Негативный резонанс. Явление резонанса

Явление резонанса известно давно. Любая колебательная система, механическая или электрическая, имеет определенную длительность (период) колебаний. Воздействуя на колебательную систему с частотой собственных колебаний, можно при минимальных затратах энергии резко увеличить амплитуду колебания. Говорят, что система (колебательный контур в электротехнике) вошла в резонанс.

Наиболее старое описание резонанса составлено в начале 17-го века итальянским ученым Галилео Галилеем на примерах маятника и колебаний струн. Маятник наиболее ярко демонстрирует явление резонанса. Груз, подвешенный на нити, при отклонении от вертикали стремится вернуться в устойчивое состояние, колеблясь вокруг него с постоянной частотой.

Подталкивая груз с частотой его собственных колебаний, можно легко увеличить высоту подъема даже при значительной массе. Дети легко раскачивают самые тяжелые качели.

Свойства резонанса

Важнейшее свойство резонанса: чем ближе частоты воздействия к собственной, тем более резким становится возрастание амплитуды колебаний. При отсутствии потерь энергии (трение, упругие и пластические деформации, влияние гравитационных сил и так далее) амплитуда колебаний возрастает до бесконечности, вплоть до разрушения механической системы.

Добротность колебательной системы

Одним из параметров колебательной системы является добротность. Добротность определяет ширину резонанса, то есть отзывчивость колебательной системы к внешним воздействиям с частотой, близким к резонансной. Чем выше добротность, тем более точным должно быть внешнее воздействие. Анализ показывает, что добротность определяет расход энергии в системе во время свободных колебаний. Скорость затухания колебаний в свободной системе обратно пропорциональна ее добротности.

Положительные и отрицательные стороны резонанса

Явление механического резонанса может нести как пользу, так и вред. Одно из первых практических применений было исполнено при изготовлении колоколов. Перемещение тяжелого языка колокола невозможно хаотически, а только при знании его периода колебаний. Все струнные и язычковые духовые инструменты также используют данное явление. Наиболее полно исследован резонанс колебаний струны при изменении ее длины, толщины и натяжения. Изменяя длину струн, прижимая их к металлическим ладам на грифе инструмента, музыканты извлекают звуки различной частоты.

Резонанс находит применение в язычковых частотомерах. Та пластина (язычок), резонансная частота которой совпадает с измеряемой или наиболее близка к ней, имеет максимальный размах колебаний.

Механический резонанс часто приводит к разрушению механических конструкций. Классическим примером может служить мост, который разрушился во время прохождения по нему марширующего строя солдат. С тех пор запрещено переходить мосты, маршируя «в ногу». Увеличивающаяся амплитуда колебаний упругой подвески транспортных средств способна вызвать опрокидывание автомобиля или железнодорожного вагона. Чтобы снизить амплитуду колебаний, необходимо делать амортизацию таким образом, чтобы частота собственных колебаний лежала вне диапазона возможных воздействий либо снизить добротность колебательной системы.

В автотранспорте это достигается применением газовых или жидкостных амортизаторов, которые гасят колебания пружинных элементов подвески. В железнодорожных вагонах на колесных тележках устанавливают несколько комплектов пружин с разной жесткостью. Этим достигается «размытие» резонанса. В пассажирских вагонах тележки дополнительно комплектуются амортизаторами для плавного гашения колебаний. Их устройство полностью аналогично автомобильным амортизаторам. На судах установлены, так называемые, «успокоители качки».

Электромеханические резонаторы

В радиотехнике существует группа приборов, где используются пъезоэлектрический эффект и механический резонанс. Это кварцевые резонаторы и электромеханические фильтры.

Пьезоэффект выражается в изменении линейных размеров некоторых веществ под действием приложенного напряжения. Деформация материала происходит только от размеров кристалла, но не связана с величиной приложенного напряжения. Данный эффект обратим, то есть, деформируя элемент, можно получить разность потенциалов. Таким образом, значения деформации и разности потенциалов зависят от первоначальных размеров кристалла и находятся в жесткой связи.

