Что такое точка минимума функции. Что такое максимум и минимум? Локальный характер экстремумов функции

1°. Определение экстремума функции.

Понятие максимума, минимума, экстремума функции двух переменных аналогичны соответствующим понятиям функции одной независимой переменной.

Пусть функция z = f (x ; у) определена в некоторой области D , точка N (x 0 ; y 0) D .

Точка (x 0 ; y 0) называетсяточкой максимума функции z = f (x ; y ), если существует такая -окрестность точки (x 0 ; y 0), что для каждой точки (х;у), отличной от (x 0 ; y 0) из этой окрестности выполняется неравенство f (x ; y ) < f (x 0 ; y 0). На рисунке 12: N 1 - точка максимума, a N 2 - точка минимума функции z = f (x ; y ).

Аналогично определяетсяточкаминимума функции: для всех точек (x 0 ; y 0), отличных от (x 0 ; y 0), из d -окрестности точки (x 0 ; y 0) выполняется неравенство: f (x 0 ; y 0) > f (x 0 ; y 0).

Аналогично определяется экстремум функции трех и большего числа переменных.

Значение функции в точке максимума (минимума) называется максимумом {минимумом) функции.

Максимум и минимум функции называют ее экстремумами.

Отметим, что, в силу определения, точка экстремума функции лежит внутри области определения функции; максимум и минимум имеют локальный (местный) характер: значение функции в точке (x 0 ; y 0) сравнивается с ее значениями в точках, достаточно близких к (x 0 ; y 0). В области D функция может иметь несколько экстремумов или не иметь ни одного.

2°. Необходимые условия экстремума.

Рассмотрим условия существования экстремума функции.

Геометрически равенства f " y (x 0 ; y 0) = 0 и f " y (x 0 ; y 0) = 0 означают, что в точке экстремума функции z = f (x ; у) касательная плоскость к поверхности, изображающей функцию f (x ; у), параллельна плоскости О ху, т. к. уравнение касательной плоскости есть z = z 0 .

Замечание. Функция может иметь экстремум в точках, где хотя бы одна из частных производных не существует. Например, функция имеет максимум в точке О (0;0), но не имеет в этой точке частных производных.

Точка, в которой частные производные первого порядка функции z = f (x ; y ) равны нулю, т. е. f " x = 0, f " y = 0, называется стационарной точкой функции z.

Стационарные точки и точки, в которых хотя бы одна частная производная не существует, называются критическими точками.

В критических точках функция может иметь экстремум, а может и не иметь. Равенство нулю частных производных является необходимым, но не достаточным условием существования экстремума. Рассмотрим, например, функцию z = ху. Для нее точка 0(0; 0) является критической (в ней и обращаются в ноль). Однако экстремума в ней функция z = ху не имеет, т. к. в достаточно малой окрестности точки О(0;0) найдутся точки для которых z > 0 (точки I и III четвертей) и z < 0 (точки II и IV четвертей).

Таким образом, для нахождения экстремумов функции в данной области необходимо каждую критическую точку функции подвергнуть дополнительному исследованию.

Стационарные точки находятся путем решения системы уравнений

fх (х, у) = 0, f"у(х,у) = 0

(необходимые условия экстремума ).

Система (1) эквивалентна одному уравнению df(х, у)=0. В общем случае в точке экстремума Р(а, b) функции f(x, у) или df(x, y)=0 , или df(а, b ) не существует.

3°. Достаточные условия экстремума . Пусть Р(а; b) - стационарная точка функции f (х,у), т. е. df(а, b) = 0 . Тогда:

а) если d2f (а, b) < 0 при , то f (а, b ) есть максимум функции f (х, у );

б) если d2f (а, b) > 0 при , то f (а, b )есть минимум функции f (х,у );

в) если d2f (а, b) меняет знак, то f (а, b ) не является экстремумом функции f (х, у).

Приведенные условия эквивалентны следующим: пусть и . Составим дискриминант Δ=AC - B².

