силовыми линиями . Открытые силовые линии магнитного поля не препятствуют радиальному расширению корональной плазмы, что может объяснить пониженную плотность последней в области дыр и увеличение скорости генерируемого в них солнечного ветра. Вместе с тем увеличение скорости солнечного ветра, обусловленное благоприятной конфигурацией силовых линий магнитного поля, не может компенсировать ее уменьшения, связанного с низкой температурой плазмы в рассматриваемых областях и для объяснения появления высокоскоростных потоков приходится предположить наличие в корональных дырах мощного источника МГД – волн. К сожалению, прямых подтверждений существования таких волн в области корональных дыр пока не получено.

Спорадические высокоскоростные потоки.

Второй тип высокоскоростных потоков в солнечном ветре – это кратковременные (время пробега мимо Земли t=1 – 2 суток), часто чрезвычайно интенсивные (скорость солнечного ветра до 1200 км/с) потоки, имеющие весьма большую долготную протяженность. Двигаясь в межпланетном пространстве, заполненным плазмой относительно медленного спокойного солнечного ветра, высокоскоростной поток как бы сгребает эту плазму, в результате чего перед его фронтом образуется движущаяся вместе с ним отошедшая ударная волна. Пространство между фронтом потока и фронтом отошедшей ударной волны заполнено плотной (несколько десятков частиц в 1 см 3) и горячей плазмой.

Ранее предполагалось, что спорадические потоки в солнечном потоке обусловлены солнечными вспышками и подобными явлениями. Однако в последнее время мнение на этот счет изменилось, и большинство исследователей, в особенности зарубежных, придерживается точки зрения, согласно которой спорадические высокоскоростные потоки в солнечном ветре обусловлены так называемыми выбросами.

Корональные выбросы, наиболее отчетливо наблюдаемые вблизи лимба Солнца, представляют собой некоторые относительно протяженные плазменные образования, движущиеся в короне Солнца вверх от ее основания. Вывод о том, что спорадические потоки в солнечном ветре связаны именно с корональными выбросами (или СМЕ), а не со вспышками, основан на следующих экспериментальных фактах:

1. Несмотря на статически значимую связь между спорадическими потоками и солнечными вспышками, однозначная связь между ними отсутствует, то есть, с одной стороны, наблюдаются вспышки, не вызывающие ударных волн, и, с другой – наблюдаются высокоскоростные потоки, не предваряемые вспышками.

2. Солнечные вспышки непосредственно не связаны с корональными выбросами.

Связь между межпланетными ударными волнами, корональными выбросами и солнечными вспышками детально исследовалась N.Sheeley и др. (1985), которые, в частности, показали, что 72% ударных волн, наблюдающихся на борту космического аппарата "Helios -1", были связаны с большими низкоширотными корональными выбросами. В то же время лишь 52% тех же ударных волн были связаны с солнечными вспышками.

В результате подробного анализа этих данных удалось показать , что если исключить из списка ударные волны, наблюдаемые за лимбом Солнца, то число волн, связанных со вспышками, возрастает до 85%, то есть, связь ударных волн со вспышками оказывается ничуть не хуже, чем с корональными выбросами. Кроме того, как показали Harrison и др.(1990), корональные выбросы (со скоростью порядка 1000 км/с), с которыми обычно связана межпланетная ударная волна, начинают свое движение в короне одновременно с началом вспышки.

Таким образом, вывод о непричастности солнечных вспышек к межпланетным ударным волнам представляется не совсем убедительным, и мы по-прежнему будем считать солнечные вспышки одним из основных источников высокоскоростных потоков в солнечном ветре.

Что касается механизма генерации самих вспышек (и, естественно, связанных с ними потоков), то наиболее популярной в настоящее время является предложенная в 1964 году Петчеком модель вспышки, основанная на гипотезе о магнитном пересоединении . Развитие солнечной вспышки в рамках модели Петчека представлено на рис.7.

