Методы и подходы к моделированию распределенных систем. Подходы к моделированию систем

В основу системы классификации математических моделей могут быть положены следующие типовые группы моделей:

– статические и динамические;

– детерминистские и стохастические;

– дискретные и непрерывные.

Каждая конкретная система S характеризуется набором свойств, под которыми понимаются величины, отображающие поведение моделируемого объекта (реальной системы) и учитываются условия её функционирования во взаимодействии с внешней средой (системой) Е.

Исходной информацией при построении ММ процессов функционирования систем служат данные о назначении и условиях работы исследуемой (проектируемой) системы S. Эта информация определяет основную цель моделирования, требования к ММ, уровень абстрагирования, выбор математической схемы моделирования.

Математическую схему можно определить как звено при переходе от содержательного к формализованному описанию процесса функционирования системы с учётом воздействия внешней среды. Т.е. имеет место цепочка: описательная модель - математическая схема - имитационная модель.

Понятие математическая схема позволяет рассматривать математику не как метод расчёта, а как метод мышления, средства формулирования понятий, что является наиболее важным при переходе от словесного описания к формализованному представлению процесса её функционирования в виде некоторой ММ.

При пользовании математической схемой в первую очередь исследователя системы должен решаться вопрос об адекватности отображения в виде конкретных схем реальных процессов в исследуемой системе, а не возможность получения ответа (результата решения) на конкретный вопрос исследования.

Например, представление процесса функционирования ИВС коллективного пользования в виде сети схем массового обслуживания даёт возможность хорошо описать процессы, происходящие в системе, но при сложных законах входящих потоков и потоков обслуживания не даёт возможности получения результатов в явном виде.

При построении ММ системы S необходимо решить вопрос о её полноте. Полнота моделирования регулируется, в основном, выбором границ "Система S - среда Е". Также должна быть решена задача упрощения ММ, которая помогает выделить основные свойства системы, отбросив второстепенные в плане цели моделирования.

ММ объекта моделирования, т.е. системы S можно представить в виде множества величин, описывающих процесс функционирования реальной системы и образующих в общем случае следующие подмножества:

Совокупность Х - входных воздействий на S х i ÎХ, i=1…n x ;

Совокупность воздействий внешней среды v l ÎV, l=1…n v ;

Совокупность внутренних (собственных) параметров системы h k ÎH, k=1…n h ;

Совокупность выходных характеристик системы y j ÎY, j=1…n y .

В перечисленных множествах можно выделить управляемые и неуправляемые величины. В общем случае X, V, H, Y не пересекаемые множества, содержат как детерминированные так и стохастические составляющие. Входные воздействия Е и внутренние параметры S являются независимыми (экзогенными) переменными , Выходные характеристики - зависимые переменные (эндогенные) . Процесс функционирования S описывается оператором F S:

Выходная траектория. F S - закон функционирования S. F S может быть функция, функционал, логические условия, алгоритм, таблица или словесное описание правил.

Алгоритм функционирования A S - метод получения выходных характеристик с учётом входных воздействий Очевидно один и тот же F S может быть реализован различными способами, т.е. с помощью множества различных A S .

Соотношение (2.1) является математическим описанием поведения объекта S моделирования во времени t, т.е. отражает его динамические свойства, такие модели принято называть динамическими моделями. (2.1) - это динамическая модель системы S. Для статических ММ представляет собой отображения множеств {X, V, H} в {Y}, т.е.

Соотношения (2.1), (2.2) могут быть заданы формулами, таблицами и т.д.

Такие соотношения в ряде случаев могут быть получены через свойства системы в конкретные моменты времени, называемые состояниями. Состояния системы S характеризуются векторами:

И , где в момент t l Î(t 0 , T)

В момент t ll Î(t 0 , T) и т.д. к=1…n Z .

Z 1 (t), Z 2 (t)… Z k (t) - это координаты точки в к-мерном фазовом пространстве. Каждой реализации процесса будет соответствовать некоторая фазовая траектория.