1) если Δ > 0, то функция имеет экстремум в точке Р (а; b) а именно максимум, если A<0 (или С<0 ), и минимум, если A>0 (или С>0 );

2) если Δ < 0, то экстремума в точке Р(а; b) нет;

3) если Δ =0, то вопрос о наличии экстремума функции в точке Р(а; b) остается открытым (требуется дальнейшее исследование).

4°. Случай функции многих переменных . Для функции трех и большего числа переменных необходимые условия существования экстремума аналогичны условиям (1), а достаточные условия аналогичны условиям а), б), в) 3°.

Пример . Исследовать на экстремум функцию z=x³+3xy²-15x-12y .

Решение. Найдем частные производные и составим систему уравнений (1):

Решая систему, получим четыре стационарные точки:

Найдем производные 2-го порядка

и составим дискриминант Δ=AC - B² для каждой стационарной точки.

1) Для точки : , Δ=AC-B²=36 -144<0 . Значит в точке экстремума нет.

2) Для точки P2: А=12, B=6, С=12; Δ=144-36>0, A>0 . В точке Р2 функция имеет минимум. Минимум этот равен значению функции при х=2, у=1: zmin=8+6-30-12=-28 .

3) Для точки : A= -6, B=-12, С= -6; Δ = 36-144 <0 . Экстремума нет.

4) Для точки Р 4: A=-12, B=-6, С=-12; Δ=144-36>0 . B точке Р4 функция имеет максимум, равный Zmах=-8-6+30+12=28 .

5°. Условный экстремум . В простейшем случае условным экстремумом функции f (х,y ) называется максимум или минимум этой функции, достигнутый при условии, что ее аргументы связаны уравнением φ(х,у)=0 (уравнение связи ). Чтобы найти условный экстремум функции f (х, у ) при наличии соотношения φ(х,у) = 0 , составляют так называемую функцию Лагранжа

F (x , y )= f (x , y )+ λφ (x , y ),

где λ - неопределенный постоянный множитель, и ищут обычный экстремум этой вспомогательной функции. Необходимые условия экстремума сводятся к системе трех уравнений

с тремя неизвестными х, у, λ , из которой можно, вообще говоря, определить эти неизвестные.

Вопрос о существовании и характере условного экстремума решается на основании изучения знака второго дифференциала функции Лагранжа

для испытуемой системы значений х, у, λ , полученной из (2) при условии, что и связаны уравнением

.

Именно, функция f (х,y ) имеет условный максимум, если d²F< 0, и условный минимум, если d²F>0 . В частности, если дискриминант Δ для функции F(х,у} в стационарной точке положителен, то в этой точке имеется условный максимум функции f (х, у ), если A< 0 (или С< 0), и условный минимум, если А > О (или С>0 ).

Аналогично находится условный экстремум функции трех или большего числа переменных при наличии одного или нескольких уравнений связи (число которых, однако, должно быть меньше числа переменных). Здесь приходится вводить в функцию Лагранжа столько неопределенных множителей, сколько имеется уравнений связи.

Пример. Найти экстремум функции z =6-4 x -3 y при условии, что переменные х и у удовлетворяют уравнению x²+y²=1 .

Решение. Геометрически задача сводится к нахождению наибольшего и наименьшего значений аппликаты z плоскости z=6 - 4х - Зу для точек пересечения ее с цилиндром х2+у2=1.

Составляем функцию Лагранжа F(x,y)=6 -4x -3y+λ(x2+y2 -1 ).

Имеем . Необходимые условия дают систему уравнений

решая которую найдем:

.

,

d ² F =2 λ (dx ²+ dy ²).

Если и , то d ² F >0 , и, следовательно, в этой точке функция имеет условный минимум. Если и , то d ² F <0, и, следовательно, в этой точке функция имеет условный максимум.

Таким образом,

6°. Наибольшее и наименьшее значения функции.

Пусть функция z = f (x ; у) определена и непрерывна в ограниченной замкнутой области . Тогда она достигает в некоторых точках своего наибольшего М и наименьшего т значений (т. н. глобальный экстремум). Эти значения достигаются функцией в точках, расположенных внутри области , или в точках, лежащих на границе области.

