Распределение электронов по энергетическим уровням атома. Распределение электронов по уровням, подуровням и орбиталям во многоэлектронном атоме Правила распределения электронов по энергетическим уровням

Каждый электрон в атоме движется в первом приближении в центрально-симметричном некулоновском поле Состояние электрона в этом случае определяется тремя квантовыми числами , физический смысл которых был выяснен в § 28. В связи с существованием спина электрона к указанным квантовым числам нужно добавить квантовое число которое может принимать значения и определяет проекцию спина на заданное направление. В дальнейшем для магнитного квантового числа мы будем вместо пользоваться обозначением чтобы подчеркнуть то обстоятельство, что это число определяет проекцию орбитального момента, величина которого дается квантовым числом l.

Таким образом, состояние каждого электрона в атоме характеризуется четырьмя квантовыми числами:

Энергия состояния зависит в основном от чисел .

Кроме того, имеется слабая зависимость энергии от чисел поскольку их значения связаны с взаимной ориентацией моментов от которой зависит величина взаимодействия между орбитальным и собственным магнитными моментами электрона. Энергия состояния сильнее возрастает с увеличением числа , чем с увеличением Поэтому, как правило, состояние с большим обладает, независимо от значения большей энергией.

В нормальном (невозбужденном) состоянии атома электроны должны располагаться на самых низких доступных для них энергетических уровнях. Поэтому, казалось бы, в любом атоме в нормальном состоянии все электроны должны находиться в состоянии а основные термы всех атомов должны быть типа -термов Однако опыт показывает, что это не так.

Объяснение наблюдаемых типов термов заключается в следующем. Согласно одному из законов квантовой механики, называемому принципом Паули, в одном и том же атоме (или в какой-либо другой квантовой системе) не может быть двух электронов, обладающих одинаковой совокупностью квантовых чисел. Иными словами, в одном и том же состоянии не могут находиться одновременно два электрона.

В § 28 было показано, что данному соответствует состояний, отличающихся значениями l и Квантовое число может принимать два значения: Поэтому в состояниях с данным значением могут находиться в атоме не более электронов:

Совокупность электронов, имеющих одинаковые значения квантового числа , образует оболочку. Оболочки подразделяются на подоболочки, отличающиеся значением квантового числа l. В соответствии с значением оболочкам дают обозначения, заимствованные из спектроскопии рентгеновских лучей:

Таблица 36.1

Подразделение возможных состояний электрона в атоме на оболочки и подоболочки показано в табл. 36.1, в которой вместо обозначений применимы для наглядности символы: . Подоболочки, как указано в таблице, могут обозначаться двумя способами (например, либо ).

Если тождественные частицы имеют одинаковые квантовые числа, то их волновая функция симметрична относительно перестановки частиц. Отсюда следует, что два одинаковых фермиона, входящих в одну систему, не могут находиться в одинаковых состояниях, т.к. для фермионов волновая функция должна быть антисимметричной. Обобщая опытные данные, В. Паули сформировал принцип исключения , согласно которому системы фермионов встречаются в природе только в состояниях , описываемых антисимметричными волновыми функциями (квантово-механическая формулировка принципа Паули).

Из этого положения вытекает более простая формулировка принципа Паули, которая и была введена им в квантовую теорию (1925 г.) еще до построения квантовой механики: в системе одинаковых фермионов любые два из них не могут одновременно находиться в одном и том же состоянии . Отметим, что число одинаковых бозонов, находящихся в одном и том же состоянии, не лимитируется.

Напомним, что состояние электрона в атоме однозначно определяется набором четырех квантовых чисел :

· главного n ;

· орбитального l , обычно эти состояния обозначают 1s , 2d , 3f ;

· магнитного ();

· магнитного спинового ().

Распределение электронов в атоме происходит по принципу Паули, который может быть сформулирован для атома в простейшем виде: в одном и том же атоме не может быть более одного электрона с одинаковым набором четырех квантовых чисел: n , l , , :

Z (n , l , , ) = 0 или 1,

где Z (n , l , , ) - число электронов, находящихся в квантовом состоянии, описываемых набором четырех квантовых чисел: n , l , , . Таким образом, принцип Паули утверждает, что два электрона , связанные в одном и том же атоме различаются значениями , по крайней мере , одного квантового числа .