В этой модели силовые линии магнитного поля активной области оказываются, начиная с некоторого уровня, разорванными и образуют две силовые трубки с антипараллельными полями, разделенными токовым слоем. В некоторый момент из-за развития ионно-звуковой или ионно-циклотронной неустойчивости проводимость плазмы в некоторой точке 1 (рис.7,а) в плазменном слое резко падает, в результате чего токовый слой разрывается и силовые линии магнитного поля пересоединяются. Магнитная энергия быстро переходит в кинетическую и тепловую энергию

Плазмы и происходят интенсивный разогрев и ускорение плазмы (рис.7,б). Ускоренные частицы, двигаясь вдоль открытых силовых линий магнитного поля, покидают хромосферу и выбрасываются в межпланетное пространство (рис.5,в). При этом движущиеся вверх энергичные электроны, проходя через корону и взаимодействуя с ней, могут вызвать всплески радиоизлучения. Частота радиоизлучения вследствие уменьшения концентрации фоновой плазмы быстро уменьшается по мере движения электронов вверх (что соответствует так называемым всплескам радиоизлучения III типа)

Частицы, движущиеся вдоль силовых линий магнитного поля к Солнцу, нагревают плазму в нижней хромосфере и фотосфере, вызывая увеличение яркости водородных эмиссий и образование высокотемпературного коронального облака. Плазма, ускоряемая в направлении от Солнца, формирует высокоскоростной поток и связанную с ним ударную волну.

Заключение.

Суперпозиция описанных выше потоков солнечной плазмы и их взаимодействие создают ту сложную и непрерывно изменяющуюся систему, которая называется солнечным ветром.

Из рассмотренного выше можно сделать заключение, что солнечный ветер – это физическое явление, которое представляет не только чисто академический интерес, связанный с изучением процессов в плазме, находящейся в естественных условиях космического пространства, но и фактор, который необходимо учитывать при изучении процессов, происходящих в окрестности нашей планеты Земли, что, в конце концов, влияет на нашу жизнь. Это обусловлено тем, что высокоскоростные потоки солнечного ветра, обтекая землю, влияют на ее магнитосферу, которая непосредственно связана с более низкими слоями атмосферы. Такое влияние в сильной степени зависит от процессов, происходящих на Солнце, поскольку они связаны с зарождением самого солнечного ветра. Таким образом, солнечный ветер является хорошим индикатором для изучения важных для практической деятельности человека солнечно – земных связей. Однако это уже другая область научных исследований, которая в данной работе не рассматривается.

Литература.

1. Parker E . // Astophys.J. 1958. V. 128. №3.

2. Chapman S .//J.Atmos. Terr. Phys.1959. V.15.№1/2.

3. Chamberlain J . //Astrophys. J. 1961. V.133. №2.

4. Грингауз К.И., Безруких В.В., Озеров В.Д., Рыбчинский Р.Е. // Докл. АН СССР. 1960. Т.131 №6.

5. Баранов В.Б., Краснобаев К.В., Гидродинамическая теория космической плазмы. М.: Наука, 1977.

6. Weber E., Davis L. //Astrophys. J. 1967.V.148. №1. Pt.1.

7. Паркер Е . Динамические процессы в межпланетной среде. М.: Мир, 1965.

8. Баранов В.Б. Влияние межзвездной среды на строение гелиосферы // Соросовский Образовательный Журнал. 1996. №11. С.73-79.

9. Хундхаузен А. Расширение короны и солнечный ветер. М.:Мир, 1976. 302 с.

10. Гибсон Э. Спокойное Солнце.М.: Мир,1977, 408 с.

11. Коваленко В.А. Солнечный ветер. М.: Наука, 1983,272 с.