Из данной статьи читатель узнает о том, что такое экстремум функционального значения, а также об особенностях его использования в практической деятельности. Изучение такого концепта крайне важно для понимания основ высшей математики. Эта тема является основополагающей для более глубокого изучения курса.

Вконтакте

Что такое экстремум?

В школьном курсе дается множество определений понятия «экстремум». Данная статья призвана дать самое глубокое и четкое представление о термине для несведущих в вопросе лиц. Итак, под термином понимают, насколько функциональный промежуток приобретает минимальное либо максимальное значение на том или ином множестве.

Экстремум – это и минимальное значение функции, и максимальное одновременно. Различают точку минимума и точку максимума, то есть крайние значения аргумента на графике. Основные науки, в которых используют данный концепт:

  • статистика;
  • машинное управление;
  • эконометрика.

Точки экстремума играют важную роль в определении последовательности заданной функции. Система координат на графике в лучшем виде показывает изменение экстремального положения в зависимости от изменения функциональности.

Экстремумы производной функции

Имеет также место такое явление, как «производная». Она необходима для определения точки экстремума. Важно не путать точки минимума либо максимума с наибольшим и наименьшим значением. Это разные понятия, хотя могут показаться похожими.

Значение функции является основным фактором для определения того, как найти точку максимума. Производная не образуется от значений, а исключительно от крайнего ее положения в том или ином его порядке.

Сама же по себе производная определяется на основе данных точек экстремума, а не наибольшего или наименьшего значения. В российских школах недостаточно четко проводят грань между этими двумя концептами, что влияет на понимание данной темы вообще.

Давайте теперь рассмотрим такое понятие как «острый экстремум». На сегодняшний день выделяют острый минимум значения и острый максимум значения. Определение дано в соответствии с российской классификацией критических точек функции. Концепт точки экстремума лежит в основе нахождения критических точек на графике.

Для определения такого понятия прибегают к использованию теоремы Ферма. Она является важнейшей в ходе изучения крайних точек и дает четкое представление об их существовании в том или ином их виде. Для обеспечения экстремальности важно создать определенные условия для убывания либо возрастания на графике.

Для точного ответить на вопрос «как найти точку максимума», необходимо следовать таким положениям:

  1. Нахождение точной области определения на графике.
  2. Поиск производной функции и точки экстремума.
  3. Решать стандартные неравенства на область нахождения аргумента.
  4. Уметь доказывать, в каких функциях точка на графике определена и непрерывна.

Внимание! Поиск критической точки функции возможен только в случае существования производной не менее второго порядка, что обеспечивается высокой долей наличия точки экстремума.

Необходимое условие экстремума функции

Для того чтобы существовал экстремум, важно, чтобы были как точки минимума, так и точки максимума. В случае если это правило соблюдено лишь частично, то условие существование экстремума нарушается.

Каждая функция в любом положении должна быть продифференцирована с целью выявления ее новых значений. Важно понимать, что случай обращения точки в ноль не является основным принципом нахождения дифференцируемой точки.

Острый экстремум, также как и минимум функции – это крайне важный аспект решения математической задачи с использованием экстремальных значений. Для того чтобы лучше понимать данную составляющую, важно обратиться к табличным значениям по заданию функционала.

Полное исследование значения Построение графика значения
1. Определение точек возрастания и убывания значений.

2. Нахождение точек разрыва, экстремума и пересечение с координатными осями.

3. Процесс определения изменений положения на графике.

4. Определение показателя и направления выпуклости и выгнутости с учетом наличия асимптот.

5. Создание сводной таблицы исследования с точки зрения определения ее координат.

6. Нахождение промежутков возрастания и убывания крайних и острых точек.

7. Определение выпуклости и вогнутости кривой.

8. Построение графика с учетом исследования позволяет найти минимум либо максимум.

Основным элементом при необходимости работы с экстремумами является точное построение его графика.

Школьные учителя не часто уделяют столь важному аспекту максимум внимания, что является грубейшим нарушением учебного процесса.

Построение графика происходит только по итогам исследования функциональных данных, определения острых экстремумов, а также точек на графике.