Максимальное число электронов, находящихся в состояниях, описываемых набором трех квантовых чисел n , l и m , и отличающихся только ориентацией спинов электронов равно:

, (8.2.1)

ибо спиновое квантовое число может принимать лишь два значения 1/2 и –1/2.

Максимальное число электронов, находящихся в состояниях, определяемых двумя квантовыми числами n и l :

. (8.2.2)

При этом вектор орбитального момента импульса электрона может принимать в пространстве (2l + 1) различных ориентаций (рис. 8.1).

Максимальное число электронов, находящихся в состояниях, определяемых значением главного квантового числа n , равно:

. (8.2.3)

Совокупность электронов в многоэлектронном атоме , имеющих одно и то же главное квантовое число n , называется электронной оболочкой или слоем .

В каждой из оболочек электроны распределяются по подоболочкам , соответствующим данному l .

Область пространства , в которой высока вероятность обнаружить электрон , называют подоболочкой или орбиталью . Вид основных типов орбиталей показан на рис. 8.1.

Поскольку орбитальное квантовое число принимает значения от 0 до , число подоболочек равно порядковому номеру n оболочки. Количество электронов в подоболочке определяется магнитным и магнитным спиновым квантовыми числами: максимальное число электронов в подоболочке с данным l равно 2(2l + 1). Обозначения оболочек, а также распределение электронов по оболочкам и подоболочкам приведено в табл. 1.

Таблица 1

Главное квантовое число n

Символ оболочки

Максимальное число электроновв оболочке

Орбитальное квантовое число l

Символ подоболочки

Максимальное число

электронов в

подоболочке

СОСТАВ И ЭЛЕКТРОННАЯ
СТРУКТУРА АТОМА

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ
К ОБУЧАЮЩЕЙ ПРОГРАММЕ ДЛЯ УЧАЩИХСЯ
СПЕЦИАЛИЗИРОВАННЫХ КЛАССОВ
ОБЩЕОБРАЗОВАТЕЛЬНЫХ ШКОЛ

Продолжение. Начало см. в № 4, 6/2005

Методические указания

17. Учитывая описанные закономерности, рассмотрите состояние и распределение электронов по энергетическим уровням и орбиталям для атомов калия (Z = 19) и скандия (Z = 21).

Решение

1) Предшествующий калию в ПСХЭ элемент аргон (Z = 18) имеет следующее распределение электронов:

а) по уровням атома:

б) по орбиталям атома:

Электронная формула атома аргона:

Электронно-графическая формула атома аргона:

При распределении электронов в атоме К в соответствии с правилом Клечковского предпочтение отдается орбитали 4s (сумма квантовых чисел n + l равна: 4 + 0 = 4) по сравнению с орбиталью 3d (сумма квантовых чисел n + l равна: 3 + 2 = 5) как орбитали, имеющей минимальное значение n + l. Следовательно, для атома калия распределение электронов по орбиталям (электронно-графическая формула) имеет вид (см. п. 16 методических указаний):

Калий относится к s -элементам со следующей электронной формулой (конфигурацией) атома:

Распределение электронов по энергетическим уровням для атома К изображено ниже:

2) Предшествующий скандию в ПСХЭ элемент кальций (Z = 20) имеет следующее распределение электронов:

а) по уровням атома:

б) по орбиталям атома:

Электронная формула атома кальция:

Из орбиталей 3d (n + l равно: 3 + 2 = 5) и 4p (n + l равно: 4 + 1 = 5) при распределении электронов в атоме скандия по орбиталям предпочтение следует отдать 3d -орбитали как имеющей минимальное значение n = 3 при одинаковых суммах квантовых чисел (n + l ), равных пяти. Следовательно, скандий относится к d -элементам, и его атом характеризуется следующим распределением электронов по орбиталям:

Электронная формула атома скандия:

Распределение электронов по энергетическим уровням для атома Sc изображено ниже:

18. Дополните рисунок так, чтобы показать вид одной s -орбитали и трех р -орбиталей, ориентированных вдоль осей.