Совокупность всех возможных значений состояний { } называется пространством состояний объекта моделирования Z, причём z k ÎZ.

Состояние системы S в интервале времени t 0

иначе: . (2.5)

Время в модели S может рассматриваться на интервале моделирования (t 0 , T) как непрерывное, так и дискретное, т.е. квантованное на отрезке длин. Dt.

Таким образом, под ММ объекта понимается совокупность конечных множеств переменных { } вместе с математическими связями между ними и выходными характеристиками . Если операторы F, Ф, воздействия X, V, и характеристики h не содержат элементов случайности, то модель называется детерминированной в том смысле, что характеристики однозначно определяются детерминированными входными воздействиями:

В качестве детерминированных моделей, когда при исследовании случайный факт не учитывается, для представления систем, функционирующих в непрерывном времени, используются дифференциальные, интегральные и др. уравнения, а для представления систем, функционирующих в дискретном времени - конечные автоматы и конечно разностные схемы. Детерминированное моделирование есть частный случай стохастического моделирования.

В качестве стохастических моделей (при учёте случайного фактора) для представления систем с дискретным временем используются вероятностные автоматы, а для представления систем с непрерывным временем - системы массового обслуживания (СМО). Большое практическое значение при исследовании сложных индивидуальных управленческих систем, к которым относятся АСУ, имеют так называемые агрегативные модели.

Aгрегативные модели (системы) позволяют описать широкий круг объектов исследования с отображением системного характера этих объектов. Именно при агрегативном описании сложный объект расчленяется на конечное число частей (подсистем), сохраняя при этом связи, обеспечивая взаимодействие частей.

Таким образом, при построении математических моделей процессов функционирования систем можно выделить следующие основные подходы: непрерывно-детерминированный (например, дифференциальные уравнения); дискретно-детерминированный (конечные автоматы); дискретно-стохастический (вероятностные автоматы); непрерывно-стохастический (системы массового обслуживания); обобщенный, или универсальный (агрегативные системы). Эти подходы используют при построении математических схем.

Типовыми математическими схемами являются: дифференциальные уравнения, конечные и вероятностные автоматы, системы массового обслуживания, сети Петри и т.д. Типовые математические схемы имеют преимущество простоты и наглядности, но при существенном сужении возможности применения.

Для получения математических моделей используют два пути: теоретический и экспериментальный. Соответственно различают теоретические и эмпирические модели.

По степени учёта времени и действующих сил математические модели разделяют на статические, кинетические, динамические.

Статические модели определяют конечные, критические, равновесные значения параметров процесса, системы. К ним относятся модели состояния материала, связи входных х и выходных y переменных.

Статические модели широко используются в обогащении полезных ископаемых при определении энергетических и материальных балансов различных аппаратов и процессов, в том числе проектируемых.

В отличие от статических, кинетические и динамические модели в качестве аргумента содержат время.

Кинетические модели или характеризуют течение процесса во времени и связывают его параметры со временем Их получают интегрированием дифференциальных уравнений при определённых начальных условиях.

Динамические модели описывают закономерности изменения состояния тел, масс под воздействием, приложенных к ним сил F в различных средах. Основа описания динамических моделей – дифференциальные уравнения, которыми описывается подавляющая часть систем автоматического управления. Такие модели описывают переходные режимы в системах.

Требования к математической модели:

1. Математическая модель должна быть пригодна для решения поставленной задачи.

2. Должна учитывать физические и математические ограничения.

3. Должна воспроизводить процесс с необходимой для исследователя точностью, т.е. быть адекватной процессу.

Указания к составлению математической модели:

1. Разложить общую задачу исследования системы на ряд более простых задач.

2. Чётко сформулировать цели.

3. Подыскать аналоги.

4. Рассмотреть численный пример.

5. Выбрать определённые обозначения.

6. Записать очевидные соотношения.

7. Если полученная модель поддаётся математическому описанию, расширить её, а в противном случае упростить.

