Расчет статически неопределимой стержневой системы онлайн. Метод сил - расчет статически неопределимых рам

Статически неопределимыми называются такие стержни и стержневые системы, в которых реактивные факторы и внутренние усилия не могут быть определены только из уравнений равновесия. Данные системы классифици­руются по степени статической неопределимости. Степень статической не­определимости представляет собой разность между числом неизвестных реакций и числом уравнений равновесия. Степень статической неопредели­мости системы определяет количество дополнительных уравнений (уравне­ния перемещений), которые необходимо составить при раскрытии статической неопределимости.

В статически определимых стержневых системах усилия возникают только от действия внешней нагрузки. В статически неопределимых стерж­невых системах усилия возникают не только от внешних нагрузок, но и в ре­зультате неточности изготовления отдельных элементов системы, изменения температуры элементов системы и т.д. При отклонении действительных про­дольных размеров стержней от номинальных (расчётных) при сборке стати­чески неопределимых систем возникают дополнительные, так называемые монтажные усилия и напряжения. При изменении температуры статически неопределимой стержневой системы в ее элементах возникают дополнитель­ные, так называемые температурные усилия и напряжения.

Расчет статически неопределимых стержней и стержневых систем вы­полняется по следующей методике.

1. Проводится анализ схемы закрепления и определяется степень статиче­ской неопределимости стержневой системы.

2. Рассматривается статическая сторона задачи, т.е. составляются уравне­ния равновесия.

3. Анализируется геометрическая сторона задачи. Система рассматрива­ется в деформированном состоянии, устанавливается взаимосвязь между де­формациями или перемещениями отдельных элементов системы. Полученные уравнения являются уравнениями совместности перемещений (деформаций). Количество уравнений совместности перемещений (деформа­ции) равно степени статической неопределимости системы.

4. Рассматривается физическая сторона задачи. На основе закона Р.Гука перемещения или деформации элементов системы выражаются через дейст­вующие в них внутренние усилия и с учётом этого записываются уравнения совместности перемещений в развёрнутом виде.

5. Решая совместно уравнения равновесия и совместности перемещений в развёрнутом виде определяются неизвестные реакции, т.е. раскрывается ста­тическая неопределимость стержневой системы.

6. Дальнейший расчёт на прочность и жёсткость аналогичен расчёту статически определимых систем.

Методика решения статически неопределимых стержней и стержневых систем показана на примерах решения различных задач.



Пример 1. Ступенчатый стержень, защемлённый с обеих сторон, нагружен силами F (рис.10,а). Требуется раскрыть статическую неопределимость стержня и определить площадь поперечного сечения.

Исходные данные: длина участка стержня l , площадь поперечного сечения стержня А модуль продольной упругости материала стержня Е , допускаемое напряжение .

Заданная стержневая система.

1. В результате действия внешних сил на стержень возникают две опорные реакции R 1 и R 2 . Уравнений равновесия для плоской стержневой системы можно составить одно следовательно стержень один раз статически неопределим (рис. 10,6).

2. Рассматривается статическая сторона задачи. Выбирается расчётная схема (рис. 10,6) и составляется уравнение равновесия:

3. Анализируется условие деформирования стержня и геометрическая сторона задачи, составляется уравнение совместности перемещений.

4. Рассматривается физическая сторона задачи. Условно принимая, что реакции R 1 и R 2 известны, определяются нормальные силы на участках

На основе закона Р.Гука записываются выражения перемещений на каждом участке, и затем составляется уравнение совместности перемещений в развёрнутом виде:

Рис.10. Заданный стержень, расчетная схема стержня, эпюры нормальной силы, нормального напряжения и перемещений

5. Совместное решение уравнения равновесия и уравнения совместности перемещений в развёрнутом виде позволяет определить неизвестные реакции Статическая неопределимость стержня раскрыта.

6. Строятся эпюры N z , σ z , δ (рис 10). Записывается условие прочности

и определяется площадь поперечного сечения стержня

Пример 2. Абсолютно жёсткий брус шарнирно крепится к стержням и опирается на шарнирно неподвижную опору (рис. 11,а). К брусу приложена сила F. Требуется раскрыть статическую неопределимость стержневой системы и определить величину допускаемой силы [F].