Таблица 5

Распределение электронов
по квантовым уровням и подуровням

Оболочка Энергетический
уровень n
Энергетический
подуровень l
Магнитное
число m
Число
орбиталей
Предельное
число
электронов
K 1 0 (s) 0 1 2
L 2 0 (s)
1 (p)
+1, 0, –1
1
3
4
2
6
8
M 3 0 (s)
1 (p)
2 (d)
0

1, 0, –1
+2, +1, 0, –1, –2

1
3
5
9
2
6
10
18
N 4 0 (s)
1 (p)
2 (d)
3 (f)
0
+1, 0, –1
+2, +1, 0, –1, –2
+3, +2, +1, 0, –1, –2, –3
1
3
5
7
16
2
6
10
14
32

20. Последовательность заполнения энергетических уровней атомов см. в табл. 6.

21. Число элементов в периоде таблицы Д.И.Менделеева определяется формулами:

а) для нечетных периодов:

L n = (n + 1) 2 /2,

б) для четных периодов:

L n = (n + 2) 2 /2,

где L n – число элементов в периоде, n – номер периода.

Определите число элементов в каждом периоде ПСХЭ Д.И.Менделеева.

Объясните:

а) полученную числовую закономерность с позиций состояния электронов в атомах и их распределения по энергетическим уровням;

б) разделение групп элементов на главные и побочные подгруппы;

в) предопределенность числа главных и побочных подгрупп в ПСХЭ Д.И.Менделеева с точки зрения теории строения атомов.

Проверьте в дальнейшем свои выводы по приложению 1 (П-21).

22. Строгая периодичность расположения элементов в ПСХЭ Д.И.Менделеева полностью объясняется последовательным заполнением энергетических уровней атомов (см. выше п. 20). Укреплению позиций периодического закона на основе закономерностей изменения электронной структуры атомов элементов, впервые предсказанных Н.Бором, способствовало открытие 72-го элемента. Еще не открытый тогда элемент химики искали среди минералов, содержащих редкоземельные элементы, исходя из неправильной предпосылки, что к лантаноидам следует отнести 15 элементов.

По аналогии с переходными элементами число лантаноидов (элементы № 58–71) должно быть равно разности между максимальными числами электронов на N и М энергетических уровнях
(32 – 18 = 14), т. е. равно максимальному числу электронов на f -подуровне (см. выше п. 19). Элемент с Z = 72 (гафний Hf) является аналогом циркония Zr и был обнаружен в циркониевых рудах.

23. Следующим важным выводом из анализа табл. 6 в п. 20 является вывод о периодичности заполнения электронами внешних энергетических уровней атомов, чем обусловлена периодичность изменения химических свойств элементов и их соединений.

Таблица 6

Электронные конфигурации атомов
первых 20 элементов периодической системы

Атомный
номер
Обоз-
начение
Слой K L M N
n 1 2 3 4
l 0 0, 1 0, 1, 2 0, 1, 2, 3
Подуровень 1s 2s , 2p 3s , 3p , 3d 4s , 4p , 4d , 4f
Число электронов на данном подуровне
1
2
H
He
1
2
3
4
5
6
7
8
9
10
Li
Be
B
C
N
O
F
Ne
2
2
2
2
2
2
2
2
1, 0
2, 0
2, 1
2, 2
2, 3
2, 4
2, 5
2, 6
11
12
13
14
15
16
17
18
Na
Mg
Al
Si
P
S
Cl
Ar
2
2
2
2
2
2
2
2
2, 6
2, 6
2, 6
2, 6
2, 6
2, 6
2, 6
2, 6
1, 0, 0
2, 0, 0
2, 1, 0
2, 2, 0
2, 3, 0
2, 4, 0
2, 5, 0
2, 6, 0
19
20
K
Ca
2
2
2, 6
2, 6
2, 6, 0
2, 6, 0
1, 0, 0, 0
2, 0, 0, 0