В настоящее время при анализе и синтезе сложных (больших) систем получил развитие системный подход, который отличается от классического (или индуктивного) подхода. Классический подход рассматривает систему путем перехода от частного к общему и синтезирует (конструирует) систему путем слияния ее компонент, разрабатываемых раздельно. В отличие от этого системный подход предполагает последовательный переход от общего к частному, когда в основе рассмотрения лежит цель, причем исследуемый объект выделяется из окружающей среды.

Объект моделирования . Специалисты по проектированию и эксплуатации сложных систем имеют дело с системами управления различных уровней, обладающими общим свойством - стремлением достичь некоторой цели. Эту особенность учтем в следующих определениях системы.

Система или объект S - целенаправленное множество взаимосвязанных элементов любой природы.

Внешняя среда Е - множество существующих вне системы элементов любой природы, оказывающих влияние на систему или находящихся под ее воздействием.

В зависимости от цели исследования могут рассматриваться разные соотношения между самим объектом S и внешней средой Е. Таким образом, в зависимости от уровня, на котором находится наблюдатель, объект исследования может выделяться по-разному и могут иметь место различные взаимодействия этого объекта с внешней средой.

С развитием науки и техники сам объект непрерывно усложняется, и уже сейчас говорят об объекте исследования как о некоторой сложной системе, которая состоит из различных компонент, взаимосвязанных друг с другом. Поэтому, рассматривая системный подход как основу для построения больших систем и как базу создания методики их анализа и синтеза, прежде всего необходимо определить само понятие системного подхода.

Системный подход - это элемент учения об общих законах развития природы и одно из выражений диалектического учения. При системном подходе к моделированию систем необходимо прежде всего четко определить цель моделирования. Поскольку невозможно полностью смоделировать реально функционирующую систему (систему-оригинал, или первую систему), создается модель (система-модель, или вторая система) под поставленную проблему.

Таким образом, применительно к вопросам моделирования цель возникает из требуемых задач моделирования, что позволяет подойти к выбору критерия и оценить, какие элементы войдут в создаваемую модель М. Поэтому необходимо иметь критерий отбора отдельных элементов в создаваемую модель.

Подходы к исследованию систем . Важным для системного подхода является определение структуры системы - совокупности связей между элементами системы, отражающих их взаимодействие. Структура системы может изучаться

1. извне с точки зрения состава отдельных подсистем и отношений между ними,

2. а также изнутри , когда анализируются отдельные свойства, позволяющие системе достигать заданной цели, т. е. когда изучаются функции системы.

В соответствии с этим наметился ряд подходов к исследованию структуры системы с ее свойствами, к которым следует прежде всего отнести структурный подход и функциональный подход .

При структурном подходе выявляются состав выделенных эле­ментов системы S и связи между ними. Совокупность элементов и связей между ними позволяет судить о структуре системы. Последняя в зависимости от цели исследования может быть описана на разных уровнях рассмотрения. Наиболее общее описание структуры - это топологическое описание, позволяющее определить в самых общих понятиях составные части системы и хорошо формализуемое на базе теории графов.

Менее общим является функциональное описание , когда рассматриваются отдельные функции, т. е. алгоритмы поведения системы, и реализуется функциональный подход , оценивающий функции, которые выполняет система, причем под функцией понимается свойство, приводящее к достижению цели. Поскольку функция отображает свойство, а свойство отображает взаимодействие системы S с внешней средой Е, то свойства могут быть выражены в виде либо некоторых характеристик элементов и подсистем системы, либо системы S в целом. При наличии некоторого эталона сравнения можно ввести количественные и качественные характеристики систем . Для количественной характеристики вводятся числа, выражающие отношения между данной характеристикой и эталоном. Качественные характеристики системы находятся, например, с помощью метода экспертных оценок.

Проявление функций системы во времени S(t), т. е. функционирование системы, означает переход системы из одного состояния в другое, т. е. движение в пространстве состояний Z.