Исходные данные: длины стержней и длины участков бруса заданы в долях а , площади поперечного сечения стержней A 1 = 2A и A 2 =А, модуль упругости материала стержней Е, допускаемое напряжение .

Рис.11,а Рис. 11,б

1. Заданная стержневая система один раз статически неопределима, поскольку неизвестных реакций четыре - Н, R, R 1 , R 2 , а уравнений равновесия для плоской системы сил - три.

2. Рассматривается статическая сторона задачи (рис. 11,6). Составляются уравнения равновесия

3. Анализируется геометрическая сторона задачи (рис. 11,в) и составляется уравнение совместности перемещений. Из подобия треугольников имеем:

4. Рассматривается физическая сторона задачи. На основе закона Р.Гука определяются выражения деформаций , и затем записывается уравнение совместности перемещений в развёрнутом виде:

5. Совместное решение уравнений равновесия и развёрнутого уравнения совместности перемещений позволяет определить величины усилий в стержнях через внешнюю нагрузку N 1 =0,442P, N 2 = 0,552Р. Статическая неопределимость системы раскрыта.

Из условия прочности I стержня

допускаемая нагрузка равна

Из условия прочности II стержня

допускаемая нагрузка равна

Окончательно принимаем для стержневой системы меньшее значение . При этом рабочие напряжения во II стержне будут равны допускаемым, а первый стержень будет недогружен.

Вопросы и задания для самопроверки,

1. Какие стержни и стержневые системы называются статически неопределёнными?

2. Как определяется степень статической неопределимости?

3. Что представляют собой уравнения совместности перемещений?

4. Какие усилия и напряжения называются монтажными?

5. Какие усилия и напряжения называются температурными?

6. Перечислите основные этапы расчётов на прочность и жёсткость ста­тически неопределимых систем при растяжении (сжатии).

ВАРИАНТЫ РАСЧЕТНО - ПРОЕКТИРОВОЧНОЙ РАБОТЫ

РАСЧЕТЫ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СТЕРЖНЕЙ И СТЕРЖНЕВЫХ СИСТЕМ НА ПРОЧНОСТЬ И ЖЕСТ­КОСТЬ ПРИ РАСТЯЖЕНИИ (СЖАТИИ)

Абсолютно жесткий брус К, нагруженный силами F;, удерживается в равновесии стальными стержнями длиной щ и крепится посредством опор­ных устройств. Требуется выполнить проектировочный расчет (найти пло­щади поперечных сечений стержней).

Последняя цифра соответствует номеру схемы (рис. 12... 14).

Данные варианта приведены в таблице 3.

В расчетах принять: Р =10 кН.