12. Pudovkin M.I. // J. Geophys.Res. 1995 V.100.№ A5. P7917

13. Pudovkin M.I. // Rept.Prog.in Phys.1995. V58. №9.P.929.

14. Пудовкин М.И., Семенов В.С. Теория пересоединения и взаимодействия солнечного ветра с магнитосферой Земли. М.: Наука, 1985.126 с.

Солнечная радиация – это энергия электромагнитного излучения Солнца.

Солнечная радиация, которая поступила на верхнюю границу атмосферы, на своем пути к земной поверхности претерпевает ряд изменений, вызванных ее поглощением и рассеянием в атмосфере.

Радиацию, которая приходит на Землю непосредственно от солнечного диска называють прямой солнечной радиацией S . (Радиация, которая поступила от Солнца в атмосферу и потом на земную поверхность в виде параллельного пучка лучей, называется прямой солнечной радиацией) .

Рассеянная радиация D приходит на земную поверхность от всего небесного свода и оценивается потоком солнечной радиации, т.е. количеством энергии, которое приходит в единицу времени на единицу горизонтальной поверхности. (Часть солнечной радиации рассеивается молекулами атмосферных газов и аерозолями и поступает в земную поверхность в виде рассеянной радиации) .

Часть солнечной радиации, которая отражается от земной поверхности и атмосферы (в основных, от облаков), называется отраженной радиацией .

Земля и атмосфера непрерывно излучают невидимую инфракрасную радиацию. Излучение Земли почти полностью поглощается атмосферой. Часть излучения атмосферы, направленная к Земле, называется встречным излучением атмосферы.

Часть атмосферного излучения, направленная вверх и пошедшая через всю толщу атмосферы, направляется в мировое пространство и называется уходящим излучением атмосферы.

Все перечисленные потоки лучистой энергии отличаются друг от друга по спектральному составу, то есть по длинам волн. В метеорологии принять рассматривать радиацию:

    Коротковолновую (длины волн 0,1-4 мкм);

    Длинноволновую (4 – 120 мкм).

Солнечная радиация в основном является коротковолновой (ультрафиолетовая, видимая, инфракрасная). Радиация земной поверхности и атмосферы является длинноволновой.

Лучистая энергия характеризуется потоком радиации.

Поток радиации – это количество лучистой энергии, которая поступает в единицу времени на единицу поверхности. Измеряется в Вт/м 2 .

Количество прямой радиации S, что приходит в единицу времени на единицу поверхности, перпендикулярной солнечным лучам, называется плотностью потока прямой радиации.

Раздел метеорологии, который изучает солнечную, земную и атмосферную радиацию, называется актинометрией. Основная задача актинометрии – измерение потоков лучистой энергии. Рассеяние радиации в атмосфере происходит главным образом молекулами атмосферных газов и аэрозолями (пыль, капли тумана, облака). Интенсивность рассеяния зависит от количества рассеивающих частиц в единице объема, от их величины и природы, а также от длин волн самой радиации, которая рассеивается.

По закону Релея интенсивность молекулярного рассеяния обратно пропорциональная четвертой степени длины волны, то есть:

К – коэффициент интенсивности рассеяние;

λ – длина волны,

С – коэффициент, который зависит от числа молекул газа в единица объема газа и от природы газа.

Таблица 1.1 - Значение коэффициента рассеяние в чистом и сухом воздухе при

нормальном давлении для разных длин волн

Из таблицы видно, что лучи рассеиваются тем сильнее, чем меньше длина волны. Фиолетовые лучи рассеиваются в 14 раз сильнее красных. Этим объясняется голубой цвет неба. Хотя фиолетовые и синие лучи рассеиваются еще сильнее, чем голубые, их энергия значительно меньше. Поэтому, в рассеянном свете преобладает голубой цвет.

Представьте, что вы услышали слова диктора в прогнозе погоды: «Завтра ветер резко усилится. В связи с этим возможны перебои в работе радио, мобильной связи и интернета. В США отложена отправка космической миссии. На севере России ожидаются интенсивные полярные сияния…».