Наибольшим образом явление пьезоэлектричества проявляется в пластинках кварца, вырезанного из монокристалла в определенном направлении. На противоположных сторонах пластинки находятся металлические обкладки для подключения в электрическую цепь. Изменяя линейные размеры кварцевой пластинки, можно получать различные значения резонансной частоты.

Добротность полученного резонатора чрезвычайно велика, а стабильность по частоте составляет 10-6 Гц.

Группа кварцевых резонаторов, соединенных в цепь, образует частотный фильтр с очень хорошими свойствами: высокой добротностью, точной установкой полосы пропускания или частотой среза.

К сведению. Фильтры и частотозадающие цепи на кварцевых резонаторах используются там, где важна высокая стабильность: в радиоприемных и передающих устройствах, электронных часах, цифровой технике.

Достоинства кварцевых фильтров:

  • Точность поддержания частоты без необходимости настройки;
  • Высокая добротность;
  • Малые габаритные размеры (до долей миллиметра);
  • Высокая надежность и долговечность;
  • Слабая зависимость от температуры.

Точность частоты резонанса играет отрицательную роль там, где существует необходимость в перестройке частоты, поскольку параметры резонатора изменить невозможно. На помощь приходят цифровые синтезаторы частоты, в которых задающий генератор стабилизирован кварцевым элементом, а импульсы на выходе образуется при помощи логических операций над цифровой последовательностью.

Видео

Суть явления резонанса (в переводе с латинского – «звучу в ответ» или «откликаюсь») состоит в резком увеличении размаха собственных колебаний, наблюдаемых в структурах, подверженных воздействию внешних факторов. Основное условие его возникновения – совпадение частоты этих внешних по отношению к системе колебаний с её собственными частотными параметрами, вследствие чего они начинают работать «в унисон».

Виды резонансных явлений

Наиболее часто резонанс в физике наблюдается при изучении так называемых «линейных» образований, параметры которых не зависят от текущего состояния. Типичным их представителем являются структуры с одной степенью свободы (к ним можно отнести груз, подвешенный на пружинке, или цепь с последовательно включённой индуктивностью и емкостным элементом).

Обратите внимание! В обоих этих случаях предполагается наличие внешнего по отношению к данной системе воздействия (механического или электрического).

Рассмотрим, что такое резонанс, и в чём состоит его суть более подробно.

Явление резонанса может наблюдаться в конструкциях со следующим механическим устройством. Допустим, что имеется груз массой M, свободно подвешенный на упругой пружине. На него действует внешняя сила, амплитуда которой меняется по синусоиде:

Для оценки характера колебаний такой системы необходимо воспользоваться законом Гука, согласно которому обусловленная пружиной сила равна kx, где х – величина отклонения массы M от среднего положения. Коэффициент k описывает внутренние свойства, связанные с её упругостью.

Исходя из этих предположений и после применения несложных математических выкладок, удаётся получить результат, позволяющий сделать следующие выводы:

  • Вынужденные механические колебания относятся к разряду гармонических явлений, имеющих частоту, совпадающую с тем же параметром для внешнего раздражителя;
  • Амплитуда (размах), а также фазовые характеристики механических структур зависят от того, как соотносятся её собственные параметры с характеристиками гармонического воздействия;
  • Когда на линейную систему подавался сигнал или механическое воздействие, меняющееся не по синусоидальному закону, резонансные явления наблюдались лишь в особых ситуациях;
  • Для их появления необходимо, чтобы во внешней подкачке (сигнале) содержались гармонические составляющие, сравнимые с собственной частотой системы.

Каждая из этих составляющих, даже если их обнаружится несколько, будет вызывать свой резонансный отклик. Причём комплексная реакция (согласно суперпозиционному принципу) равняется сумме тех же откликов, наблюдаемых от действия каждой из внешних гармонических составляющих.

Важно! В том случае, когда в таком воздействии совсем не содержится компонентов с близкими частотами, резонанс наступить вообще не сможет.