Острые экстремумы производной функции отображаются на графике точных значений, с использованием стандартной процедуры определения асимптот.

Точки максимума и минимума функции сопровождаются более сложными построениями графика. Это обусловлено более глубокой необходимостью прорабатывать проблему острого экстремума.

Необходимо также находить производную сложной и простой функции, так как это одно из самых главных понятий проблематики экстремума.

Экстремум функционала

Для того чтобы отыскать вышеозначенное значение, необходимо придерживаться следующих правил:

  • определить необходимое условие экстремального отношения;
  • учитывать достаточное условие крайних точек на графике;
  • осуществлять расчет острого экстремума.

Используются также такие понятия, как слабый минимум и сильный минимум. Это необходимо учитывать при определении экстремума и точного его расчета. При этом острый функционал – это поиск и создание всех необходимых условий для работы с графиком функции.

Рассмотрим функцию y = f(x), которая рассматривается на промежутке (а, b).

Если можно указать такую б-окрестность точки х1 принадлежащую промежутку (а, b), что для всех х (х1, б), выполняется неравенство f(x1) > f(x), то y1 = f1(x1) называют максимумом функции y = f{x) см рис.

Максимум функции y = f{x) обоначим через max f(x). Если можно указать такую б-окрестность точки х2 принадлежащую промежутку (а, b), что для всех х принадлежащую О (х2, 6), х не равно х2 выполняется неравенство f(x2) < f(x) , то y2= f(х2) называют минимумом функции y-f{x) (см. рис.).

Пример нахождения максимума смотрите на следующем видео

Минимум функции

Минимум функции у = f(x) обозначим через min f(x). Другими словами, максимумом или минимумом функции у = f(x) называют такое ее значение, которое больше (меньше) всех других значений, принимаемых в точках, достаточно близких к данной и отличных от нее.

Замечание 1. Максимум функции , определяемый неравенством называется строгим максимумом; нестрогий максимум определяется неравенством f(x1) > = f(x2)

Замечание 2. имеют локальный характер (это наибольшее и наименьшее значения функции в достаточно малой окрестности соответствующей точки); отдельные минимумы некоторой функции могут оказаться больше максимумов той же функции

Вследствие этого максимум (минимум) функции называют локальным максимумом (локальным минимумом) в отличие от абсолютного максимума (минимума) — наибольшего (наименьшего) значения в области определения функции.

Максимум и минимум функции называются экстремумом . Экстремумы в находят для построяния графиков функций

Латинское extremum означает «крайнее» значение. Значение аргумента х, при котором достигается экстремум, называется точкой экстремума. Необходимое условие экстремума выражается следующей теоремой.

Теорема . В точке экстремума дифференцируемой функции и ее производная равна нулю.

Теорема имеет простой геометрический смысл: касательная к графику дифференцируемой функции в соответствующей точке параллельна оси Ох

Значения функции и точки максимума и минимума

Наибольшее значение функции

Наменьшее значение функции

Как говорил крестный отец: «Ничего личного». Только производные!

12 задание по статистике считается достаточно трудным, а все потому, что ребята не прочитали эту статью (joke). В большинстве случаев виной всему невнимательность.

12 задание бывает двух видов:

  1. Найти точку максимума / минимума (просят найти значения «x»).
  2. Найти наибольшее / наименьшее значение функции (просят найти значения «y»).
Как же действовать в этих случаях?

Найти точку максимума / минимума

  1. Приравнять ее к нулю.
  2. Найденный или найденные «х» и будут являться точками минимума или максимума.
  3. Определить с помощью метода интервалов знаки и выбрать, какая точка нужна в задании.

Задания с ЕГЭ:

Найдите точку максимума функции

  • Берем производную:



Все верно, сначала функция возрастает, затем убывает - это точка максимума!
Ответ: −15

Найдите точку минимума функции

  • Преобразуем и возьмем производную:

  • Отлично! Сначала функция убывает, затем возрасает - это точка минимума!
Ответ: −2

Найти наибольшее / наименьшее значение функции


  1. Взять производную от предложенной функции.
  2. Приравнять ее к нулю.
  3. Найденный «х» и будет являться точкой минимума или максимума.
  4. Определить с помощью метода интервала знаки и выбрать, какая точка нужна в задании.
  5. В таких заданиях всегда задается промежуток: иксы, найденные в пункте 3, должны входить в данный промежуток.
  6. Подставить в первоначальное уравнение полученную точку максимума или минимума, получаем наибольшее или наименьшее значение функции.