Системный подход получил применение в системотехнике в связи с необходимостью исследования больших реальных систем, когда сказалась недостаточность, а иногда ошибочность принятия каких-либо частных решений. На возникновение системного подхода повлияли увеличивающееся количество исходных данных при разработке, необходимость учета сложных стохастических связей в системе и воздействий внешней среды Е. Все это заставило исследователей изучать сложный объект не изолированно, а во взаимодействии с внешней средой, а также в совокупности с другими системами некоторой метасистемы. Системный подход позволяет решить проблему построения сложной системы с учетом всех факторов и возможностей, пропорциональных их значимости, на всех этапах исследования системы S и построения модели М.

Системный подход означает, что каждая система S является интегрированным целым даже тогда, когда она состоит из отдельных разобщенных подсистем. Таким образом, в основе системного подхода лежит рассмотрение системы как интегрированного целого, причем это рассмотрение при разработке начинается с главного - формулировки цели функционирования.

Процесс синтеза модели М на базе системного подхода условно представленна рис. б. На основе исходных данных Д, которые известны из анализа внешней системы, тех ограничений, которые накладываются на систему сверху либо исходя из возможностей ее реализации, и на основе цели функционирования формулируются исходные требования Т к модели системы S. На базе этих требований формируются ориентировочно некоторые подсистемы П , элементы Э и осуществляется наиболее сложный этап синтеза - выбор В составляющих системы, для чего используются специальные критерии выбора КВ. При моделировании необходимо обеспечить максимальную эффективность модели системы.

Эффективность обычно определяется как некоторая разность между какими-то показателями ценности результатов, полученных в итоге эксплуатации модели, и теми затратами, которые были вложены в ее разработку и создание.

При моделировании систем используют два подхода: классический (индуктивный), сложившийся исторически первым, и системный, получивший развитие в последнее время.

Классический подход. Исторически первым сложился классический подход к изучению объекта, моделированию системы. Классический подход синтеза модели (М) системы представлен на рис. 3. Реальный объект, подлежащий моделированию, разбивается на подсистемы, выбираются исходные данные (Д) для моделирования и ставятся цели (Ц), отражающие отдельные стороны процесса моделирования. По отдельной совокупности исходных данных ставится цель моделирования отдельной стороны функционирования системы, на базе этой цели формируется некоторая компонента (К) будущей модели. Совокупность компонент объединяется в модель.

Т.о. происходит суммирование компонент, каждая компонента решает свои собственные задачи и изолирована от других частей модели. Применим подход только для простых систем, где можно не учитывать взаимосвязи между компонентами. Можно отметить две отличительные стороны классического подхода:

1. наблюдается движение от частного к общему при создании модели;

2. созданная модель (система) образуется путем суммирования отдельных ее компонент и не учитывает возникновение нового системного эффекта.

Рис. 3. Классический подход к построению объекта, изучению модели

Системный подход – методологическая концепция, основанная на стремлении построить целостную картину изучаемого объекта с учетом важных для решаемой задачи элементов объекта, связей между ними и внешних связей с другими объектами и окружающей средой. С усложнением объектов моделирования возникла необходимость их наблюдения с более высокого уровня. В этом случае разработчик рассматривает данную систему как некоторую подсистему более высокого ранга. Например, если ставится задача проектирования системы мониторинга отдельного объекта, то с позиции системного подхода нельзя забывать, что эта система является составной частью некоторого крмплекса. В основе системного подхода лежит рассмотрение системы как интегрированного целого, причем это рассмотрение при разработке начинается с главного – формулировки цели функционирования. На рис. 4. условно представлен процесс синтеза модели системы на основе системного подхода. Важным для системного подхода является определение структуры системы – совокупности связей между элементами системы, отражающих их взаимодействие.