Для анализа всех компонентов смесей, резонирующих с системными частотами, используется метод Фурье, позволяющий раскладывать сложное колебание произвольной формы на простейшие гармонические составляющие.

Электрический колебательный контур

В электрических цепочках, состоящих из ёмкостной компоненты С и катушки индуктивности L, при наблюдении резонансных явлений нужно различать следующие две отличные по характеристикам ситуации:

  • Последовательное соединение элементов в контуре;
  • Параллельное их включение.

В первом случае при совпадении собственных колебаний с частотой внешнего воздействия (ЭДС), изменяющейся по синусоидальному закону, наблюдаются резкие всплески амплитуды, совпадающие по фазе с внешним источником сигнала.

При параллельном включении тех же элементов под воздействием внешней гармонической ЭДС проявляется явление «антирезонанса», состоящее в резком снижении амплитуды ЭДС.

Дополнительная информация. Этот эффект, получивший название параллельного (или резонанса токов), объясняется несовпадением фаз собственных и внешних колебаний ЭДС.

На резонансных частотах реактивные сопротивления каждой из параллельных ветвей выравниваются по величине, так что в них протекают примерно одинаковые по амплитуде токи (но они всегда не совпадают по фазе).

Вследствие этого общий для всей цепи токовый сигнал оказывается на порядок меньше. Указанные свойства прекрасно описывают поведение фильтрующих контуров и цепочек, в которых применение резонанса для электротехнических нужд выражено очень наглядно.

Сложные колебательные структуры

В системах с линейными характеристиками, характеризующихся использованием нескольких (двух в частном случае) контуров, резонансные явления возможны лишь при наличии связи между ними.

Для связанных контуров справедливы следующие правила:

  • Они сохраняют все основные свойства одноконтурных линейных структур;
  • В таких контурах возможны колебания на двух резонансных частотах, называемых нормальными;
  • Если принудительное воздействие по частоте не совпадает ни с одной из них, при плавном её изменении «отклик» в системе будет наступать последовательно на каждой;
  • В этом случае его график будет иметь вид слитного или двойного резонанса с тупой вершиной и двумя небольшими всплесками («горбами»);
  • Когда нормальные частоты не сильно отличаются одна от другой и близки к тому же параметру для внешней ЭДС, ответ системы будет иметь тот же вид, но два «горба» практически сольются в один;
  • Форма резонансной кривой в последнем случае будет иметь почти такой же вид, как и при одноконтурном линейном варианте.

В контурах с большим количеством степеней свободы в основном сохраняются те же реакции, что и в системах с двумя параметрами.

Нелинейные системы

Отклик систем, характеристики которых определяются текущим состоянием (их называют нелинейными), имеет более сложную форму и носит характер несимметричных проявлений. Последние зависят от соотношения характеристик сторонних воздействий и частот собственных вынужденных колебаний системы.

Обратите внимание! В этом случае они могут проявляться как дробные части частот, воздействующих на систему колебаний, или в виде кратных им величин.

Примером откликов, наблюдаемых в нелинейных системах, служат так называемые феррорезонансные явления. Они возможны в электрических цепях, в состав которых входит индуктивность с ферромагнитным сердечником, и относятся к разряду структурных.

Последнее объясняется особенностями состава вещества на атомистическом уровне, при исследовании которого обнаруживается, что ферромагнитные структуры представляют собой набор огромного числа элементарных магнитиков (спинов). Каждое из этих состояний при реакции на внешнюю «подкачку» определяется множеством различных факторов, то есть проявляется в технике как нелинейное.

В заключение следует резюмировать, что, независимо от вида исследуемой системы, суть резонансных явлений заключается в наблюдении откликов колебательных структур на прилагаемые к ним внешние воздействия. Тщательное изучение этих физических явлений позволяет получить практические результаты, способствующие внедрению в производство совершенно новых технологий.

