Действительные числа, изображение на числовой оси. Изображение чисел на прямой

Мы уже знаем, что множество действительных чисел $R$ образуют рациональные и иррациональные числа .

Рациональные числа всегда можно представить в виде десятичных дробей (конечных или бесконечных периодических).

Иррациональные числа записываются в виде бесконечных, но непериодических десятичных дробей.

Ко множеству действительных чисел $R$ принадлежат также элементы $-\infty $ и $+\infty $, для которых выполняются неравенства $-\infty

Рассмотрим способы представления действительных чисел.

Обычные дроби

Обычные дроби записывают с помощью двух натуральных чисел и горизонтальной дробной черты. Дробная черта фактически заменяет знак деления. Число под чертой - это знаменатель дроби (делитель), число над чертой - числитель (делимое).

Определение

Дробь называется правильной, если её числитель меньше знаменателя. И наоборот, дробь называется неправильной, если её числитель больше знаменателя или равен ему.

Для обычных дробей существуют простые, практически очевидные, правила сравнения ($m$,$n$,$p$ - натуральные числа):

  1. из двух дробей с одинаковыми знаменателями больше та, у которой числитель больше, то есть $\frac{m}{p} >\frac{n}{p} $ при $m>n$;
  2. из двух дробей с одинаковыми числителями больше та, у которой знаменатель меньше, то есть $\frac{p}{m} >\frac{p}{n} $ при $ m
  3. правильная дробь всегда меньше единицы; неправильная дробь всегда больше единицы; дробь, у которой числитель равен знаменателю, равна единице;
  4. любая неправильная дробь больше любой правильной.

Десятичные числа

Запись десятичного числа (десятичной дроби) имеет вид: целая часть, десятичная запятая, дробная часть. Десятичную запись обычной дроби можно получить, выполнив деление "углом" числителя на знаменатель. При этом может получиться либо конечная десятичная дробь, либо бесконечная периодическая десятичная дробь.

Определение

Цифры дробной части называют десятичными знаками. При этом первый разряд после запятой называют разрядом десятых, второй - разрядом сотых, третий - разрядом тысячных и т.д.

Пример 1

Определяем значение десятичного числа 3,74. Получаем: $3,74=3+\frac{7}{10} +\frac{4}{100} $.

Десятичное число можно округлить. При этом следует указать разряд, до которого выполняется округление.

Правило округления состоит в следующем:

  1. все цифры правее данного разряда заменяют нулями (если эти цифры находятся до запятой) или отбрасывают (если эти цифры находятся после запятой);
  2. если первая цифра, следующая за данным разрядом, меньше 5, то цифру данного разряда не меняют;
  3. если первая цифра, следующая за данным разрядом, 5 и более, то цифру данного разряда увеличивают на единицу.

Пример 2

  1. Округлим число 17302 до тысяч: 17000.
  2. Округлим число 17378 до сотен: 17400.
  3. Округлим число 17378,45 до десятков: 17380.
  4. Округлим число 378,91434 до сотых: 378,91.
  5. Округлим число 378,91534 до сотых: 378,92.

Преобразование десятичного числа в обычную дробь.

Случай 1

Десятичное число представляет собой конечную десятичную дробь.

Способ преобразования демонстрирует следующий пример.

Пример 2

Имеем: $3,74=3+\frac{7}{10} +\frac{4}{100} $.

Приводим к общему знаменателю и получаем:

Дробь можно сократить: $3,74=\frac{374}{100} =\frac{187}{50} $.

Случай 2

Десятичное число представляет собой бесконечную периодическую десятичную дробь.

Способ преобразования основан на том, что периодическую часть периодической десятичной дроби можно рассматривать как сумму членов бесконечной убывающей геометрической прогрессии.

Пример 4

$0,\left(74\right)=\frac{74}{100} +\frac{74}{10000} +\frac{74}{1000000} +\ldots $. Первый член прогрессии $a=0,74$, знаменатель прогрессии $q=0,01$.

Пример 5

$0,5\left(8\right)=\frac{5}{10} +\frac{8}{100} +\frac{8}{1000} +\frac{8}{10000} +\ldots $. Первый член прогрессии $a=0,08$, знаменатель прогрессии $q=0,1$.

Сумма членов бесконечной убывающей геометрической прогрессии вычисляется по формуле $s=\frac{a}{1-q} $, где $a$ - первый член, а $q$ - знаменатель прогрессии $ \left (0

Пример 6

Переведем бесконечную периодическую десятичную дробь $0,\left(72\right)$ в обычную.

Первый член прогрессии $a=0,72$, знаменатель прогрессии $q=0,01$. Получаем: $s=\frac{a}{1-q} =\frac{0,72}{1-0,01} =\frac{0,72}{0,99} =\frac{72}{99} =\frac{8}{11} $. Таким образом, $0,\left(72\right)=\frac{8}{11} $.

Пример 7

Переведем бесконечную периодическую десятичную дробь $0,5\left(3\right)$ в обычную.

Первый член прогрессии $a=0,03$, знаменатель прогрессии $q=0,1$. Получаем: $s=\frac{a}{1-q} =\frac{0,03}{1-0,1} =\frac{0,03}{0,9} =\frac{3}{90} =\frac{1}{30} $.

Таким образом, $0,5\left(3\right)=\frac{5}{10} +\frac{1}{30} =\frac{5\cdot 3}{10\cdot 3} +\frac{1}{30} =\frac{15}{30} +\frac{1}{30} =\frac{16}{30} =\frac{8}{15} $.

Действительные числа можно изображать точками числовой оси.

