Необычные альтернативные источники энергии. Исследовательская работа по нестандартным источникам электрической энергии

«Солнечные окна». Солнце — очевидный и надёжный источник энергии, но для солнечных батарей требуются чрезвычайно дорогие материалы. Технология SolarWindow использует прозрачные пластиковые стёкла, служащие одновременно панелями солнечных батарей. Их можно устанавливать в качестве обычных окон, и цена производства вполне приемлема.


Приливы. Мы начали присматриваться к приливам в качестве источников энергии совсем недавно. Наиболее перспективный волновой генератор — Oyster — был разработан лишь в 2009 году. Название переводится как «устрица», так как именно её он внешне напоминает. Двух установок, запущенных в Шотландии, хватает для обеспечения энергией 80 жилых домов.


Генератор микроволн — амбициозный проект британского инженера Роберта Шоера, предлагающий полностью отказаться от привычного топлива космических аппаратов. Резонирующие микроволны гипотетически должны создавать мощную реактивную тягу, при этом попутно опровергая третий закон Ньютона. Работает система или является шарлатанством, пока неясно.


Вирусы. Учёные из Национальной лаборатории им. Лоуренса в Беркли пару лет назад обнаружили вирус, способный создавать электроэнергию за счёт деформации модифицированных материалов. Такие свойства проявили безвредные вирусы-бактериофаги M13. Сейчас эта технология используется для подпитки экранов ноутбуков и смартфонов.


Один из самых известных и широко распространённых альтернативных источников энергии — геотермальная. Она берётся из жара самой Земли и потому не тратит её ресурсов. Одна тепловая электростанция, «сидящая» на вулкане, обеспечивает током около 11500 жилых домов.


Существует ещё одна солнечная батарея нового типа, правда, делающая упор не на дешевизну, а на эффективность. Betaray представляет из себя наполненную особой жидкостью сферу, обтянутую улавливающими тепло панелями. Устройство вырабатывает в четыре раза больше энергии, чем обычные солнечные батареи.


Биотопливо — весьма перспективный источник энергии, буквально выращиваемый на полях. Его добывают из растительных масел — например, сои или кукурузы. Но самыми перспективными являются… водоросли, отдающие стократно больше ресурсов, чем наземные растения. И даже отходы от них можно использовать в качестве удобрения.


Радиоактивный торий весьма напоминает уран, но отдаёт в 90 раз больше энергии! Правда, для этого учёным приходится изрядно попотеть, и в основном торий играет второстепенную роль в ядерных реакторах. Его запасы в земной коре превышают запасы урана в 3−4 раза, так что потенциально торий способен обеспечить человечество энергией на сотни лет.


Надувная турбина по сути является следующим уровнем развития ветряных электростанций. Турбина, наполненная гелием, поднимается на высоту до 600 метров, где ветер дует постоянно и с огромной силой. Кроме окупаемости по энергии, устройство также весьма устойчиво к любой непогоде и дешево.


Международный экспериментальный термоядерный реактор. Несмотря на все опасности, связанные с атомными станциями, они всё равно остаются мощнейшими источниками энергии, изобретёнными человеком. ITER — проект международного термоядерного реактора, в котором участвуют: страны ЕС, Россия, США, Китай, Корея, Япония и Казахстан. Конец строительства реактора запланирован на 2020 год.

Основные источники энергии — например, уголь или нефть, имеют обыкновение кончаться, и к тому же загрязняют окружающую среду. Им противопоставляются возобновляемые ресурсы — такие как геотермальная энергия или солнечное излучение. Рассмотрим десять альтернативных источников энергии, которые уже показали себя в деле.

13 открытая юношеская

научно-исследовательская конференции

имени С.С. Молодцова

Секция физика __

Исследовательская работа

Природное электричество

Гарифуллин Ильяс

4 д класс, МБОУ «Гимназия №2» имени Баки Урманче, г. Нижнекамск

Научные руководители:

Нугманова Алсу Саримовна,

Учитель физики высшей кв. категории

Петрунина Назиля Расимовна,

Учитель начальных классов первой кв. категории

Нижнекамск, 2015 г.