Видео

Прежде чем приступить к знакомству с явлениями резонанса, следует изучить физические термины, связанные с ним. Их не так много, поэтому запомнить и понять их смысл будет несложно. Итак, обо всем по порядку.

Что такое амплитуда и частота движения?

Представьте обычный двор, где на качелях сидит ребенок и машет ножками, чтобы раскачаться. В момент, когда ему удается раскачать качели и они достигают из одной стороны в другую, можно подсчитать амплитуду и частоту движения.

Амплитуда - это наибольшая длина отклонения от точки, где тело находилось в положении равновесия. Если брать наш пример качелей, то амплитудой можно считать наивысшую точку, до которой раскачался ребенок.

А частота - это количество колебаний или колебательных движений в единицу времени. Измеряется частота в Герцах (1 Гц = 1 колебание в секунду). Возвратимся к нашим качелям: если ребенок проходит за 1 секунду только половину всей длины качания, то его частота будет равна 0,5 Гц.

Как частота связана с явлением резонанса?

Мы уже выяснили, что частота характеризует число колебаний предмета в одну секунду. Представьте теперь, что слабо качающемуся ребенку взрослый человек помогает раскачаться, раз за разом подталкивая качели. При этом данные толчки также имеют свою частоту, которая будет усиливать либо уменьшать амплитуду качания системы "качели-ребенок".

Допустим, взрослый толкает качели в то время, когда они движутся навстречу к нему, в таком случае частота не будет увеличивать амлитуду движения То есть сторонняя сила (в данном случае толчки) не будет способствовать усиления колебания системы.

В случае если частота, с которой взрослый раскачивает ребенка, будет численно равна самой частоте колебания качелей, может возникнуть являение резонанса. Другими словами, пример резонанса - это совпадение частоты самой системы с частотой вынужденных колебаний. Логично представить, что частота и резонанс взаимосвязаны.

Где можно наблюдать пример резонанса?

Важно понимать, что примеры проявления резонанса встречаются практически во всех сферах физики, начиная от звуковых волн и заканчивая электричеством. Смысл резонанса заключается в том, что когда частота вынуждающей силы равна собственной частоте системы, то в этот момент достигает наивысшего значения.

Следующий пример резонанса даст понимание сути. Допустим, вы шагаете по тонкой доске, перекинутой через речку. Когда частота ваших шагов совпадет с частотой или периодом всей системы (доска-человек), то доска начинает сильно колебаться (гнуться вниз и вверх). Если вы продолжите двигаться такими же шагами, то резонанс вызовет сильную амплитуду колебания доски, которая выходит за пределы допустимого значения системы и это в конечном счете приведет к неминуемой поломке мостика.

Существуют также те сферы физики, где можно использовать такое явление, как полезный резонанс. Примеры могут удивить вас, ведь обычно мы используем его интуитивно, даже не догадываясь о научной стороне вопроса. Так, например, мы используем резонанс, когда пытаемся вытащить машину из ямы. Вспомните, ведь легче всего достичь результат только тогда, когда толкаешь машину в момент ее движения вперед. Этот пример резонанса усиливает амплитуду движения, тем самым помогая вытащить машину.

Примеры вредного резонанса

Сложно сказать, какой резонанс в нашей жизни встречается больше: хороший или же наносящий нам вред. Истории известно немалое количество ужасающих последствий явления резонанса. Вот самые известные события, на которых можно наблюдать пример резонанса.

  1. Во Франции, в городе Анжера, в 1750 году отряд солдат шел в ногу через цепной мост. Когда частота их шагов совпала с частотой моста, размахи колебаний (амплитуда) резко увеличились. Наступил резонанс, и цепи оборвались, а мост обрушился в реку.
  2. Бывали случаи, когда в деревнях дом был разрушен из-за проезжающего по главной дороге грузового автомобиля.

Как видите, резонанс может иметь весьма опасные последствия, вот почему инженерам следует тщательно изучать свойства строительных объектов и правильно вычислять их частоты колебаний.