При этом числовой осью мы называем бесконечную прямую, на которой выбрано начало отсчета (точка $O$), положительное направление (указывается стрелкой) и масштаб (для отображения значений).

Между всеми действительными числами и всеми точками числовой оси существует взаимно однозначное соответствие: каждой точке соответствует единственное число и, наоборот, каждому числу соответствует единственная точка. Следовательно, множество действительных чисел является непрерывным и бесконечным так же, как непрерывна и бесконечна числовая ось.

Некоторые подмножества множества действительных чисел называют числовыми промежутками. Элементами числового промежутка являются числа $x\in R$, удовлетворяющие определенному неравенству. Пусть $a\in R$, $b\in R$ и $a\le b$. В этом случае разновидности промежутков могут быть такими:

  1. Интервал $\left(a,\; b\right)$. При этом $ a
  2. Отрезок $\left$. При этом $a\le x\le b$.
  3. Полуотрезки или полуинтервалы $\left$. При этом $ a \le x
  4. Бесконечные промежутки, например, $a

Важное значение имеет также разновидность промежутка, называемая окрестностью точки. Окрестность данной точки $x_{0} \in R$ -- это произвольный интервал $\left(a,\; b\right)$, содержащий эту точку внутри себя, то есть $a 0$ - його радіусом.

Абсолютная величина числа

Абсолютной величиной (или модулем) действительного числа $x$называется неотрицательное действительное число $\left|x\right|$, определяемое по формуле: $\left|x\right|=\left\{\begin{array}{c} {\; \; x\; \; {\rm при}\; \; x\ge 0} \\ {-x\; \; {\rm при}\; \; x

Геометрически $\left|x\right|$ означает расстояние между точками $x$ и 0 на числовой оси.

Свойства абсолютных величин:

  1. из определения следует, что $\left|x\right|\ge 0$, $\left|x\right|=\left|-x\right|$;
  2. для модуля суммы и для модуля разности двух чисел справедливы неравенства $\left|x+y\right|\le \left|x\right|+\left|y\right|$, $\left|x-y\right|\le \left|x\right|+\left|y\right|$, а также $\left|x+y\right|\ge \left|x\right|-\left|y\right|$,$\left|x-y\right|\ge \left|x\right|-\left|y\right|$;
  3. для модуля произведения и модуля частного двух чисел справедливы равенства $\left|x\cdot y\right|=\left|x\right|\cdot \left|y\right|$ и $\left|\frac{x}{y} \right|=\frac{\left|x\right|}{\left|y\right|} $.

На основании определения абсолютной величины для произвольного числа $a>0$ можно также установить равносильность следующих пар неравенств:

  1. если $ \left|x\right|
  2. если $\left|x\right|\le a$, то $-a\le x\le a$;
  3. если $\left|x\right|>a$, то или $xa$;
  4. если $\left|x\right|\ge a$, то или $x\le -a$, или $x\ge a$.

Пример 8

Решить неравенство $\left|2\cdot x+1\right|

Данное неравенство равносильно неравенствам $-7

Отсюда получаем: $-8


















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели:

Оборудование: проектор, экран, персональный компьютер, мультимедийная презентация

Ход урока

1. Организационный момент.

2. Актуализация знаний учащихся.

2.1. Ответить на вопросы учащихся по домашнему заданию.

2.2. Разгадать кроссворд (повторение теоретического материала) (Слайд 2):

  1. Комбинация математических знаков, выражающая какое-нибудь
утверждение. (Формула. )
  • Бесконечные десятичные непериодические дроби. (Иррациональные числа)
  • Цифра или группа цифр, повторяющихся в бесконечной десятичной дроби. (Период. )
  • Числа, используемые для счета предметов. (Натуральные числа.)
  • Бесконечные десятичные периодические дроби. (Рациональные числа.)
  • Рациональные числа + иррациональные числа = ? (Действительные числа.)
  • – Разгадав кроссворд, в выделенном вертикальном столбце прочитайте название темы сегодняшнего урока. (Слайды 3, 4)

    3. Объяснение новой темы.

    3.1. – Ребята, вы уже встречались с понятием модуля, пользовались обозначением |a | . Раньше речь шла только о рациональных числах. Теперь надо ввести понятие модуля для любого действительного числа.

    Каждому действительному числу соответствует единственная точка числовой прямой, и, наоборот, каждой точке числовой прямой соответствует единственное действительное число. Все основные свойства действий над рациональными числами сохраняются и для действительных чисел .

    Вводится понятие модуля действительного числа. (Слайд 5).

    Определение. Модулем неотрицательного действительного числа x называют само это число: |x | = x ; модулем отрицательного действительного числа х называют противоположное число: |x | = – x .

    Запишите в тетрадях тему урока, определение модуля:

    На практике используют различные свойства модулей , например. (Слайд 6) :

    Выполнить устно № 16.3 (а, б) – 16.5 (а, б) на применение определения, свойства модуля. (Слайд 7) .

    3.4. Для любого действительного числа х можно вычислить |x | , т.е. можно говорить о функции y = |x | .

    Задание 1. Построить график и перечислить свойства функции y = |x | (Слайды 8, 9).

    Один ученик на доске строит график функции


    Рис 1 .

    Свойства перечисляются учащимися. (Слайд 10)

    1) Область определения – (– ∞; + ∞) .

    2) у = 0 при х = 0; y > 0 при x < 0 и x > 0.

    3) Функция непрерывная.

    4) у наим = 0 при х = 0, у наиб не существует.

    5) Функция ограничена снизу, не ограничена сверху.

    6) Функция убывает на луче (– ∞; 0) и возрастает на луче }