Рис. 4. Системный подход к построению объекта, изучению модели

Существуют структурные и функциональные подходы к исследованию структуры системы и ее свойств. При структурном подходе выявляются состав выделенных элементов системы и связи между ними. При функциональном подходе рассматриваются алгоритмы поведения системы (функции – свойства, приводящие к достижению цели).

Контрольные вопросы к разделу 2

1. Что определяется в процессе анализа системы?

2. Что определяется в процессе синтеза системы?

3. Чем оценивается эффективность системы?

4. Что понимается под оптимальной системой?

5. Свойства, присущие сложной системе, и их краткая характеристика.

6. В чем состоит проблема выбора уровня детализации моделей?

7. Перечислить основные этапы моделирования систем.

Понятие о системе

Мы живем в мире, который состоит из множества разных объектов, имеющих разнообразные свойства и взаимодействующих между собой. Например, объектами окружающего мира являются планеты Солнечной системы, которые имеют разные свойства (масса, геометрические размеры и т.д.) и взаимодействуют с Солнцем и между собой по закону всемирного тяготения.

Каждая планета входит в состав более крупного объекта – Солнечной системы, которая в свою очередь входит в состав Галактики. В то же время, каждая планета состоит из атомов разных химических элементов, которые состоят из элементарных частиц. Таким образом, фактически каждый объект может состоять из совокупности других объектов, т.е. образует систему.

Важный признак системы – ее целостное функционирование. Система является не набором отдельных элементов, а совокупностью взаимосвязанных элементов. Например, персональный компьютер представляет собой систему, которая состоит из различных устройств, которые при этом связаны между собой и аппаратно (подключаются физически друг к другу) и функционально (обмениваются информацией).

Определение 1

Система является совокупностью взаимосвязанных объектов, которые называют элементами системы.

Замечание 1

Каждая система имеет свою структуру, которую характеризует состав и свойства элементов, их отношения и связи между собой. Система в состоянии сохранять свою целостность под воздействием различных внешних факторов и внутренних изменений до тех пор, пока является неизменной ее структура. В случае изменения структуры системы (например, при удалении одного из его элементов), она может прекратить свое функционирование как единое целое. Например, при удалении одного из устройств компьютера (к примеру, материнской платы), компьютер перестанет работать, т. е. прекратит свое функционирование как система.

Основные положения теории систем появились при исследовании динамических систем и их функциональных элементов. Под системой понимается группа взаимосвязанных элементов, которые действуют сообща с целью выполнить заранее поставленную задачу. С помощью анализа систем можно определить наиболее реальные способы выполнения поставленной задачи, которые обеспечивают максимальное удовлетворение поставленных требований.

Элементы, которые составляют основу теории систем, создаются не с помощью гипотез, а их получают экспериментальным путем. Для начала построения системы нужно иметь общие характеристики технологических процессов, которые необходимы и при создании математически сформулированных критериев, которым должен удовлетворять процесс или его теоретическое описание. Метод моделирования является одним из наиболее важных методов научного исследования и экспериментирования.

Системный подход

Для построения моделей объектов используют системный подход , который представляет собой методологию решения сложных задач. В основе этой методологии лежит рассмотрение объекта как системы, которая функционирует в некоторой среде. Системный подход позволяет раскрыть целостность объекта, выявить и изучить его внутреннюю структуру, а также связи с внешней средой. При этом объект является частью реального мира, которую выделяют и исследуют в связи с решаемой задачей построения модели. Кроме того, при использовании системного подхода предполагается последовательный переход от общего к частному, в основе которого лежит рассмотрение цели проектирования, а объект рассматривается во взаимосвязи с окружающей средой.

Сложный объект может разделяться на подсистемы, которые представляют собой части объекта и удовлетворяют таким требованиям:

  1. подсистема – функционально независимая часть объекта, которая связана с другими подсистемами и обменивается с ними информацией и энергией;
  2. каждая подсистема может иметь функции или свойства, которые не совпадают со свойствами всей системы;
  3. каждая из подсистем может делиться до уровня элементов.