Таблица 3. Данные к задаче РПР


Для того чтобы стержневые системы (балки, рамы и т. п.) могли служить сооружениями и выдерживать внешние нагрузки, необходимо наложить на них определенные связи, которые делят на связи внешние и внутренние. Под связью обычно понимают тела (препятствия), ограничивающие перемещение другим телам, точкам или сечениям конструкции. На практике такие тела называют опорными устройствами, фундаментами и т. п. В инженерных расчетах вводится понятие идеальных связей. Если, например, на левый торец бруса (рис. 1.1, а) наложено условие, запрещающее вертикальное перемещение, то говорят, что в этой точке имеется одна внешняя связь. Условно она изображается в виде стержня с двумя шарнирами. Если запрещено вертикальное и горизонтальное смещения, то на систему наложены две внешние связи (рис. 1.1, б). Заделка в плоской системе дает три внешние связи (рис 1.1, в), препятствующие вертикальному, горизонтальному смещениям и повороту сечения заделки. лд Рис. 1.1 Для того чтобы закрепить тело (стержень) на плоскости и обеспечить ему геометрическую неизменяемость, необходимо и достаточно наложить на него три связи (рис. 1.2), причем все три связи не должны быть взаимно параллельными и не должны пересекаться в одной точке. В дальнейшем связи, обеспечивающие геометрическую неизменяемость системы и ее статическую определимость, будем понимать как необходимые связи. Геометрически неизменяемой системой называют такую систему, которая может изменять свою форму только за счет деформации ее элементов (рис. 1.2), в то время как геометрически изменяемая система может допускать перемещения и при отсутствии деформации (рис. 1.3). Такая система является механизмом (рис. 1.3, а). 5 Рис. 1.2 Наряду с отмеченными различают еще мгновенно изменяемые системы, под которыми понимают системы, допускающие бесконечно малые перемещения без деформации ее элементов (рис. 1.4). Рис. 1.3 Так, например, под действием силы P, приложенной в шарнире Д (рис. 1.4, а), стержни ДВ и ДС без деформации повернутся относительно шарниров В и С на бесконечно малый угол d . Тогда из условия равновесия, вырезанного при малом значении величины силы P усилия в стержнях ДВ и ДС будут стремиться к бесконечности, вызывая осевую деформацию стержней и изменяя положение системы. 6 Рис. 1.4 Для рамы на рис. 1.4, б при рассмотрении уравнения статики момент силы P не уравновешивается (реакция R1 ,не может вызывать момента относительно рассматриваемой точки, так как линия ее действия проходит через эту точку). Аналогичная особенность проявляется и для системы, показанной на рис. 1.4, в. Момент силы P относительно точки k не уравновешивается. Таким образом, эти системы также допускают бесконечно малые перемещения (относительно моментной точки) без деформации их элементов. В сооружениях и конструкциях такие системы недопустимы. Если геометрически неизменяемая система имеет помимо необходимых еще и дополнительные связи, то независимых уравнений статики оказывается недостаточно для определения неизвестных усилий (реакций связей) и такая система называется статически неопределимой. Разница между числом неизвестных усилий, подлежащих определению, и числом независимых уравнений статики характеризует степень статической неопределимости, которую принято обозначать символом n . Так, балка и рама, представленные на рис. 1.5, являются два раза (дважды) статически неопределимыми. В этих схемах число неизвестных реакций равно пяти, а число независимых уравнений статики, которые можно составить для каждой из них, равно трем. Всякий замкнутый контур представляет собой систему трижды статически неопределимую (рис. 1.6). Рис. 1.6 Постановка одиночного шарнира снижает степень статической неопределимости системы на единицу (рис. 1.7, а), поскольку изгибающий момент в шарнире отсутствует. Под одиночным шарниром понимают шарнир, соединяющий концы двух стержней. Рис. 1.7 Шарнир, включенный в узел, где сходятся концы нескольких стержней, понижает степень статической неопределимости системы на число одиночных шарниров, определяемых по формуле О=С–1. Здесь под C понимают число стержней, сходящихся в узле. Например, в раме (рис. 1.7, б) число одиночных шарниров О=С–1=3-1=2, поэтому степень статической неопределимости понижается на две единицы и становится равной n4 .

Расчет статически определимых рам

Основные понятия Рамой называют стержневую систему, у которой все или некоторые узловые соединения являются жёсткими (рис. 1.8 а). Жёсткий узел характеризуется тем, что угол между осями стержней, которые его образуют, не изменяется при действии нагрузки (рис. 1.8 а). Угол между касательными к упругим линиям ригеля и наклонной стойки в узле В сохраняет неизменную величину α, а угол между касательными к упругим линиям того же ригеля и правой стойки в узле D сохраняет неизменную величину β. Рамы могут быть плоскими, когда все оси стержней лежат в одной плоскости (рис 1.8 а, б, в) и пространственными (рис. 1.8 г). Горизонтальный стержень рамы называют ригелем, а стержни, его поддерживающие, называют стойка. Левая стойка наклонная, а правая вертикальная. Рамы могут быть простыми, состоящими из трёх стержней (рис 1.8), сложными, многопролётными (рис 1.8 б) и многоярусными (рис 1.8 в). Также они подразделяются на статически определимые (рис 1.8 б), когда число неизвестных реакций, усилий меньше или равно числу независимых уравнений статики, которые могут быть составлены для данной рамы, и статически неопределимые, если это условие не выполняется (рис 1.8 а, в, г), об этом будет сказано далее. В отличии от балок, в сечениях рам, наряду с изгибающими моментами, поперечной силой, возникает еще и продольная сила. Рис. 1.8 Определение усилий (М, Q, N) выполняются также, как и в балках посредством метода сечений (РОЗУ). При этом правило знаков для изгибающего момента М и поперечной силы Q такое же, как для балок, а для продольной силы N, как в 9 стержнях при растяжении – сжатии. Определение нормальных n и касательных напряжений производится по тем же зависимостям, как в балках, если стержень испытывает изгиб. В случае сложного сопротивления, когда наряду с изгибающим моментом возникает в стержне еще и продольная сила, то расчет ведется как и при изгибе с растяжением – сжатием, излагаемым в разделе "Сложное сопртивление”. Пример 1.1 Для заданной рамы (рис.1.9) построить эпюры внутренних усилий и найти величину и направление полного перемещения сечения К, если Р = 5кН; q = 10 кН/м; EIz = const; сечения стоек и ригеля одинаковые I = 8000 см4: 1. Находим реакции опор: а) вертикальные реакции V1,V2: б) горизонтальные реакции Н1 и Н2: 2. Строим эпюры внутренних усилий М, Q, N. а. Построение эпюры изгибающих моментов М.