Полезный резонанс

Резонанс не ограничивается только плачевными последствиями. При внимательном изучении окружающего мира можно наблюдать множество хороших и выгодных для человека результатов резонанса. Вот один яркий пример резонанса, позвляющий получать людям эстетическое удовольствие.

Устройсто многих музыкальных инструментов работает по принципу резонанса. Возьмем скрипку: корпус и струна образуют единую колебательную систему, внутри которой имеется штифт. Именно через него передаются частоты колебаний из верхней деки в нижнюю. Когда лютьер водит смычком по струне, то последняя, подобно стреле, побеждает своей трение канифольной поверхности и летит в обратную сторону (начинает движение в противоположную область). Возникает резонанс, который передается в корпус. А внутри его есть специальные отверстия - эфы, сквозь которые резонанс выводится наружу. Именно таким образом он контролируется во многих струнных инструментах (гитара, арфа, виолончель и др).

Резонанс (фр. resonance, от лат. resono — откликаюсь) — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам) , определяемым свойствами системы. Увеличение амплитуды - это лишь следствие резонанса, а причина - совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс — явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы.

Но это далеко не полное определение явления резонанса. Для более детального восприятия этой категории необходимы некоторые факты из теории дифференциальных уравнений и математического анализа. В теории обыкновенных дифференциальных уравнений известна проблема собственных векторов и собственных значений. Резонанс в динамической системе, описываемой дифференциальными уравнениями (и не только ими) , формально наступает, когда проблема собственных значений приводит к кратным собственным числам. При этом в математическом аспекте не очень существенно, являются ли собственные числа комплексными или действительными. В физическом аспекте явление резонанса обычно связывают только с колебательными динамическими системами. Наиболее ярко понятие явления резонанса развито в современной теории динамических систем. Примером является известная теория Колмогорова-Арнольда-Мозера. Центральная проблема этой теории — вопрос сохранения квазипериодического или условно-периодического движения на торе (теорема КАМ) . Эта теорема дала мощный толчок к развитию современной теории нелинейных колебаний и волн. В частности, стало ясно, что резонанс может и не наступить, хоть собственные числа совпадают или близки. Напротив, резонанс может проявиться в системе, где никакие собственные числа не совпадают, а удовлетворяют лишь определенным резонансным соотношениям или условиям фазового синхронизма.

Простыми словами

Резонанс другими словами:

  • отдача;
  • отзыв;
  • отклик (например, на поступок или слова);
  • реакция (например, на те или иные действия);
  • отзвук;
  • унисон.
Резонанс это когда:
  • подобное откликается на подобное;
  • сигналы с одинаковой частотой складываются и усиливаются;
  • совпадают две частоты (например, внутренняя и внешняя), а точнее из совпадения двух пиков волны в один момент получается одна большая волна;
  • амплитуды колебаний складываются и усиливаются (что иногда приводит к печальным последствиям).
Резонанс это:
  • совпадающие колебания волн, двух независимых предметов;
  • вибрация в каком либо теле при совпадении его собственной частоты с частотой внешнего воздействия;
  • эффект резкого увеличения амплитуды волны при совпадении частот двух волн или частоты внешнего воздействия с собственной частотой тела;
  • резкое возрастание амплитуды колебания (частота, на которой происходит резонанс, определяется величиной используемых элементов);
  • явление резкого возрастания амплитуды вынужденных колебаний системы при совпадении частоты внешнего воздействия с собственной частотой колебаний системы.
Примеры:
  • Пение в хоре. Если под рукой хора нет, то можно самому спеть с кем-нибудь.
  • Это как раскачивать качели... вовремя толкнул выше взлетели.
  • С помощью резонанса, можно к примеру - усилить звук или даже разрушить предмет. Рота солдат шла мерно в ногу по мосту, чётко печатая шаг, и мост от этого разрушился, потому что солдаты добились совпадения частоты колебания моста и частоты внешней - строевого шага. Хотя если бы шли не в ногу (и не с таким интервалом шага), ничего бы с мостом не было.
  • Другой пример, если вы занимались музыкой, должен быть вам понятен. Видели раму пианино или рояля? Там есть куча струн, настроенных на различные высоты звуков. Если вы нажмёте педаль (и тем самым не будете мешать струнам звучать) и пропоёте/прозвените чем-нибудь над струнами достаточно громко, или просто возьмёте форте какой-нибудь звук, то некоторые струны тоже зазвучат, какие-то громче, какие-то тише - чем больше частота колебаний струны ближе к частоте звука (высота), тем лучше она его почует). Ну и кратные его гармоники - удвоенная, утроенная и прочие кратные частоты.
  • Если расположить рядом две гитары и дернуть первую струну одной из них, то первая струна второй гитары тоже начнет вибрировать. Этот принцип называют симпатическим, или гармоническим, резонансом. Подобное акустическое явление справедливо и в отношении человеческого голоса: если мы говорим разумом, то резонирует разум собеседника; если мы говорим сердцем, то отзывается сердце другого человека.
  • "Резонанс настроения", например, "заразительный смех"... Мы читаем хорошие стихи и попадаем под влияние настроения поэта, мы слушаем музыку и в соответствии с ней меняется наше настроение. Нам не хочется ни читать, ни слушать музыку - настроение отвратительное, мы идём в компанию хороших друзей и почти сразу, только увидев дружеские улыбки, наше настроение улучшается, а чуть позже, не заметив как, уже смеёмся над чьей-то остротой.
  • Некоторые песни складываются в такую стройную и цельную картину, что не отозваться на эту «силу» невозможно.
  • "Общественный резонанс" - инструмент манипулирования обществом, что на деле есть стадный инстинкт, при определённой амплитуде переходящий в разрушительный массовый психоз.

Резонанс — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды — это лишь следствие резонанса, а причина — совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс — явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы.

Всякая мех-ая упругая система имеет собственную частоту колебаний. Если какая-либо сила выведет эту систему из равновесия, а затем перестанет действовать, то система будет некоторое время колебаться около своего положения равновесия. Частота этих колебаний и называется собственной частотой колебаний системы. Скорость её затухания зависит от упругих свойств и массы, от сил трения и не зависит от силы, вызвавшей колебания.

Если сила, выводящая мех систему из равновесия, будет меняться с частотой, равной частоте собственной частотой колебаний, то на деформацию одного периода будет накладываться деформация следующего периода и система будет раскачиваться со всё возрастающей амплитудой, теоретически до бесконечности. Естественно, что конструкция не сможет противостоять такой всё возрастающей деформации и будет разрушаться.

Совпадение частоты собственных колебаний с частотой изменения электродинамической силы называется механическим резонансом .

Полный резонанс наблюдается при точном совпадении частоты колебаний силы с частотой собственных колебаний конструкции и равных положительных и отрицательных амплитудах, частичный - при неполном совпадении частот и неравных амплитудах.

Для избежания мех резонанса необходимо, чтобы частота собственных колебаний конструкции отличалась от частоты изменения электродинамической силы. Лучше, когда частота собственных колебаний лежит ниже частоты изменения силы. Подбор требуемой частоты собственных колебаний можно производить различными способами. Для шин, например, - изменением длины свободного пролёта

В случае, когда частота переменной составляющей ЭДУ близка к собственной частоте механических колебаний, даже при сравнительно небольших усилиях возможно разрушение аппарата вследствие явлений резонанса.

Шины под воздействием ЭДУ совершают вынужденные колебания в виде стоячих волн. Если частота свободных колебаний выше 200 Гц, то расчёт усилий производится для статического режима без учёта резонанса.

Если частота свободных колебаний шины при конструировании стремятся исключить возможность резонанса за счёт выбора длины свободного пролета шины.

При гибком креплении шины собственная частота механических колебаний снижается. Энергия ЭДУ частично тратится на деформацию токоведущих частей, частично на перемещение их и связанных с ним гибких креплений. При этом мех. Напряжения в материале шин уменьшаются