Под элементом здесь понимают подсистему нижнего уровня, которую далее делить не представляется целесообразным с позиции решаемой задачи.

Замечание 2

Таким образом, система представляется как объект, состоящий из набора подсистем, элементов и связей для его создания, исследования или усовершенствования. При этом укрупнение представления системы, которое включает основные подсистемы и связи между ними, называется макроструктурой, а детальное рассмотрение внутреннего строения системы до уровня элементов – микроструктурой.

С понятием системы обычно связано понятие надсистемы – системы более высокого уровня, в состав которой входит рассматриваемый объект, причем функция любой системы может быть определена только через надсистему. Также немаловажно понятие среды – совокупности объектов внешнего мира, которые существенно влияют на эффективность функционирования системы, но не входят в состав системы и ее надсистемы.

В системном подходе к построению моделей используют понятие инфраструктуры, которая описывает взаимосвязь системы с ее окружением (средой).

Выделение, описание и исследование свойств объекта, которые являются существенными для конкретной задачи, называется стратификацией объекта.

При системном подходе в моделировании важно определение структуры системы, которая определяется как совокупность связей между элементами системы, которые отражают их взаимодействие.

Различают структурный и функциональный подход к моделированию.

При структурном подходе определяется состав выделенных элементов системы и связи между ними. Совокупность элементов и связей составляет структуру системы. Обычно для описания структуры применяется топологическое описание, которое позволяет выделить составные части системы и определить их связи с помощью графов.

Реже применяется функциональное описание, при котором рассматриваются отдельные функции – алгоритмы поведения системы. При этом реализуется функциональный подход, который определяет функции, выполняющиеся системой.

При системном подходе возможны разные последовательности разработки моделей на основе двух основных стадий проектирования: макропроектирования и микропроектирования. На стадии макропроектирования строят модель внешней среды, выявляют ресурсы и ограничения, выбирают модель системы и критерии для оценки адекватности.

Стадия микропроектирования зависит от типа выбранной модели. Эта стадия предполагает создание информационного, математического, технического или программного обеспечения системы моделирования. При микропроектировании устанавливают основные технические характеристики созданной модели, оценивают время работы с ней и затраты ресурсов для получения необходимого качества модели.

При построении модели, независимо от ее типа, необходимо придерживаться принципов системного подхода:

  1. последовательно продвигаться по этапам создания модели;
  2. согласовывать информационные, ресурсные, надежностные и другие характеристики;
  3. правильно соотносить различные уровни построения модели;
  4. придерживаться целостности отдельных стадий проектирования модели.

Статические информационные модели

Любая система продолжает свое существование в пространстве и во времени. В разные моменты времени система определяется своим состоянием, которое описывает состав элементов, значения их свойств, величина и характер взаимодействия между элементами и т.д.

Например, состояние Солнечной системы в определенные моменты времени описывается составом объектов, которые входят в нее (Солнце, планеты и др.), их свойствами (размер, положение в пространстве и др.), величиной и характером их взаимодействия (сила тяготения, электромагнитные волны и др.).

Модели, которые описывают состояние системы в определенный момент времени, называют статическими информационными моделями.

Например, в физике статическими информационными моделями являются модели, которые описывают простые механизмы, в биологии – модели строения растений и животных, в химии – модели строения молекул и кристаллических решеток и т.д.

Динамические информационные модели

Система может изменяться с течением времени, т.е. происходит процесс изменения и развития системы. Например, при движении планет изменяется их положение относительно Солнца и между собой; изменяется химический состав Солнца, излучение и т.д.

Модели, которые описывают процессы изменения и развития систем, называют динамическими информационными моделями.

Например, в физике динамическими информационными моделями описывается движение тел, в химии – процессы прохождения химических реакций, в биологии – развитие организмов или видов животных и т.д.

На протяжении всей истории развития теории систем предлагались и применялись различные подходы к представлению (отображению), анализу и проектированию систем.