Расчет статически неопределимых стержневых систем методом сил

Выбираем точку наблюдения, считая, что она находится внутри контура. В этом случае поля расположены выше участков 1-3, 3-4, 4-К, 4-2, рассматриваются как внешние, а внутри контура – внутренние. При определении изгибающих моментов придерживаемся так же правил, что и в балках. Вычисляем моменты в характерных сечениях каждого из участков рамы. Участок 1-3. Момент на конце со стороны опоры – 1, М13 = 0. Момент в узле 3, Знак минус потому, что на участке 1-3 нижняя отсеченная часть изгибается выпуклостью вверх по отношению к наблюдателю. Участок 3-4 (ригель). Момент в начале участка (в сечении узла 3) М34 , такой же, как и на стойке 1– Момент В шарнире момент равен нулю. Участок 2-4 (наклонная стойка) Участок 4-К В начале участка момент МК4 = 0. В конце участка Эпюра изгибающих моментов показана на (рис. 1.10, а) 11 Рис. 1.10 Выполняем проверку правильности построения эпюры М. Если эпюра М построена верно, то любой внеопорный узел или любая часть рамы под действием внешних и внутренних сил должна находиться в равновесии. Вырежем из рамы сечениями бесконечно близкими к узлу, например, узел (4) и рассмотрим его равновесие. Значения моментов берем в соответствующих сечениях из эпюры М (рис. 1.10, б). Уравнения моментов узла (4) имеет вид

Особенности расчета методом сил многопролетных неразрезных балок

Условие выполняется, значит в примыкающих к узлу (4) сечениях моменты определены верно. Аналогично выполняется проверка в узле (3) и т. д. Примечание Если в узле приложены сосредоточенные внешние усилия (момент или силы) то они должны быть учтены при проверке. Распределенная нагрузка не показывается, т. к. dx – малая величина. б. Построение эпюры поперечных сил Q. Придерживаемся того же правила знака, как для балок: если равнодействующая внешних сил слева от сечения направлена вверх, а справа вниз поперечная сила Q > 0, если наоборот – т Участок 1–3. При рассмотрении левой отсеченной части 10 кН.(минус потому, что левая отсеченная часть находится под воздействием силы Н1 12 направленной вниз, если смотреть на отсеченную часть из точки наблюдателя). Поперечная сила постоянна по длине этого участка (рис. 1.11, а) Рис. 1.11 Участок 3-4 Поперечная сила в любом сечении, взятом на расстоянии х от узла (3) при рассмотрении сил действующих от сечения слева, равна 103 01QV xqx. При х = 0, получим поперечную силу в сечении левее узла (3), т. е. Q34 30кН; при х = 3 м, получаем поперечную силу Q, т. е. в сечении левее узла (4). Поперечная сила на участке 3–4 изменяется по линейному закону (рис.1.11, а). Участок 4–К. В сечении на расстоянии х от правого конца участка (рис. 1.11, а) поперечная сила равна (линейный закон). При х = 0, получаем, а при х = 3 м, получаем Участок 2–4. Поперечную силу в сечении этого участка получим, проектируя внешние силы Н2, V2, приложенные в точке 2 (рис. 1.11,а) на ось У, перпендикулярную продольной оси стержня. По длине участка 3–4 поперечная сила постоянная. Эпюра поперечных сил изображена на (рис. 1.11, а).