1 Введение……………………………………………………………………………………

I . Теоретическая часть

1.Источники электрического тока. История создания батарейки……………………….3

2. Традиционные источники электрического тока.…..……..………………………….…4

3. «Живые электростанции»…………………………………………………….…………..5 4.Нетрадиционные источники электрического тока ……………………………………..6

II . Экспериментальная часть

1.Об использовании фруктов и овощей для получения электричества………………….6

2.Получение необычного источника тока……………………………………………….7-8

3. Заключение ………………………………………………………………………………..9

Использованная литература………………………………………………………………10

Введение

Наша работа посвящена необычным источникам энергии. В окружающем нас мире очень важную роль играют химические источники тока. Они используются в мобильных телефонах и космических кораблях, в крылатых ракетах и ноутбуках, в автомобилях, фонариках и обыкновенных игрушках. Мы каждый день сталкиваемся с батарейками, аккумуляторами, топливными элементами .

Современная жизнь просто немыслима без электричества - только представьте существование человечества без современной бытовой технике, аудио- и видеоаппаратуры, вечера со свечой и лучиной. Процесс получения и транспортировки электроэнергии трудоемок и дорогостоящ. Для выработки электричества необходимо топливо, а оно когда-нибудь закончится: и нефть, и уголь, и даже уран. Выход может быть в создании вечного термоядерного реактора, а получится ли его создать, неизвестно. На что человечеству надеяться? Можно на возобновляемые ресурсы - солнце, ветер, воду. Но оказывается, и, помимо их, в окружающей среде полно источников почти даром!

В настоящее время в России наметилась тенденция роста цен на энергоносители, в том числе и на электроэнергию. Поэтому вопрос поиска дешёвых источников энергии имеет актуальное значение. Перед человечеством стоит задача освоения экологически чистых, возобновляемых, нетрадиционных источников энергии.

Впервые о нетрадиционном использовании фруктов мы прочитали в книге Николая Носова. По замыслу писателя, Коротышки Винтик и Шпунтик, жившие в Цветочном городе, создали автомобиль, работающий на газировке с сиропом. В результате нам захотелось узнать как можно больше об электричестве.

Исходя из этого, мы выбрали следующую тему исследования «Природное электричество».

Целью моей работы является выявление различных способов получения электроэнергии и экспериментальное подтверждение некоторых из них.

В начале исследования мной была выдвинута следующая гипотеза: если электростанции получают электрический ток, используя природные ресурсы, то возможно ли получение тока с помощью других необычных источников тока.

Задачи исследования:

    Изучить и проанализировать научную и учебную литературу об источниках электрического тока.

    Познакомиться с устройством батарейки и его изобретателями.

    Ознакомиться с ходом работы по получению необычного источника тока.

    Получить необычные источники тока.

Методы исследования: анализ научной и учебной литературы, экспериментальный метод, метод обработки результатов, метод сравнения.

I . Теоретическая часть.

1.Источники электрического тока. История создания батарейки.

Первый химический источник электрического тока был изобретен случайно, в конце 17 века итальянским ученым Луиджи Гальвани. На самом деле целью изысканий Гальвани был совсем не поиск новых источников энергии, а исследование реакции подопытных животных на разные внешние воздействия. В частности, явление возникновения и протекания тока было обнаружено при присоединении полосок из двух разных металлов к мышце лягушачьей лапки. Теоретическое объяснение наблюдаемому процессу Гальвани дал неверное.

Опыты Гальвани стали основой исследований другого итальянского ученого - Алессандро Вольта. Он сформулировал главную идею изобретения. Причиной возникновения электрического тока является химическая реакция, в которой принимают участие пластинки металлов. Для подтверждения своей теории Вольта создал нехитрое устройство. Оно состояло из цинковой и медной пластин погруженных в емкость с соляным раствором. В результате цинковая пластина (катод) начинала растворяться, а на медной стали (аноде) появлялись пузырьки газа. Вольта предположил и доказал, что по проволоке протекает электрический ток. Несколько позже ученый собрал целую батарею из последовательно соединенных элементов, благодаря чему удалось существенно увеличить выходное напряжение.

Именно это устройство стало первым в мире элементом питания и прародителем современных батарей. А батарейки в честь Луиджи Гальвани называют теперь гальваническими элементами.