Задания с ЕГЭ:

Найдите наибольшее значение функции на отрезке [−4; −1]


Ответ: −6

Найдите наибольшее значение функции на отрезке


  • Наибольшее значение функции равно «11» при точке максимума (на этом отрезке) «0».

Ответ: 11

Выводы:

  1. 70% ошибок заключается в том, что ребята не запоминают, что в ответ на наибольшее/наименьшее значение функции нужно написать «y» , а на точку максимума/минимума написать «х».
  2. Нет решения у производной при нахождении значений функции? Не беда, подставляй крайние точки промежутка!
  3. Ответ всегда может быть записан в виде числа или десятичной дроби. Нет? Тогда перерешивай пример.
  4. В большинстве заданий будет получаться одна точка и наша лень проверять максимум или минимум будет оправдана. Получили одну точку - можно смело писать в ответ.
  5. А вот с поиском значения функции так поступать не стоит! Проверяйте, что это нужная точка, иначе крайние значения промежутка могут оказаться больше или меньше.

значение

Наибольшее

значение

Наименьшее

Точка максимума

Точка минимума

Задачи на нахождение точек экстремумафункции решаются по стандартной схеме в 3 шага.

Шаг 1 . Найдите производную функции

  • Запомнитеформулы производной элементарных функции и основные правила дифференцирования, чтобы найти производную.

y′(x)=(x3−243x+19)′=3x2−243.

Шаг 2 . Найдите нули производной

  • Решите полученное уравнение, чтобы найти нули производной.

3x2−243=0⇔x2=81⇔x1=−9,x2=9.

Шаг 3 . Найдите точки экстремума

  • Используйте метод интервалов, чтобы определить знаки производной;
  • В точке минимума производная равна нулю и меняет знак с минуса на плюс, а вточке максимума – с плюса на минус.

Применим этот подход, чтобы решить следующую задачу:

Найдите точку максимума функции y=x3−243x+19.

1) Найдем производную: y′(x)=(x3−243x+19)′=3x2−243;

2) Решим уравнение y′(x)=0: 3x2−243=0⇔x2=81⇔x1=−9,x2=9;

3) Производная положительная при x>9 и x<−9 и отрицательная при −9

Как искать наибольшее и наименьшее значение функции

Для решения задачи на поиск наибольших и наименьших значений функциинеобходимо :

  • Найти точки экстремума функции на отрезке (интервале).
  • Найти значения в концах отрезка и выбрать наибольшее или наименьшее величину из значений в точках экстремума и в концах отрезка.

Во многих задачах помогаеттеорема :

Если на отрезке только одна точка экстремума, причем это точка минимума, то в ней достигается наименьшее значение функции. Если это точка максимума, то в ней достигается наибольшее значение.

14. Понятие и основные свойств неопределённого интеграла.

Если функция f (x X , и k – число, то

Короче: постоянную можно выносить за знак интеграла.

Если функции f (x ) и g (x ) имеют первообразные на промежутке X , то

Короче: интеграл суммы равен сумме интегралов.

Если функция f (x ) имеет первообразную на промежутке X , то для внутренних точек этого промежутка:



Короче: производная от интеграла равна подынтегральной функции.

Если функция f (x ) непрерывна на промежутке X и дифференцируема во внутренних точках этого промежутка, то:

Короче: интеграл от дифференциала функции равен этой функции плюс постоянная интегрирования.

Дадим строгое математическое определение понятия неопределенного интеграла .

Выражение вида называется интегралом от функции f(x) , где f(x) - подынтегральная функция, которая задается (известная), dx - дифференциал x , с символом всегда присутствует dx .