Использование свойств симметрии при раскрытии статической неопределимости стержневых систем

в. Построение эпюры продольных сил N. Вычисляем продольную силу в сечении каждого участка. Участок 1–3. Рассматриваем нижнюю часть (рис. 1.12) Минус взят потому, что продольная сила, уравновешивающая реакцию V1, направлена к сечению, т. е. навстречу реакции V1, значит отсеченный участок испытывает сжатие. Если бы продольная сила была направлена от сечения, то знак N – положителен. Участок 3-4 (на ригеле). Продольная сила N30 кН, отрицательна, так как сжимающая. В сечении х (рис.1.12, б) на участке 4-К: перпендикулярны продольной оси участка. Участок 2–4. Рис. 1.12 На наклонной стойке в сечении х продольную силу находим, проектируя внешние силы V2 и Н2 на ось Х, совпадающею с осью стержня (рис. 1.12): 34 5 4 (сжатие), Поэтому присваиваем знак минус N24 кН. 14 Эпюра продольных сил изображена на (рис. 1.11, б). 3. Определяем перемещения сечения К. Для этого используем интеграл Мора, формулы А.К. Верещагина, Симпсона, (см. раздел "Прямой изгиб”). Определяем вертикальное перемещение сечения К. Для этого освобождаем раму от всех внешних нагрузок (q, Р) и прикладываем в этом сечении единичную безразмерную силу (рис.1.13, а). Направление силы принимаем сами, например, в низ.

Расчет методом сил статически неопределимых систем, работающих на растяжение или сжатие

Рис. 1.13 На рис. 1.13, а представлена эпюра изгибающих моментов М1 от этой силы. Производим перемножение эпюр М и М1 по способу Верещагина, находим вертикальное перемещение сечения К. На участке 4-К использовалась формула Симпсона, а на участке 2-4 формула Верещагина. Определяем горизонтальное перемещение сечения К. Для этого раму освобождаем от внешних нагрузок, загружаем единичной безразмерной силой, приложенной горизонтально (рис.1.13, б). Эпюра от этой силы показана на рис. 1.13, б. Вычисляем горизонтальное перемещение, используя формулы Верещагина и Симпсона. Знак минус указывает, что действительное горизонтальное перемещение направлено в противоположенную сторону приложения единичной силы, т. е. влево. 15 Находим полное перемещение сечения К как геометрическую сумму найденных перемещений. Направление полного перемещения определяется углом (рис 1.14, б). Определяем угол поворота сечения К. Прикладываем в сечении К единичный безразмерный момент (рис.1.14, а) и строим от него эпюру изгибающих моментов.

Расчет статически неопределимых стержневых систем методом сил в матричной форме

Рис. 1.14 Производим перемножение эпюр М и М3, используя формулу Верещагина, находим угол поворота сечения К: 16 1.3. Расчет статически неопределимых стержневых систем методом сил Наиболее широко применяемым методом раскрытия статической неопределимости стержневых систем является метод сил. Он заключается в том, что заданная статически неопределимая система освобождается от дополнительных (лишних) связей как внешних, так и внутренних, а их действие заменяется силами и моментами. Величина их в дальнейшем определяется так, чтобы перемещения соответствовали тем ограничениям, которые накладываются на систему отброшенными связями. Таким образом при указанном способе решения неизвестными оказываются силы или моменты, действующие в местах отброшенных или рассеченных связей. Отсюда и название «метод сил». Сущность метода сил рассмотрим на примере расчета статически неопределимой рамы, изображенной на рис. 1.15. Считаем, что внешняя нагрузка, размеры и жесткости стержней известны. Порядок расчета 2.1. Устанавливаем степень статической неопределимости, для чего используем выражение, где X – число неизвестных (имеется 5 внешних связей); Y – число независимых уравнений статики, которые можно составить для рассматриваемой системы. Для заданной рамы число неизвестных реакций равно пяти, а число независимых уравнений трем, так как система сил плоская и произвольно расположенная, поэтому Система два раза статически неопределима. 2.2. Преобразуем заданную систему в статически определимую, геометрически неизменяемую и эквивалентную заданной системе, т. е. образуем основную систему. Для этого удаляем лишние связи путем их отбрасывания или перерезания. На рис. 1.15 изображена основная система, полученная путем отбрасывания лишних опорных связей, а на рис. 1.16 основные системы образованы путем отбрасывания и перерезания связей. Например, (рис. 1.16, а) в опоре А отброшена горизонтальная связь и в опоре С перерезана связь, препятствующая повороту сечения. Таким образом, для каждой статически неопределимой стержневой системы можно Рис. 1.15 17 подобрать несколько вариантов основных систем (рис. 1.15, 1.16). Необходимо особо обратить внимание на то, что при образовании основной системы метода сил недопустимо введение новых связей. Желательно, чтобы основная система была рациональной, т. е. такой, для которой легче строить эпюры внутренних силовых факторов и объем вычислений был наименьшим. Такая система показана на рис. 1.15 (вариант I). Здесь нет необходимости определять опорные реакции, если строить эпюры со свободного (незакрепленного) конца рамы. Рис. 1.16 2.3. Образуем эквивалентную систему путем нагружения основной системы внешними силами и усилиями отброшенных (перерезанных) связей (рис. 1.17). Неизвестные силовые факторы будем обозначать символом Xi, где i – номер неизвестного. Если отброшенные связи запрещают линейные перемещения, то неизвестными являются силы, при запрете угловых смещений – моменты. Если же основная система была получена путем перерезания лишних связей, то равные и противоположные друг другу силы и моменты прикладываются как к правой, так и к левой частям рассеченной системы в местах перерезания. В рассматриваемом примере X1 и X2 представляют собой вертикальную и горизонтальную составляющие реакции шарнирной опоры А. 2.4. Составляем канонические уравнения метода сил, которые выражают в математической форме записи условия эквивалентности основной и заданной систем. Иначе они выражают условия, обозначающие, что относительные перемещения по направлению удаленных лишних связей от совместного действия внешней нагрузки и неизвестных усилий должны быть равны нулю. Для эквивалентной системы рассматриваемого примера на основании принципа независимости действия сил и рис. 1.18 канонические уравнения запишутся в форме