Всего через год после этого, в 1803 году, русский физик Василий Петров для демонстрации электрической дуги собрал самую мощную химическую батарею, состоящую из 4200 медных и цинковых электродов. Выходное напряжение этого монстра достигало 2500 вольт. Впрочем, ничего принципиально нового в этом «вольтовом столбе» не было.

2. Традиционные источники электрического тока.

Прежде чем электрический ток попадет к нам в дом, он пройдет большой путь от места получения тока до места его потребления. Ток вырабатывается на электростанциях. Электростанция - электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. В зависимости от источника энергии различают тепловые электростанции (ТЭС), гидроэлектрические станции (ГЭС), гидроаккумулирующие электростанции, атомные электростанции (АЭС). . А еще бывают «живые электростанции».

3. «Живые электростанции».

В природе есть группа животных, которых мы называем «живыми электростанциями».

Животные очень чувствительны к электрическому току. Даже незначительной силы ток для многих из них смертелен. Лошади погибают даже от сравнительно слабого напряжения в 50-60 вольт. А есть животные, которые не только обладают высокой устойчивостью к электрическому току, но и сами вырабатывают ток в своём теле. Это рыбы - электрические угри, скаты, и сомы. Настоящие живые электростанции!

Электрические угри, водящиеся в пресных водах Гвианы и Бразилии, могут вырабатывать электричество напряжением до 300 вольт, в зависимости от состояния и величины рыбы. Эти рыбы достигают 2-3 метров длины и веса 15-20 кг.

Источником тока служат особые электрические органы, расположенные двумя парами под кожей вдоль тела - под хвостовым плавником и на верхней части хвоста и спины. По внешнему виду такие органы представляют продолговатое тельце, состоящее из красновато-желтого студенистого вещества, разделённого на несколько тысяч плоских пластинок, ячеек-клеток, продольными и поперечными перегородками. Что-то вроде батареи. От спинного мозга к электрическому органу подходит более 200 нервных волокон, ответвления от которых идут к коже спины и хвоста. Прикосновение к спине или хвосту этой рыбы вызывает сильный разряд, который может мгновенно убить мелких животных и оглушить крупных животных и человека. Тем более, что в воде ток передаётся лучше. Оглушённые угрями крупные животные нередко тонут в воде.

Электрические органы – средство не только для защиты от врагов, но и для добычи пищи. Охотятся электрические угри ночью. Приблизившись к добыче, произвольно делает разряд своих «батарей», и всё живое – рыбы, лягушки, крабы - парализуются. Действие разряда передаётся на расстояние в 3-6 метров. Ему остаётся только заглотать оглушённую добычу. Израсходовав запас электрической энергии, рыба долгое время отдыхает и пополняет её, «заряжает» свои «батареи».

Рыбы - живые электростанции опасны. Электрические скаты - торпедо, которых много в Средиземном море, могут в течение 10-15 секунд давать до 150 разрядов в секунду с напряжением до 80 вольт. В некоторых странах люди прежде пользовались разрядами скатов для лечебных целей. В Древнем Риме врачи держали скатов у себя дома в больших аквариумах. Даже сейчас в средиземноморских странах можно видеть старичков, бродящих в мелкой воде в надежде на излечение от ревматизма разрядами электрического ската.

Кое - что об электрических рыбах…

Рыбы используют разряды:

    чтобы освещать свой путь;

    для защиты, нападения и оглушения жертвы;

    передают сигналы друг другу и обнаруживают заблаговременно препятствия.

4. Нетрадиционные источники электрического тока.

Кроме традиционных источников тока существует множество нетрадиционных источников. Оказывается, электричество можно практически получать из всего, что угодно. Нетрадиционные источники электрической энергии, где невосполнимые энергоресурсы практически не тратятся: ветроэнергетика, приливная энергетика, солнечная энергетика.

Есть и другие предметы, которые на первый взгляд не имеют никакого отношения к электричеству, однако могут служить источником тока.

II . Экспериментальная часть.

1.Об использовании фруктов и овощей для получения электричества.