Определение. Неопределенным интегралом называется функция F(x) + C , содержащая произвольное постоянное C , дифференциал которой равенподынтегральному выражению f(x)dx , т.е. или Функцию называют первообразной функции . Первообразная функции определяется с точностью до постоянной величины.

Напомним, что -дифференциал функции и определяется следующим образом:

Задача нахождения неопределенного интеграла заключается в нахождении такой функции, производная которой равняется подынтегральному выражению. Данная функция определяется с точностью до постоянной, т.к. производная от постоянной равняется нулю.

Например, известно, что , тогда получается, что , здесь - произвольная постоянная.

Задача нахождение неопределенного интеграла от функций не столь простая и легкая, как кажется на первый взгляд. Во многих случаях должен быть навык работы снеопределенными интегралами, должен быть опыт, который приходит с практикой и с постоянным решением примеров на неопределенные интегралы. Стоит учитывать тот факт, что неопределенные интегралы от некоторых функций (их достаточно много) не берутся в элементарных функциях.

15.Таблица основных неопределённых интегралов.

Основные формулы

16. Определённый интеграл как предел интегральной суммы. Геометрический и физический смыл интеграла.

Пусть функция у=ƒ(х) определена на отрезке [а; b], а < b. Выполним следующие действия.

1. С помощью точек х 0 =а, x 1, х 2, ..., х n = В (х 0

2. В каждом частичном отрезке , i = 1,2,...,n выберем произвольную точку с i є и вычислим значение функции в ней, т. е. величину ƒ(с i).

3. Умножим найденное значение функции ƒ (с i) на длину ∆x i =x i -x i-1 соответствующего частичного отрезка: ƒ (с i) ∆х i.

4. Составим сумму S n всех таких произведений:

Сумма вида (35.1) называется интегральной суммой функции у = ƒ(х) на отрезке [а; b]. Обозначим через λ длину наибольшего частичного отрезка:λ = max ∆x i (i = 1,2,..., n).

5. Найдем предел интегральной суммы (35.1), когда n → ∞ так, что λ→0.

Если при этом интегральная сумма S n имеет предел I, который не зависит ни от способа разбиения отрезка [а; b] на частичные отрезки, ни от выбора точек в них, то число I называется определенным интегралом от функции у = ƒ(х) на отрезке [а; b] и обозначается Таким образом,

Числа а и b называются соответственна нижним и верхним пределами интегрирования, ƒ(х) - подынтегральной функцией, ƒ(х) dx - подынтегральным выражением, х - переменной интегрирования, отрезок [а; b] - областью (отрезком) интегрирования.

Функция у=ƒ(х), для которой на отрезке [а; b] существует определенный интеграл называется интегрируемой на этом отрезке.

Сформулируем теперь теорему существования определенного интеграла.

Теорема 35.1 (Коши). Если функция у = ƒ(х) непрерывна на отрезке [а; b], то определенный интеграл

Отметим, что непрерывность функции является достаточным условием ее интегрируемости. Однако определенный интеграл может существовать и для некоторых разрывных функций, в частности для всякой ограниченной на отрезке функции, имеющей на нем конечное число точек разрыва.

Укажем некоторые свойства определенного интеграла, непосредственно вытекающие из его определения (35.2).

1. Определенный интеграл не зависим от обозначения переменной интегрирования:

Это следует из того, что интегральная сумма (35.1), а следовательно, и ее предел (35.2) не зависят от того, какой буквой обозначается аргумент данной функции.

2. Определенный интеграл с одинаковыми пределами интегрирования равен нулю:

3. Для любого действительного числа с.

17. Формула Ньютона-Лейбница. Основные свойства определенного интеграла.

Пусть функция y = f(x) непрерывна на отрезке и F(x) - одна из первообразных функции на этом отрезке, тогда справедлива формула Ньютона-Лейбница : .

Формулу Ньютона-Лейбница называют основной формулой интегрального исчисления .

Для доказательства формулы Ньютона-Лейбница нам потребуется понятие интеграла с переменным верхним пределом.

Если функция y = f(x) непрерывна на отрезке , то для аргумента интеграл вида является функцией верхнего предела. Обозначим эту функцию , причем эта функция непрерывная и справедливо равенство .