Так, второй период таблицы Д.И.Менделеева состоит из восьми элементов со следующими подуровнями:

3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne
1s 2 2s 1 1s 2 2s 2 1s 2 2s 2 2p 1 1s 2 2s 2 2p 2 1s 2 2s 2 2p 3 1s 2 2s 2 2p 4 1s 2 2s 2 2p 5 1s 2 2s 2 2p 6

При переходе от лития к неону заряд ядра атома постепенно увеличивается от Z = 3 до Z = 10, а значит, возрастают силы притяжения электронов к ядру, и в результате радиусы атомов этих элементов уменьшаются. Поэтому способность атома отдавать электроны (типично металлическое свойство), ярко выраженная у атома лития, постепенно ослабевает при переходе от лития к фтору. Последний является типичным неметаллом, т. е. элементом более, чем другие, способным присоединять электроны.

Начиная со следующего за неоном элемента (Na, Z = 11) электронные структуры атомов повторяются, и поэтому электронные конфигурации их внешних электронных оболочек обобзначаются сходным образом (n – номер периода):

ns 1 (Li, Na), ns 2 (Be, Mg), ns 2 np 1 (B, Al), ns 2 np 2 (C, Si) и т. д.

В четвертом периоде таблицы Д.И.Менделеева появляются переходные элементы, принадлежащие побочным подгруппам.

24. Элементы, принадлежащие одной и той же подгруппе, имеют сходный характер расположения электронов на внешних электронных уровнях атомов. Например, атомы галогенов (главная подгруппа VII группы) все имеют электронную конфигурацию ns 2 np 5 , а атомам элементов побочной подгруппы той же группы свойственна электронная конфигурация (n – 1)s 2 (n – 1)p 6 (n – 1)d 5 ns 2 .

В чем заключается суть сходства и различия атомов элементов, принадлежащих разным подгруппам одной и той же группы таблицы Д.И.Менделеева? Свои выводы в дальнейшем сверьте с приложением 1 (П-24).

25. Численное значение валентности атома, определяемое числом образованных им ковалентных химических связей, отражает положение элемента в ПСХЭ Д.И.Менделеева. Во многих случаях валентность атома элемента в соединении численно равна номеру группы в ПСХЭ Д.И.Менделеева. Однако из этого правила существуют исключения. Например, у атома фосфора на внешнем (третьем, М ) энергетическом уровне находятся три неспаренных электрона (3р -орбитали) и свободные валентные ячейки d -орбиталей. Следовательно, для атома фосфора характерно так называемое возбуждение электрона, связанное c распариванием электронной пары и переходом одного их образующихся неспаренных электронов на 3d -орбиталь. Для возбужденного состояния атома фосфора возможно образование пяти ковалентных связей, а для основного – только трех.

Для атома азота возбужденное состояние нетипично, поскольку в этом атоме на внешнем энергетическом уровне количество и состояние электронов такое же, как в атоме фосфора, но вакантных ячеек нет, и для завершения и устойчивости этого уровня недостает всего трех электронов.

Почему же тогда максимальная валентность атома азота в соединениях (т.е. способность к образованию общих электронных пар) все же не III, а IV?

26. Повторив пп. 16, 17 методической разработки, можно объяснить порядок заполнения электронами энергетических уровней в атомах элементов 4-го большого периода ПСХЭ Д.И.Менделеева. Четный ряд этого периода начинается элементами главных подгрупп – 39 К и 40 Са, являющимися типичными металлами с постоянной валентностью, а уже с элемента № 21 (Z = 21, Sс) далее идут элементы побочных подгрупп, называемые d- элементами или переходными. Попробуйте объяснить суть этих названий, привести соответствующие примеры. Правильность своих выводов в дальнейшем сверьте с приложением 1 (П-26).

27. Химический знак водорода Н в ПСХЭ Д.И.Менделеева помещают и в главную подгруппу
I группы, и в главную подгруппу VII группы. Почему это допустимо? Проверьте в дальнейшем правильность своих выводов по приложению 1 (П-27).