Вы удивитесь: какая ерунда, при чём тут ветер? А дело в том, что вы пропустили начало прогноза: «Вчера ночью произошла вспышка на Солнце. Мощный поток солнечного ветра движется к Земле…».

Обычный ветер – это движение частиц воздуха (молекул кислорода, азота и других газов). От Солнца тоже несётся поток частиц. Его и называют солнечным ветром. Если не вникать в сотни громоздких формул, вычислений и жарких научных споров, то, в общем, картина представляется такой.

Внутри нашего светила идут термоядерные реакции, раскаляющие этот огромный шар газов. Температура внешнего слоя – солнечной короны достигает миллиона градусов. Это заставляет атомы двигаться с такой скоростью, что, сталкиваясь, они разбивают друг друга вдребезги. Известно, что разогретый газ стремится расшириться, занять больший объём. Нечто подобное происходит и здесь. Частицы водорода, гелия, кремния, серы, железа и других веществ разлетаются во все стороны.

Они набирают всё бóльшую скорость и примерно за шесть суток долетают до околоземных рубежей. Даже если светило спокойно, скорость солнечного ветра доходит здесь до 450 километров в секунду. Ну, а когда вспышка Солнца извергает огромный огненный пузырь частиц, их скорость может достигать 1200 километров в секунду! Да и освежающим «ветерок» не назовёшь – около 200 тысяч градусов.

Чувствует ли человек солнечный ветер?

Действительно, раз поток горячих частиц несётся постоянно, почему мы не ощущаем, как он «обдувает» нас? Допустим, частицы так малы, что кожа не чувствует их касаний. Но их не замечают и земные приборы. Почему?

Потому, что от солнечных вихрей Землю защищает её магнитное поле. Поток частиц как бы обтекает его и несётся дальше. Только в дни, когда выбросы на солнце особенно мощные, нашему магнитному щиту приходится туго. Солнечный ураган пробивает его и врывается в верхние слои атмосферы. Частицы-пришельцы вызывают . Магнитное поле резко деформируется, синоптики говорят про «магнитные бури».


Из-за них выходят из-под контроля космические спутники. Исчезают с радарных экранов самолёты. Создаются помехи радиоволнам, и нарушается связь. В такие дни отключают спутниковые антенны, отменяют авиарейсы, прерывают «общение» с космическими аппаратами. В электросетях, железнодорожных рельсах, трубопроводах внезапно рождается электрический ток. От этого сигналы светофоров сами собой переключаются, ржавеют газопроводы, сгорают отключённые электроприборы. Плюс к тому, тысячи людей чувствуют дискомфорт и недомогания.

Космические эффекты солнечного ветра можно обнаружить не только во время вспышек на Солнце: он-то, пускай послабее, но веет постоянно.

Давно замечено, что хвост кометы вырастает по мере приближения её к Солнцу. Оно заставляет испаряться замерзшие газы, образующие кометное ядро. А солнечный ветер сносит эти газы в виде шлейфа, всегда направленного в противоположную от Солнца сторону. Так земной ветер разворачивает дым из трубы и придаёт ему ту или иную форму.

В годы повышенной активности резко падает облучение Земли галактическими космическими лучами. Солнечный ветер набирает такую силу, что просто выметает их на окраины планетной системы.

Есть планеты, у которых магнитное поле очень слабое, а то и вовсе отсутствует (например, на Марсе). Тут уж солнечному ветру ничто не мешает разгуляться. Учёные полагают, что это он за сотни миллионов лет почти «выдул» с Марса его атмосферу. Из-за этого оранжевая планета лишилась потом и воды и, возможно, живых организмов.

Где стихает солнечный ветер?

Точного ответа не знает пока никто. До окрестностей Земли частицы летят, набирая скорость. Потом она постепенно падает, но, похоже, ветер достигает самых дальних уголков Солнечной системы. Где-то там он ослабевает и тормозится разрежённым межзвездным веществом.