Традиционный подход, применяющийся в математических исследованиях: определить элементы (переменные, константы) и связать их соответствующим соотношением (формулой, уравнением, системой уравнений), отображающим принцип взаимодействия элементов.

Когда задачи усложнились и такое соотношение не удавалось сразу получить, то предлагалось формировать "пространство состояний" элементов и вводить "меры близости" между элементами этого пространства. Такой подход вначале пытались применить для исследования сложных систем.

Предлагалось обследовать систему, выявить все элементы и связи между ними. Этот подход называли иногда "перечислением" системы. При обследовании применялись разные способы: 1) архивный (изучение документов и архивов предприятия); 2) опросный, или анкетный (опрос сотрудников, в том числе с помощью специально разработанных вопросников - анкет).

Однако первые же попытки применить такой подход к исследованию систем управления предприятиями и организациями показали, что "перечислить" сложную систему практически невозможно.

Учитывая трудности "перечисления" систем, предлагались различные подходы к их исследованию и проектированию.

Применение философских категорий - индуктивный и дедуктивный подходы, анализ и синтез - позволяет определить основные принципы исследования. Однако эти категории могут трактоваться и реализовываться по-разному.

Поэтому с самого начала возникновения системных теории предлагались подходы, в большей мере ориентированные на прикладные задачи. Приведем основные из них:

  • в начальный период становления теории систем развивался бихевиористский подход (поведение), основанный на исследовании поведения (т.е. функционирования) систем; однако этот подход весьма трудоемок и не всегда реализуем;
  • американский ученый М. Месарович предложил подходы, которые назвал целенаправленным и терминальным (от терм - элементарная частица, интересующая исследователя);
  • польский ученый Р. Куликовски предложил называть аналогичные подходы декомпозицией и композицией системы;
  • швейцарский астроном Ф. Цвикки предложил и развил морфологический подход, который помогает искать полезные объединения элементов путем их комбинаций;
  • американская корпорация /ММ) предложила подход к созданию сложных программ и проектов, названный "дерево целей";
  • в практике проектирования сложных технических комплексов возникли термины "язык моделирования", "язык автоматизации проектирования", применяющиеся для отображения взаимосвязей между компонентами проекта; при разработке языков моделирования применяют математическую логику и математическую лингвистику, в которой есть удобный термин для описания структуры языка - "тезаурус" (см. гл. 4), и подход называют иногда лингвистическим или тезаурусным;
  • при исследовании и формировании структур были предложены следующие подходы: путем поиска связей между элементами или, напротив, путем устранения лишних связей (, ).

С учетом рассмотренных подходов на основе обобщения предшествующего опыта сформировалось два основных подхода к отображению систем, первоначально предложенных для формирования структур целей5:

  • а) "сверху" - методы структуризации или декомпозиции, целевой или целенаправленный подход;
  • б) "снизу" - подход, который называют морфологическим (в широком смысле), лингвистическим, тезаурусным, терминальным, методом "языка" системы. С помощью этого подхода определяется "пространство состояний" системы и реализуется поиск взаимосвязей (мер близости) между элементами.

Подход "снизу" можно реализовать, применяя не только комбинаторные приемы (морфологический и т.п.), но и бихевиористский подход, вариант которого при автоматизации моделирования поведения объектов в настоящее время иногда называют процессным, статистические методы, лежащие в основе бизнес-аналитики, методы представления и извлечения знаний, основанные на применении математической логики и математической лингвистики.

Подходы "сверху" и "снизу" называют также аксиологическим и каузальным соответственно.

Аксиологическое представление системы - отображение системы в терминах целей и целевых функционалов. Этот термин используют в тех случаях, когда необходимо выбрать подход к отображению системы на начальном этапе моделирования и противопоставить это отображение описанию системы в терминах "перечисления" элементов системы и их непосредственного влияния друг на друга, т.е. каузального представления.