Изучив литературу, я узнал, что электроэнергию можно получить из некоторых фруктов и овощей. Электрический ток можно получить из лимона, яблок и, самое интересное, из обычного картофеля – сырого и вареного. Именно Израильские ученые исследователи в качестве источника энергии необычной батарейки предложили использовать вареный картофель, так как мощность устройства в этом случае по сравнению с сырым картофелем увеличится в 10 раз. Такие необычные батареи способны работать несколько дней и даже недель, а вырабатываемое ими электричество в 5-50 раз дешевле получаемого от традиционных батареек и, по меньшей мере, вшестеро экономичнее керосиновой лампы при использовании для освещения.

Индийские ученые решили использовать фрукты, овощи и отходы от них для питания несложной бытовой техники. Батарейки содержат внутри пасту из переработанных бананов, апельсиновых корок и других овощей или фруктов, в которой размещены электроды из цинка и меди. Новинка рассчитана, прежде всего, на жителей сельских районов, которые могут сами заготавливать фруктово-овощные ингредиенты для подзарядки необычных батареек.

2.Получение необычного источника тока.

Ученые утверждают, что если у вас дома отключат электричество, вы сможете некоторое время освещать свой дом при помощи лимонов. Ведь в любом фрукте и овоще есть электричество, поскольку они заряжают нас, людей, энергией при их употреблении.

Но мы не привыкли верить всем на слово, поэтому решили проверить это на опыте.С целью доказательства гипотезы о том, что различные фрукты и овощи могут служить источниками электричества, мною было проделано несколько экспериментов. Были использованы фрукты: лимон, яблоко, огурец соленый, картофелину сырую и вареную;

    несколько медных пластин из набора по электростатике – это будет наш положительный полюс;

    оцинкованные пластины из того же набора – для создания отрицательного полюса;

    провода, зажимы;

    милливольтметры, вольтметры

    амперметры.

Большинство фруктов содержит в своем составе слабые растворы кислот. Именно поэтому их можно легко превратить в простейший гальванический элемент. Прежде всего, мы зачистили медный и цинковый электроды с помощью наждачной бумаги. А теперь достаточно их вставить в овощ или фрукт и получается «батарейка».

Результаты эксперимента мы занесли в таблицу:

Основа батарейки

Напряжение на электродах, В

Огурец соленый

Банан (с кожурой)

Банан (без кожурой)

Мандарин

Апельсин

Картофель

Вареный картофель

Вывод: Напряжение на электродах разное. Самое большое напряжение в соленых огурцах- 1,2 В. Если использовать не сырую, а вареную картошку, то напряжение тоже больше. Банан с кожурой дает результат 0,4 В, а банан без кожуры - 0 В. Значит, чтобы получить напряжение, банан должен быть с кожурой!

Вытаскивая медную и цинковую пластины из овощей и фруктов, мы обратили внимание на то, что они сильно окислились. Это значит, что кислота вступала в реакцию с цинком и медью. За счет этой химической реакции и протекал очень слабый электрический ток. Аналогично можно получить электроэнергию из лимона и яблок, если вы используете цитрус, попытайтесь воткнуть гвоздь и проводок в одну и ту же дольку.

Наблюдали за нашими «вкусными» батарейками мы в течение некоторого времени.

Сделали вывод : постепенно напряжение на всех «вкусных» батарейках уменьшается. До сих пор еще есть напряжение на яблоке и вареном картофеле. Но именно соленые огурцы мы хотели оставить до утра. Хотели узнать, насколько уменьшится ток, за ночь. Вот и результат: было 1,2 В, а к утру через 15 часов показывает также 1,2 В. В итоге мы пришли к выводу, чтобы уменьшился ток нужно наблюдать больше времени.

Результаты измеренного напряжения на батарейках занесли в таблицу:

Напряжение на электродах, В

Через 15 часов

Огурец соленый

Вывод: Ток постепенно уменьшается. Ток слишком мал, для того чтобы загорелась лампочка. Поэтому мы планируем в дальнейшем выяснить, какими способами можно увеличить силу тока в цепи и заставить лампочку светиться.

Музыкальный горшочек. А вы знаете, что цветочные горшочки умеют петь. Я этот эксперимент хочу вам предложить . (ПОКАЗ эксперимента с горшком).