Пока что астрономы не могут точно сказать, насколько далеко это происходит. Для ответа нужно ловить частицы, улетая всё дальше от Солнца, пока они не перестанут попадаться. Кстати, тот предел, где это произойдёт, как раз и можно считать границей Солнечной системы.


Ловушками для солнечного ветра оборудованы космические аппараты, которые периодически запускают с нашей планеты. В 2016 году потоки солнечного ветра удалось заснять на видео. Кто знает, не станет ли он таким же привычным «персонажем» сводок погоды, как наш давний знакомый – ветер земной?

В 1957 профессор Чикагского университета Е.Паркер теоретически предсказал явление, которое и получило наименование «солнечный ветер». Понадобилось два года, чтобы это предсказание было подтверждено экспериментально при помощи приборов, установленных на советских космических аппаратах «Луна-2» и «Луна-3» группой К.И.Грингауза. Что же представляет собой это явление?

Солнечный ветер – это поток полностью ионизованного водородного газа, называемого обычно полностью ионизованной водородной плазмой в силу примерно одинаковой плотности электронов и протонов (условие квазинейтральности), который с ускорением движется от Солнца. В районе орбиты Земли (на одной астрономической единице или, на 1 АЕ от Солнца) его скорость достигает среднего значения V E » 400–500 км/сек при температуре протонов T E » 100 000К и несколько большей температуре электронов (индекс «Е» здесь и в дальнейшем относится к орбите Земли). При таких температурах скорость на 1 АЕ существенно превосходит скорость звука, т.е. поток солнечного ветра в районе орбиты Земли является сверхзвуковым (или гиперзвуковым). Измеренная концентрация протонов (или электронов) достаточно мала и составляет величину n E » 10–20 частиц в кубическом сантиметре. Кроме протонов и электронов, в межпланетном космическом пространстве были обнаружены альфа-частицы (порядка нескольких процентов от концентрации протонов), небольшое количество более тяжелых частиц, а также межпланетное магнитное поле, средняя величина индукции которого оказалась на орбите Земли порядка нескольких гамм (1g = 10 –5 гаусс).

Крах представления о статической солнечной короне.

В течение достаточно длительного времени считалось, что все атмосферы звезд находятся в состоянии гидростатического равновесия, т.е. в состоянии, когда сила гравитационного притяжения данной звезды уравновешивается силой, связанной с градиентом давления (изменением давления в атмосфере звезды на расстоянии r от центра звезды. Математически это равновесие выражается в виде обыкновенного дифференциального уравнения,

где G – гравитационная постоянная, M * – масса звезды, p и r – давление и массовая плотность на некотором расстоянии r от звезды. Выражая массовую плотность из уравнения состояния для идеального газа

р = rRT

через давление и температуру и интегрируя полученное уравнение, получаем так называемую барометрическую формулу (R – газовая постоянная), которая в частном случае постоянной температуры Т имеет вид

где p 0 – представляет собой давление у основания атмосферы звезды (при r = r 0). Поскольку до работы Паркера считалось, что солнечная атмосфера, так же как и атмосферы других звезд, находится в состоянии гидростатического равновесия, то ее состояние определялось аналогичными формулами. Учитывая необычное и не до конца еще понятое явление резкого возрастания температуры примерно от 10 000 К на поверхности Солнца до 1 000 000 К в солнечной короне, С.Чепмен развил теорию статической солнечной короны, которая должна была плавно переходить в локальную межзвездную среду, окружающую Солнечную систему. Отсюда следовало, что, согласно представлениям С.Чепмена, Земля, совершающая свои обороты вокруг Солнца, погружена в статическую солнечную корону. Эта точка зрения в течение длительного времени разделялась астрофизиками.