К фермам с оговоркой можно отнести шпренгельные балки, представляющие собой комбинацию двух- или трёхпролётной неразрезной балки и подпружной тяги; они характерны для стальных и деревянных конструкций, с верхним поясом из неразрезного прокатного профиля (пиленые брусья или пакеты клееных досок). Также могут быть шпренгельные железобетонные фермы небольших пролётов.

Материал из Википедии - свободной энциклопедии

где 11 – относительное перемещение в основной системе по направлению лишней неизвестной X1, вызванное этим же усилием; 12 – относительное перемещение по направлению лишней неизвестной Х1, вызванное усилием X2; 1P – относительное перемещение по направлению действия неизвестной X1, вызванное заданной нагрузкой. Рис. 1.18 Физический смысл этих уравнений. Первое уравнение отрицает возможность вертикального перемещения опорного сечения А по направлению лишнего неизвестного X1 от совместного действия заданной нагрузки Р и полных значений неизвестных X1 и X2. Аналогичный смысл имеет и второе уравнение. В указанной форме (1.1) использование уравнений при инженерных расчетах затруднительно, поэтому преобразуем их к новому виду. С учетом того, что для линейных систем справедливо выражение можно записать: где 11 – относительное перемещение в основной системе по направлению действия силы X1 от действия силы X1 1 (рис. 1.19); 21 – относительное перемещение в основной системе по направлению действия силы X2 от действия силы X1 1. Здесь X1 и X2 – действительные значения реакций отброшенных связей. Тогда канонические уравнения метода сил (1.1) запишутся в виде По аналогии для n раз статически неопределимых систем канонические уравнения имеют вид Здесь коэффициенты с одинаковыми индексами называют главными, а называют побочными коэффициентами. Главные коэффициенты всегда положительны. Побочные коэффициенты могут быть положительными, отрицательными и равными нулю. 1P  – называются свободными или грузовыми коэффициентами. 2.5. Определяем коэффициенты канонических уравнений. Эти коэффициенты представляют собой перемещения точек системы в направлении отброшенных связей, следовательно, их можно найти посредством интеграла Мора: Порядок определения коэффициентов: Рис. 1.19 20 а) строим эпюры изгибающих моментов для основной системы от заданной внешней нагрузки P и от единичных усилий отброшенных связей X11 (рис. 1.20); Рис. 1.20 б) вычисляем коэффициенты канонических уравнений. Поскольку рассматриваемая система состоит только из прямолинейных стержней и жесткости стержней в пределах их длин постоянны, то вычисления интеграла Мора производим по способу А.К. Верещагина путем перемножения соответствующих эпюр с использованием формул Симпсона и трапеций: 2.6. Записываем систему канонических уравнений. После подстановки найденных коэффициентов в уравнение (1.3) получаем: Решаем систему уравнений и находим неизвестные усилия, кН: Примечание. Если знак усилия получился отрицательный, то это означает, что действительное усилие (реакция) направлено в противоположную строну, чем усилие Xi, принятое в эквивалентной системе. Таким образом, раскрывается статическая неопределимость системы. 2.7. Строим окончательные (действительные) эпюры внутренних силовых факторов для заданной системы. Построение эпюр можно выполнить двумя способами. Первый способ Загружаем основную систему заданной нагрузкой и найденными усилиями X1 и X2 (рис. 1.17), после чего строим эпюры М, Q, и N также, как для обычной статически определимой системы. Построенные таким способом эпюры показаны на рис. 1.21, где ординаты эпюры изгибающих моментов отложены со стороны растянутых волокон. Такой метод наиболее удобен для простых систем. Второй способ Вычисляем значения изгибающих моментов в любом (обычно характерном) сечении на основании принципа независимости действия сил по формуле 22 где k – номер сечения, для которого определяется значение изгибающего момента; n – степень статической неопределимости системы. Рис. 1.21 При этом, если найденное усилие Xi имеет отрицательный знак, то соответствующую эпюру Mi необходимо зеркально отобразить относительно осей стержней. При определении действительных значений изгибающих моментов ординаты моментов в расчетных сечениях берутся из эпюр M1, M2 и MP с учетом их