Каузальное представление системы - описание системы в терминах влияния одних переменных на другие, без употребления понятий цели и средств достижения целей. Этот термин происходит от понятия "cause" - причина, т.е. подразумевает причинно-следственные отношения. Применяют каузальное представление в случае предварительного описания системы, когда цель сразу не может быть сформулирована и для отображения системы или проблемной ситуации не может быть применено аксиологическое представление.

В 1970-1980-е гг. при проектировании организационных структур были предложены три подхода к решению этой проблемы.

  • Нормативно-функциональный подход направлен на унификацию организационных форм управления в рамках отрасли. Разработка типовых организационных структур явилась первым шагом на пути внедрения принципов их научно обоснованного построения. Однако ориентация на типовую номенклатуру функций управления и структурных управленческих подразделений не позволяет учесть особенностей конкретных предприятий и условий их деятельности.
  • Функционально-технологический подход основан па рационализации потоков информации и технологии ее обработки, на формировании и анализе организационно-технологических процедур подготовки и реализации управленческих решений. Этот подход обеспечивает возможность достаточно полно учесть особенности конкретного предприятия (организации), отличается гибкостью и универсальностью. Вместе с тем он характеризуется высокой трудоемкостью, использованием стабильной номенклатуры сложившихся функций управления, подчинением оргструктуры схеме документооборота.
  • Системно-целевой подход заключается в построении структуры целей, определении на ее основе функций управления и их организационном оформлении. Преимущества этого подхода заключаются в возможности учитывать особенности объекта управления и условия его деятельности, изменять и расширять состав функций, проектировать разнообразные организационно-правовые формы предприятий. Трудности в использовании подхода связаны с проблемой перехода от совокупности целей и функций к составу и подчиненности структурных звеньев, обеспечивающих их реализацию.

Обобщающий подход "сверху", называемый целевым, целенаправленным, системно-целевым, основан на структуризации или декомпозиции системы в пространстве. Этот подход позволяет расчленить исходную большую неопределенность на более обозримые и выбрать методы их анализа и проектирования, сохраняя целостность представления об исследуемой системе или решаемой проблеме на основе иерархической структуры (древовидной, стратифицированной).

Подход "снизу", основанный на анализе пространства состояний, поиске "мер близости" между компонентами с помощью различных, в том числе статистических, методов, морфологического моделирования, отличается большой трудоемкостью. В настоящее время для анализа пространства состояний разработаны методы представления и извлечения знаний, основанные на применении статистических методов, математической логики и математической лингвистики.

В настоящее время для проектирования систем широкое применение нашел подход, кратко называемый процессным. Этот подход, который можно считать развитием функционально-технологического подхода, основан на структуризации во времени, на представлении процессов в форме графов.

Применение функционально-технологического подхода долгое время было практически нереализуемым из-за большой трудоемкости, отсутствия правил и средств автоматизации формирования графов, отображающих процессы в системах. В 1990-е гг. была разработана методология SADT (Structured Analysis and Design - структурный анализ и проектирование; предложена Дугласом Россом), представляющая собой совокупность методов, правил и процедур, предназначенных для построения функциональной модели объекта какой-либо предметной области. На ее основе разработаны и стали широко применяться функционально-ориентированные и объектно-ориентированные CASE-2 и RAD-3 технологии. Компьютерная реализация методологии SADT получила название IDEF (Icam Definition). Основными структурными моделями являются модели процессов IDEF0 и IDEF3, модель данных IDEF1X4. Созданы стандарты IDEF и DFD, ориентированные на анализ процессов (в том числе бизнес-процессов). Для реализации моделей применяются автоматизированные средства - BPWin, ARIS, язык UML (Unified Modeling Language - унифицированный язык моделирования). Популярность САБЕ-метододогии и технологий базируется на разработке принципов и автоматизации формирования процессов, на развитии методов их формирования (на основе анализа "жизненного цикла" производства, обслуживания или других процессов, причинно-следственных связей и т.п.), что и обеспечило развитие процессного подхода, преимущества которого заключаются в возможности учитывать особенности конкретного объекта и условий его деятельности.