Итак, после проведения опытов, я узнал, что электрический ток можно получить из фруктовых плодов и из овощей, а также бывают поющие цветки. Каждый фрукт и овощ вырабатывает разный по силе и напряжению электрический ток.

Выводы:

1. Изучили и проанализировали научную и учебную литературу об источниках электрического тока.

2.Познакомились с устройством батарейки и его изобретателями.

3. Изготовили овощные и фруктовые батарейки и получили необычные источники тока .

4.Научились определять напряжение внутри «вкусной» батарейки и силу тока создаваемую ею.

5.Обнаружили, что напряжение на зажимах батареи составленной из нескольких овощей растет, а ток уменьшается.

3. Заключение.

Для достижения цели моей работы решены все поставленные задачи исследования.

Анализ научной и учебной литературы позволил сделать вывод о том, что вокруг нас очень много предметов, которые могут служить источниками электрического тока.

В ходе работы рассмотрены способы получения электрического тока. Я узнал много интересного о традиционных источниках тока - различного рода электростанциях.

Я с помощью опыта показал, что можно получить электроэнергию из некоторых плодов, конечно, это небольшой ток, но сам факт его наличия дает надежду, что в последующем такие источники можно будет использовать в своих целях (зарядить MP 3-плейер, мобильный телефон и др.). Одновременное действие несколько таких батареек позволяет запустить стенные часы, пользоваться электронной игрой и карманным калькулятором. Такие батареи могут использовать жители сельских районов страны, которые могут сами заготавливать фруктово-овощные ингредиенты для подзарядки биобатареек. Использованный состав батареек не загрязняет окружающую среду, как гальванические (химические) элементы, и не требует отдельной утилизации в отведенных местах.

Мою работу можно будет продолжить: найти другие необычные источники тока.

Использованная литература:

1. Горев Л. А. Занимательные опыты по физике. М., «Просвещение», 1974

2. Перышкин А. В. Физика 8 кл.: Учебник для общеобразовательных учебных заведений – М.: Дрофа, 2002.

3. Энциклопедический словарь юного физика. -М.: Педагогика, 1991г О. Ф. Кабардин.

4.Энциклопедический словарь юного техника. -М.: Педагогика, 1980г

5.Справочные материалы по физике. -М.: Просвещение 1985.

6 Журнал «Наука и жизнь», №10 2004г.

7 А. К. Кикоин, И.К. Кикоин. Электродинамика. -М.: Наука 1976.

8 Кирилова И. Г. Книга для чтения по физике.- Москва: Просвещение 1986.

9 Журнал «Наука и жизнь», №11 2005г.

10. Н.В.Гулиа. Удивительная физика.- Москва: «Издательство НЦ ЭНАС» 2005

Интернет- ресурс.

События

Большинство людей согласятся с тем, что ископаемому топливу нужно положить конец. Оно является причиной загрязнения окружающей среды, войн и климатических изменений.

К счастью, в течение многих лет ученые ищут альтернативные решения , такие как энергия ветра и солнечная энергия. Но не везде и всюду можно будет использовать энергии ветра и солнца.

Поэтому ученые продолжают поиски дешевой и эффективной энергии , исследуя малоизвестные источники. Некоторые из них могут показаться немного необычными, даже смешными и нереальными, а в некоторых случаях и ужасными.

"Я думаю, что к решению предстоящих энергетических потребностей , нам следует подойти довольно серьезно", - рассуждает Бобби Самптер (Bobby Sumpter) , старший научный сотрудник в национальной лаборатории Oak Ridge. Это может быть чем-то природным и при этом доставаться нам бесплатно и быть эффективным.

"Мы не должны отклонять даже самые необычные идеи", - отмечает Диего дель Кастильо Негрете (Diego del Castillo Negrete) из той же лаборатории.

Итак, 10 наиболее необычных и странных источников энергии , которые практически вне известных и принятых норм. Но, кто знает, может быть, когда-нибудь мы будем использовать сахар для зарядки ноутбука, бактерии в качестве топлива для автомобиля или мертвые тела для обогрева зданий.


Сахар

Если положить сахар в бензобак автомобиля, то можно испортить его двигатель - это общеизвестный факт. Но однажды сахар может стать отличным топливом для машины.