Энергетическое состояние и расположение электронов в оболочках или слоях атомов определяют четырьмя числами, которые называются квантовыми и обычно обозначаются символами n, l, s и j; квантовые числа имеют, прерывный, или дискретный, характер, т. е. могут получать только отдельные, дискретные, значения, целые или полуцелые.

По отношению к квантовым числам п, l, s и j необходимо еще иметь в виду следующее:

1. Квантовое число n называется главным; оно общее для всех электронов, входящих в состав одной и той же электронной оболочки; иначе говоря, каждой из электронных оболочек атома отвечает определенное значение главного квантового числа, а именно: для электронных оболочек К, L, М, N, О, Р и Q главные квантовые числа равны соответственно 1, 2, 3, 4, 5, 6 и 7. В случае одноэлектроиного атома (атом водорода) главное квантовое число служит для определения орбиты электрона и одновременно энергии атома при стационарном состоянии.

2. Квантовое число I называется побочным, или орбитальным, и определяет момент количества движения электрона, вызванного его вращением вокруг атомного ядра. Побочное квантовое число может иметь значения 0, 1, 2, 3, . . . , а в общем виде обозначается символами s, р, d, f, . . . Электроны, имеющие одно и то же побочное квантовое число, образуют подгруппу, или, как часто говорят, находятся на одном и том же энергетическом подуровне.

3. Квантовое число s часто называют спиновым, так как оно определяет момент количества движения электрона, вызванного его собственным вращением (момент спина).

4. Квантовое число j называется внутренним и определяется суммой векторов l и s.

Распределение электронов в атомах (атомных оболочках) следует также некоторым общим положениям, из них необходимо указать:

1. Принцип Паули, согласно которому в атоме не может быть больше одного электрона с одинаковыми значениями всех четырех квантовых чисел, т. е. два электрона в одном и том же атоме должны различаться между собой значением хотя бы одного квантового числа.

2. Принцип энергетический, согласно которому в основном состоянии атома все его электроны должны находиться на наиболее низких энергетических уровнях.

3. Принцип количества (числа) электронов в оболочках, согласно которому предельное число электронов в оболочках не может превышать 2n 2 , где n - главное квантовое число данной оболочки. Если число электронов в некоторой оболочке достигает предельного значения, то оболочка оказывается заполненной и в следующих элементах начинает формироваться новая электронная оболочка.

В соответствии с тем, что было сказано, в таблице ниже даны: 1) буквенные обозначения электронных оболочек; 2) соответствующие значения главных и побочных квантовых чисел; 3) символы подгрупп; 4) теоретически рассчитанное наибольшее число электронов как в отдельных подгруппах, так и в оболочках в целом. Необходимо указать, что в оболочках К, L и М число электронов и их распределение по подгруппам, определенные из опыта, вполне отвечают теоретическим вычислениям, но в следующих оболочках наблюдаются значительные расхождения: число электронов в подгруппе f достигает предельного значения только в оболочке N, в следующей оболочке оно уменьшается, а затем исчезает и вся подгруппа f.

Оболочка

Подгруппа

Число электронов в подгруппе

Число электронов в оболочке (2n 2)

В таблице даны число электронов в оболочках и их распределение по подгруппам для всех химических элементов, в том числе и трансурановых. Числовые данные этой таблицы были установлены в результате очень тщательных спектроскопических исследований.

1-й период

2-й период

3-й период

4-й период

5-й период

6-й период

7-й период

_______________

Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, - М.: 1960.

Распределение электронов по энергетическим уровням объясняет металлические, а также неметаллические свойства любых элементов.

Электронная формула

Существует определенное правило, согласно которому и размещаются свободные и спаренные отрицательные частицы на уровнях и подуровнях. Рассмотрим подробнее распределение электронов по энергетическим уровням.