знаков. Знаки моментов в рассматриваемом сечении определяются в зависимости от того, с какой стороны от базовой линии расположены ординаты моментов и от положения точки наблюдателя. В нашем случае принимаем, что точка наблюдателя расположена внутри контура, поэтому за положительные значения моментов принимаются моменты, которые вызывают в расчетном сечении растяжение внутренних волокон, а отрицательные – внешних волокон контура. Например, для сечения Д рамы получаем Аналогично и для других сечений. Окончательная эпюра изгибающих моментов для заданной системы показана на рис. 1.21, а. 23 2.8. Проводим деформационную проверку правильности построения действительной эпюры изгибающих моментов. Смысл деформационной проверки состоит в подтверждении отсутствия перемещений в основной системе в направлении отброшенных (перерезанных) связей при найденных значениях неизвестных усилий. Так, если неизвестные усилия найдены правильно, то для рассматриваемого примера должны удовлетворяться равенства: Если построить эпюру единичных моментов 2то проверку называют проверкой на групповое перемещение (рис. 1.22): Отсутствие перемещения подтверждает правильность решения задачи. Если выполненные расчеты не подтверждают отсутствие перемещений точек основной системы в направлении отброшенных связей, то для выявления ошибки расчета необходимо проверить правильность определения коэффициентов канонических уравнений по формуле При отсутствии равенства в этом уравнении выполняется построчная проверка коэффициентов канонических уравнений. Первая строка: . Если нет ошибки расчета в этой строке, то должно соблюдаться условие: Аналогично можно выполнить проверки 2-й и других строк. При выполнении указанных проверок следует проверить правильность расчета грузовых коэффициентов: 2.9. Строим эпюру поперечных сил Q по эпюре изгибающих моментов М путем последовательного вырезания стержней из заданной системы и рассмотрением их как шарнирно опертых статически определимых балок. По концам стержней прикладываем моменты, значения и направления которых выбираем из эпюры М в соответствующих сечениях. При наличии внешних сил прикладываем их на соответствующих участках. Определяем опорные реакции из условия статического равновесия и строим эпюру Q как обычно для статически определимых балок. Для заданной рамы (рис. 1.15) при построении эпюры поперечных сил для стойки вырезаем участок АВ и в сечении В прикладываем момент В 3 , 56 M P взятый из эпюры действительных моментов М (рис. 1.21, б). Определяем опорные реакции из рассмотрения равновесия 3 P и строим эпюру поперечных сил Q (рис. 1.23). Рис. 1.22 25 Аналогичным образом вырезаем горизонтальный стержень (ригель) ВС, рассматриваем его равновесие и строим эпюру Q для этого участка рамы (рис. 1.24). Переносим эпюры Q для отдельных стержней на задан ную систему. Окончательная эпюра поперечных сил для заданной рамы показана на рис 7.14, б. Построение эпюры поперечных сил по эпюре изгибающих моментов возможно и на основании дифференциальной зависимости: где α – угол наклона прямой, очерчивающей эпюру изгибающих моментов, к базовой линии (оси бруса). Поперечная сила считается положительной, если изгибающий момент возрастает в направлении оси. Для рассматриваемого примера: 2.10. Производим построение эпюры продольных сил N.
Рис. 7.16 Рис. 1.24 26 Для этого используем метод вырезания узлов (вырезаем только внеопорные узлы сечениями, бесконечно близкими к узлу) и рассматриваем их равновесие под действием внешней нагрузки (если такова приложена к узлам) и усилий в отброшенных (перерезанных) связях. Вырезаем узел В. Прикладываем к нему поперечные силы, взятые в соответствующих сечениях из эпюры Q (рис. 1.23, б). Узел должен находиться в равновесии (рис. 1.25) под действием поперечных и продольных сил (неизвестных). Определяем неизвестные продольные силы из условия статического равновесия. Эпюра продольных сил показана на рис. 1.23, в. 2.11. Проводим окончательную проверку правильности решения задачи. Система (рама), внеопорный узел или какая-нибудь часть системы должны находиться в равновесии под действием внешней нагрузки и усилий отброшенных (перерезанных) связей. Для заданного примера рассматриваем равновесие рамы, используя уравнения статики (рис. 1.26):