Исследователи и химики из Технологического университета Вирджинии разрабатывают способ преобразования сахара в водород, который можно будет использовать в топливных элементах.

Ученые комбинируют сахар, воду и 13 мощных ферментов в реакторе, превращая смесь в водород и двуокись углерода. Водород прокачивается через топливный элемент для выработки энергии. Этот процесс обеспечивает в три раза больше водорода, чем при других традиционных методах, что выражается в экономии средств.

Но, к сожалению, пройдут еще десятки лет, прежде чем потребители действительно буду добавлять сахар в свои бензобаки. Скорее намного раньше мы будем заряжать ноутбуки, мобильники и другую электронику батареями на основе сахара: в краткосрочной перспективе планируется использовать эту же технологию для создания подобных батарей.


Солнечный ветер

В сто миллиардов раз больше энергии, чем нужно в настоящее время всему человечеству, доступно в космосе. Энергия эта называется солнечным ветром - потоком заряженных частиц, разливающимся от солнца.

Брукс Харроп (Brooks Harrop) и Дирк Шульце-Макуш (Dirk Schulze-Makuch) надеются захватить эти частицы при помощи спутника, который будет вращаться вокруг Солнца и Земли.

Спутник будет иметь длинный медный провод для захвата электронов. Через инфракрасный лазер эта энергия будет отправляться на Землю.

Но у спутника есть некоторые технические проблемы, которые исследователи пытаются устранить: у него нет защиты от космического мусора и часть энергии будет потеряна, к тому же соорудить лазерный луч, способный преодолевать многомиллионные мили, тоже задача не из простых.

Более реалистичным кажется использование этого спутника для обеспечения энергией близлежащих космических кораблей.

Экскременты

Многие думают, что экскременты должны быть немедленно утилизированы. Но фекалии содержат метан - бесцветный газ без запаха, который можно использовать также, как и природный.

Так, существуют два проекта, направленные на преобразование собачьих экскрементов - Park Spark в Кембридже и Norcal Waste в Сан-Франциско.

В обоих случаях для тех, кто выгуливает своих домашних питомцев предлагается использовать биоразлагаемые мешки, которые после их заполнения размещают в большой контейнер-реактор. Внутри него микроорганизмы обрабатывают экскременты, выделяя метан в качестве побочного продукта.

В Пенсильвании на одной из молочных ферм используют коровий навоз для получения энергии. Шестьсот коров, которые производят 18 тысяч галлонов навоза ежедневно, помогают ферме сэкономить 60 тысяч долларов в год.

Отходы используются для производства электроэнергии, в качестве удобрения и топлива для обогрева.

Не остаются в стороне и отходы жизнедеятельности человека. Инженеры из Wessex Water посчитали, что отходы из 70 домов могут сгенерировать газ, которого будет достаточно для того, чтобы автомобиль смог проехать 10 тысяч миль.

В Эдинбургской школе инженерных и физических наук ученые ищут способ создать первый в мире топливный элемент из... мочи. Мочевина является доступным, нетоксичным, органическим соединением, богатым азотом.


Люди: живые и мертвые

Когда посреди лета вы стоите в переполненном метро, помните, тепло человеческого тела может греть все здания, вкупе с офисами, квартирами и магазинами.

Именно таким способом компания Jernhuset собирается обогревать сооружения в Стокгольме, Швеции и Париже. Тепло, которое исходит от пассажиров, путешествующих через центральный вокзал Стокгольма, будет обогревать воду в трубах, которая затем будет прокачиваться через системы вентиляции здания.

В Париже будут внедрять проект, согласно которому тепло человеческого тела будет использовано для обогрева 17-ти квартир в здании, расположенном прямо над станцией метро.

В Великобритании в одном из крематориев газы, выделяющиеся после кремации также используют для обогрева здания.


Вибрации

Клуб Watt в Роттердаме (Нидерланды) использует вибрации от людей на танцполе для создания светового шоу. Колебания улавливают "пьезоэлектрические" материалы.

Использование пьезоэлектрических технологий для производства энергии рассматривают и в армии США. Они вставлены в сапоги солдат и энергия используется для зарядки радиоприемников и других портативных устройств.