Удар по этим уже установившимся представлениям был нанесен Паркером. Он обратил внимание на то, что давление на бесконечности (при r ® Ґ), которое получается из барометрической формулы, по величине почти в 10 раз превосходит давление, которое было принято в то время для локальной межзвездной среды. Чтобы устранить это расхождение Е.Паркер предположил, что солнечная корона не может находиться в гидростатическом равновесии, а должна непрерывно расширяться в окружающую Солнце межпланетную среду, т.е. радиальная скорость V солнечной короны не равна нулю. При этом вместо уравнения гидростатического равновесия он предложил использовать гидродинамическое уравнение движения вида, где М Е – масса Солнца.

При заданном распределении температуры Т , как функции расстояния от Солнца, решение этого уравнения с использованием барометрической формулы для давления и уравнение сохранения массы в виде

можно трактовать как солнечный ветер и именно при помощи этого решения с переходом от дозвукового течения (при r r *) к сверхзвуковому (при r > r *) можно согласовать давление р с давлением в локальной межзвездной среде, а, следовательно, именно это решение, названное солнечным ветром, осуществляется в природе.

Первые прямые измерения параметров межпланетной плазмы, которые проводились на первых космических аппаратах, выходивших в межпланетное космическое пространство, подтвердили правильность идеи Паркера о наличии сверхзвукового солнечного ветра, причем оказалось, что уже в районе орбиты Земли скорость солнечного ветра намного превосходит скорость звука. С тех пор нет сомнения, что представление Чепмена о гидростатическом равновесии солнечной атмосферы ошибочно, а солнечная корона непрерывно расширяется со сверхзвуковой скоростью в межпланетное космическое пространство. Несколько позже астрономические наблюдения показали, что и многие другие звезды обладают «звездными ветрами», аналогичными солнечному ветру.

Несмотря на то, что солнечный ветер предсказан теоретически на основе сферически-симметричной гидродинамической модели, само явление оказалось значительно сложнее.

Какова реальная картина движения солнечного ветра? В течение длительного времени солнечный ветер считался сферически-симметричным, т.е. независимым от солнечных широты и долготы. Поскольку космические аппараты до 1990, когда был запущен космический аппарат «Улисс» (Ulysses), в основном, летали в плоскости эклиптики, то измерения на таких космических аппаратах давали распределения параметров солнечного ветра только в этой плоскости. Расчеты, проводимые по наблюдениям отклонения хвостов комет, указывали на приблизительную независимость параметров солнечного ветра от солнечной широты, однако, этот вывод на основании кометных наблюдений не был достаточно надежен из-за сложностей интерпретации этих наблюдений. Хотя долготная зависимость параметров солнечного ветра измерялась приборами, установленными на космических аппаратах, тем не менее, она была либо незначительной и связывалась с межпланетным магнитным полем солнечного происхождения, либо с кратковременными нестационарными процессами на Солнце (главным образом, с солнечными вспышками).

Измерения параметров плазмы и магнитного поля в плоскости эклиптики показали, что в межпланетном пространстве могут существовать так называемые секторные структуры с различными параметрами солнечного ветра и различным направлением магнитного поля. Такие структуры вращаются вместе с Солнцем и явно указывают на то, что они являются следствием аналогичной структуры в солнечной атмосфере, параметры которой зависят, таким образом, от солнечной долготы. Качественно четырехсекторная структура показана на рис. 1.