Действительно, запишем приращение функции , соответствующее приращению аргумента и воспользуемся пятым свойством определенного интеграла и следствием из десятого свойства:

где .

Перепишем это равенство в виде . Если вспомнить определение производной функции и перейти к пределу при , то получим . То есть, - это одна из первообразных функции y = f(x) на отрезке . Таким образом, множество всех первообразных F(x) можно записать как , где С – произвольная постоянная.

Вычислим F(a) , используя первое свойство определенного интеграла: , следовательно, . Воспользуемся этим результатом при вычислении F(b) : , то есть . Это равенство дает доказываемую формулу Ньютона-Лейбница .

Приращение функции принято обозначать как . Пользуясь этим обозначением, формула Ньютона-Лейбница примет вид .

Для применения формулы Ньютона-Лейбница нам достаточно знать одну из первообразных y=F(x) подынтегральной функции y=f(x) на отрезке и вычислить приращение этой первообразной на этом отрезке. В статье методы интегрирования разобраны основные способы нахождения первообразной. Приведем несколько примеров вычисления определенных интегралов по формуле Ньютона-Лейбница для разъяснения.

Пример.

Вычислить значение определенного интеграла по формуле Ньютона-Лейбница.

Решение.

Для начала отметим, что подынтегральная функция непрерывна на отрезке , следовательно, интегрируема на нем. (Об интегрируемых функциях мы говорили в разделе функции, для которых существует определенный интеграл).

Из таблицы неопределенных интегралов видно, что для функции множество первообразных для всех действительных значений аргумента (следовательно, и для ) записывается как . Возьмем первообразную при C = 0 : .

Теперь осталось воспользоваться формулой Ньютона-Лейбница для вычисления определенного интеграла: .

18. Геометрические приложения определенного интеграла.

ГЕОМЕТРИЧЕСКИЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА

Прямоугольная С.К. Функция, задана параметрически Полярная С.К.
Вычисление площадей плоских фигур
Вычисление длины дуги плоской кривой
Вычисление площади поверхности вращения

Вычисление объема тела

Вычисление объема тела по известным площадям параллельных сечений:

Объем тела вращения: ; .

Пример 1 . Найти площадь фигуры, ограниченной кривой y=sinx, прямыми

Решение: Находим площадь фигуры:

Пример 2 . Вычислить площадь фигуры, ограниченной линиями

Решение: Найдем абсциссы точек пересечения графиков данных функций. Для этого решаем систему уравнений

Отсюда находим x 1 =0, x 2 =2,5.

19. Понятие дифференциальных управлений. Дифференциальные уравнения первого порядка.

Дифференциа́льное уравне́ние - уравнение, связывающее значение производной функции с самой функцией, значениями независимой переменной, числами (параметрами). Порядок входящих в уравнение производных может быть различен (формально он ничем не ограничен). Производные, функции, независимые переменные и параметры могут входить в уравнение в различных комбинациях или все, кроме хотя бы одной производной, отсутствовать вовсе. Не любое уравнение, содержащее производные неизвестной функции, является дифференциальным уравнением. Например, не является дифференциальным уравнением.

Дифференциальные уравнения в частных производных (УРЧП) - это уравнения, содержащие неизвестныефункции от нескольких переменных и их частные производные. Общий вид таких уравнений можно представить в виде:

где - независимые переменные, а - функция этих переменных. Порядок уравнений в частных производных может определяется так же, как для обыкновенных дифференциальных уравнений. Ещё одной важной классификацией уравнений в частных производных является их разделение на уравнения эллиптического, параболического и гиперболического типа, в особенности для уравнений второго порядка.

Как обыкновенные дифференциальные уравнения, так и уравнения в частных производных можно разделить налинейные и нелинейные . Дифференциальное уравнение является линейным, если неизвестная функция и её производные входят в уравнение только в первой степени (и не перемножаются друг с другом). Для таких уравнений решения образуют аффинное подпространство пространства функций. Теория линейных ДУ развита значительно глубже, чем теория нелинейных уравнений. Общий вид линейного дифференциального уравнения n -го порядка:

где p i (x ) - известные функции независимой переменной, называемые коэффициентами уравнения. Функция r (x ) в правой части называется свободным членом (единственное слагаемое, не зависящее от неизвестной функции) Важным частным классом линейных уравнений являются линейные дифференциальные уравнения с постоянными коэффициентами .