Хотя это интересный возобновляемый источник энергии с большим потенциалом, он по сути своей недешевый.

Клуб потратил 257 тысяч долларов на 270 квадратов танцпола. Но в будущем планируется улучшить производство, так что танцевальные движения могут на самом деле быть электрическими.


Шлам

Только калифорнийский муниципалитет производит 700 тысяч тонн шлама - нерастворимых отложений из воды в паровых котлах в виде ила или твердых кусков. Этого материала достаточно для того, чтобы создать электроэнергии на 10 миллионов киловатт-часов в сутки.

В университете Невады этот осадок сушат, чтобы сделать из него горючее для процесса газификации, который превращает его в электричество. Машина превращает липкий ил в порошок-биотопливо при относительно низкой температуре в кипящем слое песка и соли.

Технология направлена на то, чтобы компании могли экономить на перевозке отходов и электричестве. И хотя исследования еще продолжаются, предварительные оценки показывают, что система потенциально может генерировать 25 тысяч киловатт-часов в день.


Медузы

Медузы, которые светятся в темноте, содержат сырье для нового вида топливных элементов. Их свечение создается за счет зеленого флуросцентного белка, называемого GFP.

Команда ученых из Технологического университета Чалмерса в Гетеборге (Швеция) поместила каплю GFP на алюминиевые электроды и выставила ее на ультрафиолетовый свет.

Белок выпустил электроны, которые можно использовать для производства электроэнергии.

Такие же белки были использованы для создания биотопливных элементов, которые создают электроэнергию без внешнего источника света. Вместо него в устройстве была использована смесь химических веществ, таких как магний и ферменты люциферазы, которая есть у светлячков.

Эти топливные элементы могут быть использованы в малых нано-устройствах, которые, к примеру, могут быть имплантированы для диагностики или лечения заболеваний.


Взрывающиеся озера

В мире известны три "взрывающихся озера", названные так из-за высокого содержания в своих недрах метана и углекислого газа, которые накапливаются вследствие различия в температуре и плотности воды.

Когда меняется температура, газы выходят на поверхность: эффект, как от потрясывания бутылки содовой. Газы убивают животных и людей, живущих неподалеку. Подобное произошло 15 августа 1984 года, когда камерунское озеро Ниос выбросило огромное облако концентрированного углекислого газа, мгновенно удушающего сотни людей и животных.

В Руанде таким место является озеро Киву. Но местное правительство взяло инициативу в свои руки и построило электростанцию, которая высасывает вредные газы озера, приводящие в действие три больших генератора.

Они производят 3,6 мегаватт электроэнергии. Есть надежда, что ближайшие пару лет, энергии будет достаточно для одной трети страны.


Бактерии

В дикой природе живут миллиарды бактерий. Как и у любого живого организма, когда ограничен запас пищи, у них есть своя стратегия выживания.

Бактерии кишечной палочки хранят топливо в виде жирных кислот, которые напоминают полиэстер. Жирные кислоты нужны для производства биодизельного топлива.

Так, ученые ищут способ для генетического модифицирования микрооганизмов кишечной палочки для перепроизводства кислот.

Они удалили ферменты из бактерий, чтобы повысить количество жирных кислот.

Затем обезвожили жирные кислоты, чтобы теперь уже избавиться от кислорода, превратив таким образом бактерии в дизельное топливо.

Получается, одни и те же бактерии делают нас больными и могут послужить топливом для транспорта.


Углеродные нанотрубы

Углеродные нанотрубы представляют собой полые трубы из атомов углерода.

Среда потенциального использования этих труб ширится от ткани для брониматериалов до лифта, который может курсировать между Землей и Луной.

Ученые из Массачусетского технологического института нашли способ использования нанотруб для сбора солнечной энергии.

Нанотрубы могут работать в качестве антенны для сбора солнечного света на солнечных батареях.


Самые неожиданные источники энергии

Рано или поздно нефтяные скважины и угольные разрезы покажут дно, и тогда людям придется срочно искать им замену. Растущее потребление энергии заставляет ученых искать вожделенную альтернативу конечным источникам порой в самых неожиданных местах.