При этом наземные телескопы обнаруживают общее магнитное поле на поверхности Солнца. Его средняя величина оценивается в 1 Гс, хотя в отдельных фотосферных образованиях, например, в солнечных пятнах магнитное поле может быть на порядки величины больше. Поскольку плазма является хорошим проводником электричества, то солнечные магнитные поля так или иначе взаимодействуют с солнечным ветром вследствие появления пондеромоторной силы j ґ B . Эта сила мала в радиальном направлении, т.е. она практически не влияет на распределение радиальной компоненты солнечного ветра, однако ее проекция на перпендикулярное к радиальному направление приводит к появлению у солнечного ветра тангенциальной компоненты скорости. Хотя эта компонента почти на два порядка меньше радиальной, она играет существенную роль в выносе из Солнца момента количества движения. Астрофизики предполагают, что последнее обстоятельство может играть существенную роль в эволюции не только Солнца, но и у других звезд, у которых обнаружен звездный ветер. В частности, для объяснения резкого уменьшения угловой скорости звезд позднего спектрального класса часто привлекается гипотеза о передаче ими вращательного момента образующимся вокруг них планетам. Рассмотренный механизм потери углового момента Солнца путем истечения из него плазмы в присутствии магнитного поля открывает возможность пересмотра этой гипотезы.

Измерения среднего магнитного поля не только в районе орбиты Земли, но и на больших гелиоцентрических расстояниях (например, на космических аппаратах «Вояджер 1 и 2» и «Пионер 10 и 11») показали, что в плоскости эклиптики, почти совпадающей с плоскостью солнечного экватора, его величина и направление хорошо описывается формулами

полученными Паркером. В этих формулах, описывающих так называемую паркеровскую спираль Архимеда, величины B r , B j – радиальная и азимутальная компоненты вектора магнитной индукции соответственно, W – угловая скорость вращения Солнца, V – радиальная компонента солнечного ветра, индекс «0» относится к точке солнечной короны, в которой величина магнитного поля известна.

Запуск Европейским космическим агентством в октябре 1990 космического аппарата «Улисс», траектория которого была рассчитана таким образом, что в настоящее время он вращается вокруг Солнца в плоскости, перпендикулярной плоскости эклиптики, полностью изменил представления о том, что солнечный ветер сферически симметричен. На рис. 2 представлены измеренные на аппарате «Улисс» распределения радиальной скорости и плотности протонов солнечного ветра как функции солнечной широты.

Из этого рисунка видна сильная широтная зависимость параметров солнечного ветра. Оказалось, что скорость солнечного ветра возрастает, а плотность протонов уменьшается с гелиографической широтой. И если в плоскости эклиптики радиальная скорость в среднем ~ 450 км/cек, а плотность протонов ~15 см –3 , то, например, на 75° солнечной широты эти величины ~700км/сек и ~5 см –3 соответственно. Зависимость параметров солнечного ветра от широты менее выражена в периоды минимума солнечной активности.

Нестационарные процессы в солнечном ветре.

Модель, предложенная Паркером, предполагает сферическую симметрию солнечного ветра и независимость его параметров от времени (стационарность рассматриваемого явления). Однако процессы, происходящие на Солнце, вообще говоря, не являются стационарными, а следовательно, и солнечный ветер не является стационарным. Характерные времена изменения параметров имеют самые различные масштабы. В частности, имеют место изменения параметров солнечного ветра, связанные с 11-летним циклом солнечной активности. На рис. 3 показано измеренное при помощи космических аппаратов IMP-8 и Voyager-2 среднее (за 300 дней) динамическое давление солнечного ветра (r V 2) в районе орбиты Земли (на 1 АЕ) в течение одного 11-летнего солнечного цикла солнечной активности (верхняя часть рисунка). На нижней части рис. 3 изображено изменение числа солнечных пятен за время с 1978 по 1991 (максимальное число соответствует максимуму солнечной активности). Видно, что параметры солнечного ветра существенно меняются за характерное время порядка 11-лет. При этом измерения на космическом аппарате «Улисс» показали, что такие изменения происходят не только в плоскости эклиптики, но и на других гелиографических широтах (на полюсах динамическое давление солнечного ветра несколько выше, чем на экваторе).