На первом энергетическом уровне располагается всего два электрона. Заполнение ими орбитали осуществляется по мере увеличения запаса энергии. Распределению электронов в атоме химического элемента соответствует порядковый номер. У энергетических уровней с минимальным номером максимально выражена сила притяжения валентных электронов к ядру.

Пример составления электронной формулы

Рассмотрим распределение электронов по энергетическим уровням на примере атома углерода. Его порядковый номер 6, следовательно, внутри ядра располагается шесть протонов, имеющих положительный заряд. Учитывая, что углерод является представителем второго периода, для него характерно наличие двух энергетических уровней. На первом располагается два электрона, на втором - четыре.

Правило Хунда объясняет расположение в одной ячейке только двух электронов, которые имеют разные спины. На втором энергетическом уровне находится четыре электрона. В итоге распределение электронов в атоме химического элемента имеет следующий вид: 1s22s22p2.

Существуют определенные правила, согласно которым происходит распределение электронов по подуровням и уровням.

Принцип Паули

Этот принцип был сформулирован Паули в 1925 году. Ученый оговорил возможность размещения в атоме только двух электронов, которые имеют одинаковые квантовые числа: n, l, m, s. Отметим, что распределение электронов по энергетическим уровням происходит по мере увеличения запаса свободной энергии.

Правило Клечковского

Заполнение энергетических орбиталей осуществляется согласно возрастанию квантовых чисел n + l и характеризуется увеличением энергетического запаса.

Рассмотрим распределение электронов в атоме кальция.

В нормальном состоянии его электронная формула имеет следующий вид:

Са 1s2 2s2 2p6 3s2 3p6 3d0 4s2.

У элементов подобных подгрупп, относящихся к d- и f-элементам, наблюдается «провал» электрона с внешнего подуровня, имеющего меньший запас энергии, на предыдущий d- или f-подуровень. Подобное явление характерно для меди, серебра, платины, золота.

Распределение электронов в атоме предполагает заполнение подуровней неспаренными электронами, которые обладают одинаковыми спинами.

Только после полного заполнения всех свободных орбиталей одиночными электронами, происходит дополнение квантовых ячеек вторыми отрицательными частицами, наделенными противоположными спинами.

Например, в невозбужденном состоянии у азота:

На свойства веществ оказывает влияние электронная конфигурация валентных электронов. По их количеству можно определить высшую и низшую валентность, химическую активность. Если элемент находится в главной подгруппе таблицы Менделеева, можно по номеру группы составить внешний энергетический уровень, определить его степени окисления. К примеру, у фосфора, который находится в пятой группе (главной подгруппе), содержится пять валентных электронов, следовательно, он способен принимать три электрона либо отдавать пять частиц другому атому.

В качестве исключений из этого правила выступают все представители побочных подгрупп таблицы Менделеева.

Особенности семейств

В зависимости от того, какое строение имеет внешний энергетический уровень, существует подразделение всех нейтральных атомов, входящих в таблицу Менделеева, на четыре семейства:

  • s-элементы находятся в первой и второй группах (главных подгруппах);
  • p-семейство располагается в III-VIII группах (А подгруппах);
  • d-элементы можно найти в подобных подгруппах с I-VIII группы;
  • f-семейство составляют актиноиды и лантаноиды.

У всех s-элементов в нормальном состоянии есть валентные электроны на s-подуровне. Для p-элементов характерно наличие свободных электронов на s- и p-подуровнях.

У d-элементов в невозбужденном состоянии есть валентные электроны и на последнем s-, и на предпоследнем d- подуровне.

Заключение

Состояние любого электрона в атоме можно описать с помощью набора основных чисел. В зависимости от особенностей его строения, можно вести речь об определенном запасе энергии. Пользуясь правилом Хунда, Клечковского, Паули для любого элемента, входящего в таблицу Менделеева, можно составить конфигурацию нейтрального атома.

Самым небольшим запасом энергии в невозбужденном состоянии обладают электроны, расположенные на первых уровнях. При нагревании нейтрального атома наблюдается переход электронов, что всегда сопровождается изменением количества свободных электронов, приводит к существенному изменению показателя степени окисления элемента, изменению его химической активности.