Генномодифицированные растения

Многие растения содержат крахмал – основу для биологического топлива. Поэтому ученые без устали рассматривают подходящих кандидатов на роль энергетических спасителей человека.

Табак попал в поле зрения науки благодаря легкости, с которой он поддается искусственному отбору. Недавно исследователи смогли добиться изменения генов табака так, что крахмала в нем становилось в 7 раз выше нормы.

Растение ятрофа куркас также может стать источником экологически чистого топлива. Его семена богаты маслом, и он прекрасно чувствует себя на сухих каменистых почвах. Остается немногое: чуточку модифицировать гены, отвечающие за выносливость, так как у семян ятрофы низкая урожайность.

Еще одним спорным источником энергии из мира флоры является просо. С помощью генной инженерии с ним можно проделать ту же операцию, что и с табаком, то есть увеличить процент содержания крахмала. Правда, потом встанет еще одна проблема: просо является инвазивным растением, вытесняя всю прочую растительность из мест, где ему угораздило появиться. Так что придется ученым поломать головы еще и над ограничением безудержного размножения проса.

Помогут дрожжи

Превращению материалов растительного происхождения в источник энергии поспособствуют дрожжи, правда, снова генномодифицированные. Китайские ученые обнаружили, что определенным образом измененные дрожжи разлагают ксилозу (ядовитую жесткую часть растений) на соединения, которые могут послужить биотопливом. Значит, уже в недалеком будущем человек, вполне возможно, удовлетворит свою потребность в дешевой энергии за счет супердрожжей и любых отходов растительного происхождения.

Искусственный вариант фотосинтеза

Американские ученые исследуют возможность искусственно воссоздать процесс, который используют растения, превращая свет и воду в энергию. В результате получился прибор, похожий на солнечную батарею в пластиковом корпусе. Если пропускать через него воду, одновременно облучая светом, на выходе получатся жидкие углеводороды, которые можно хранить и использовать в инфраструктуре.

Сладкие батареи

Токсичные металлы, без которых сейчас невозможно создать обычные батарейки, сложно добывать и утилизировать, а действуют они, как правило, не долго. Но если заменить их обычным сахаром, подобных проблем можно избежать. Образец, который ученые назвали «ферментативным топливным элементом», повторяет действие представителей растительного мира, преобразуя сахар в энергию, и превзойдя по ее выходу обычные литиевые батарейки.

Вечные аккумуляторы

Окислительно-восстановительные реакции, протекающие в редокс-аккумуляторах, уже нашли себе применение в качестве альтернативы производным нефти в транспортной сфере. Благодаря раствору электролита, в котором и хранится энергия, аккумуляторами можно пользоваться сколько угодно, лишь изредка меняя сам раствор.

Спасение из туалета

Естественные отходы человеческой (и не только) жизнедеятельности легко можно использовать как бесплатный источник энергии. Самый простой способ – нагреть фекалии, выделяемый при этом газ и есть искомое биотопливо. Но южнокорейские ученые пошли дальше. Экспериментальным путем ими было выяснено, что если биоотходы как следует нагреть, добавив метанол и диоксид углерода, то в результате липиды фекалий преобразуются в подобие биологического дизельного топлива.

Один из вариантов альтернативной энергетики, тоже родом из сортира, – скармливать человеческую мочу микроорганизмам, которые и будут ее превращать в ходе своей жизнедеятельности в энергию.

«Туалетные» варианты почти полностью разработаны, для получения результата осталось лишь переоборудовать канализации.

Переработка мусора

Гидроуголь (смесь мусора с водой высокой температуры под большим давлением) – объект одного из уже действующих проектов четырех стран Евросоюза. Он был запущен с целью изучения свойств влажных мусорных отбросов и определения потенциала его использования в быту.

Солнечные электростанции на орбите Земли

Уже очень скоро тысячи спутников, оснащенные гелиобатареями, вылетят в космос и начнут доставлять алчущему человечеству тонны энергии… Нам остается немногое: всего лишь дожить до этого светлого дня.

Крокодилий жир

Химики американского штата Луизиана предлагают в качестве источника топлива жир аллигаторов. Он нигде больше не востребован, в нем масса липидов, запросто выдающих биодизель – еще одно идеальное решение вопроса энергии будущего!