Изменения параметров солнечного ветра могут происходить и на гораздо меньших временных масштабах. Так, например, вспышки на Солнце и разные скорости истечения плазмы из разных областей солнечной короны приводят к тому, что в межпланетном пространстве образуются межпланетные ударные волны, которые характеризуются резким скачком скорости, плотности, давления, температуры. Качественно механизм их образования показан на рис. 4. Когда быстрый поток какого-либо газа (например, солнечной плазмы) догоняет более медленный, то в месте их соприкосновения возникает произвольный разрыв параметров газа, на котором не выполняются законы сохранения массы, импульса и энергии. Такой разрыв не может существовать в природе и распадается, в частности, на две ударные волны (на них законы сохранения массы импульса и энергии приводят к так называемым соотношениям Гюгонио) и тангенциальный разрыв (те же законы сохранения приводят к тому, что на нем давление и нормальная компонента скорости должны быть непрерывны). На рис. 4 этот процесс показан в упрощенной форме сферически симметричной вспышки. Здесь надо отметить, что такие структуры, состоящие из впереди идущей ударной волны (forward shock), тангенциального разрыва и второй ударной волны (reverse shock) движутся от Солнца таким образом, что forward shock движется со скоростью, большей скорости солнечного ветра, reverse shock движется от Солнца со скоростью несколько меньшей скорости солнечного ветра, а скорость тангенциального разрыва равна скорости солнечного ветра. Такие структуры регулярно регистрируются приборами, установленными на космических аппаратах.

Об изменении параметров солнечного ветра с расстоянием от солнца.

Изменение скорости солнечного ветра с расстоянием от Солнца определяется двумя силами: силой солнечной гравитации и силой, связанной с изменением давления (градиентом давления). Поскольку сила гравитации убывает как квадрат расстояния от Солнца, то на больших гелиоцентрических расстояниях ее влияние несущественно. Расчеты показывают, что уже на орбите Земли ее влиянием, также как и влиянием градиента давления, можно пренебречь. Следовательно, скорость солнечного ветра можно считать почти постоянной. При этом она существенно превосходит скорость звука (течение гиперзвуковое). Тогда из приведенного выше гидродинамического уравнения для солнечной короны следует, что плотность r убывает как 1/r 2 . Американские космические аппараты «Вояджер 1 и 2», «Пионер 10 и 11», запущенные в середине 1970-ых и сейчас находящиеся на расстояниях от Солнца в несколько десятков астрономических единиц, подтвердили эти представления о параметрах солнечного ветра. Они подтвердили также и предсказанную теоретически паркеровскую спираль Архимеда для межпланетного магнитного поля. Однако температура не следует адиабатическому закону охлаждения при расширении солнечной короны. На очень больших расстояниях от Солнца солнечный ветер имеет даже тенденцию к разогреву. Такой разогрев может быть обусловлен двумя причинами: диссипацией энергии, связанной с плазменной турбулентностью, и влиянием нейтральных атомов водорода, проникающих в солнечный ветер из межзвездной среды, окружающей солнечную систему. Вторая причина приводит и к некоторому торможению солнечного ветра на больших гелиоцентрических расстояниях, обнаруженная на вышеупомянутых космических аппаратах.

Заключение.

Таким образом, солнечный ветер – это физическое явление, которое представляет не только чисто академический интерес, связанный с изучением процессов в плазме, находящейся в естественных условиях космического пространства, но и фактор, который необходимо учитывать при изучении процессов, происходящих в окрестности Земли, поскольку эти процессы в той или иной степени оказывают влияние на нашу жизнь. В частности, высокоскоростные потоки солнечного ветра, обтекая магнитосферу Земли, влияют на ее строение, а нестационарные процессы на Солнце (например, вспышки) могут приводить к магнитным бурям, нарушающим радиосвязь и влияющим на самочувствие метеочувствительных людей. Поскольку солнечный ветер зарождается в солнечной короне, то его свойства в районе орбиты Земли являются хорошим индикатором для изучения важных для практической деятельности человека солнечно-земных связей. Однако это уже другая область научных исследований, которой мы не будем касаться в настоящей статье.

Владимир Баранов