Подклассом линейных уравнений являются однородные дифференциальные уравнения - уравнения, которые не содержат свободного члена: r (x ) = 0. Для однородных дифференциальных уравнений выполняется принцип суперпозиции: линейная комбинация частных решений такого уравнения также будет его решением. Все остальные линейные дифференциальные уравнения называются неоднородными дифференциальными уравнениями.

Нелинейные дифференциальные уравнения в общем случае не имеют разработанных методов решения, кроме некоторых частных классов. В некоторых случаях (с применением тех или иных приближений) они могут быть сведены к линейным. Например, линейное уравнение гармонического осциллятора может рассматриваться как приближение нелинейного уравнения математического маятника для случая малых амплитуд, когда y ≈ sin y .

· - однородное дифференциальное уравнение второго порядка с постоянными коэффициентами. Решением является семейство функций , где и - произвольные константы, которые для конкретного решения определяются из задаваемых отдельно начальных условий. Это уравнение, в частности, описывает движение гармонического осциллятора с циклической частотой 3.

· Второй закон Ньютона можно записать в форме дифференциального уравнения где m - масса тела, x - его координата, F (x , t ) - сила, действующая на тело с координатой x в момент времени t . Его решением является траектория движения тела под действием указанной силы.

· Дифференциальное уравнение Бесселя - обыкновенное линейное однородное уравнение второго порядка с переменными коэффициентами: Его решениями являются функции Бесселя.

· Пример неоднородного нелинейного обыкновенного дифференциального уравнения 1-го порядка:

В следующей группе примеров неизвестная функция u зависит от двух переменных x и t или x и y .

· Однородное линейное дифференциальное уравнение в частных производных первого порядка:

· Одномерное волновое уравнение - однородное линейное уравнение в частных производных гиперболического типа второго порядка с постоянными коэффициентами, описывает колебание струны, если - отклонение струны в точке с координатой x в момент времени t , а параметр a задаёт свойства струны:

· Уравнение Лапласа в двумерном пространстве - однородное линейное дифференциальное уравнение в частных производных второго порядка эллиптического типа с постоянными коэффициентами, возникающее во многих физических задачах механики, теплопроводности, электростатики, гидравлики:

· Уравнение Кортевега - де Фриза, нелинейное дифференциальное уравнение в частных производных третьего порядка, описывающее стационарные нелинейные волны, в том числе солитоны:

20. Дифференциальные уравнения с разделяющимся применимыми. Линейные уравнения и метод Бернулли.

Линейным дифференциальным уравнением первого порядка называется уравнение, линейное относительно неизвестной функции и её производной. Оно имеет вид Целая степень. Действительно, если найти и подставить в уравнения рассмотренных типов, то получится верное равенство. Как отмечалось в статье об однородных уравнениях , если по условию требуется найти только частное решение, то функция по понятной причине нас не колышет, но вот когда требуется найти общее решение/интеграл, то необходимо проследить, чтобы эту функцию не потерять!

Все популярные разновидности уравнения Бернулли я принёс в большом мешке с подарками и приступаю к раздаче. Развешивайте носки под ёлкой.

Пример 1

Найти частное решение дифференциального уравнения, соответствующее заданному начальному условию.
,

Наверное, многие удивились, что первый подарок сразу же извлечён из мешка вместе сзадачей Коши . Это не случайность. Когда для решения предложено уравнение Бернулли, почему-то очень часто требуется найти частное решение. По своей коллекции я провёл случайную выборку из 10 уравнений Бернулли, и общее решение (без частного решения) нужно найти всего в 2-х уравнениях. Но, собственно, это мелочь, поскольку общее решение придётся искать в любом случае.

Решение: Данный диффур имеет вид , а значит, является уравнением Бернулли