Условие равновесия выполняется. Примечания. 1. Если рама имеет несколько внеопорных узлов, то проверкой охватываются все узлы.

Библиографический список

Рис. 1.25 Рис. 1.26 27 2. При проверке равновесия внеопорного узла необходимо кроме внутренних усилий (M, Q, N), взятых в соответствующих сечениях, приложить еще внешние усилия (сосредоточенные силу и момент), если таковые приложены в узле. В нашем случае нагрузка в узле отсутствует.

Как уже известно, при расчете некоторых стержневых систем для определения усилий в них недостаточно использовать одни лишь уравнения статики, а необходимо составлять дополнительные уравнения - уравнения деформаций (перемещений). Такие системы называются статически неопределимыми.

В настоящей главе рассмотрены расчеты плоских статически неопределимых стержневых систем. Аналогичными способами рассчитывают и пространственные статически неопределимые системы.

Характерной особенностью статически неопределимых систем (в отличие от статически определимых) является то, что распределение усилий в них зависит не только от внешних сил, но и от соотношений между поперечными размерами отдельных элементов. Если элементы систем изготовлены из различных материалов, то распределение усилий также зависит от модулей упругости этих материалов (см. § 9.2).

Расчет статически неопределимой системы начинают с анализа ее схемы. Анализ необходим прежде всего для того, чтобы установить степень статической неопределимости.

Степень статической неопределимости равна числу лишних связей, удаление которых превращает статически неопределимую систему в статически определимую, геометрически неизменяемую систему.

Геометрически неизменяемой называется такая система, изменение фермы которой возможно лишь в связи с деформациями ее элементов.

Статически определимая система не имеет ни одной лишней связи; удаление из нее хотя бы одной связи превращает ее в геометрически изменяемую систему, т. е. в механизм.

Балка, показанная на рис. 1.12, а, является системой, один раз (или однажды) статически неопределимой, так как один из опорных стержней представляет собой лишнюю (избыточную) связь балки с опорой (с основанием).

Отбросив один из опорных стержней (рис. 1.12, б) или включив в балку один шарнир (рис. 1.12, в), получим статически определимую, геометрически неизменяемую систему.

Систему, состоящую из ряда элементов (прямых или криволинейных), жестко (без шарниров) связанных между собой и образующих замкнутую цепь, будем называть замкнутым контуром.

Прямоугольная рама, изображенная на рис. 2.12, я, представляет собой замкнутый контур. Она трижды статически неопределима, так как для превращения ее в статически определимую необходимо, например, перерезать один из ее элементов (рис. 2.12, б) и тем самым устранить три лишние связи. Реакциями этих связей являются продольная сила, поперечная сила и изгибающий момент, действующие в месте разреза; их нельзя определить при помощи уравнений статики. В аналогичных условиях в смысле статической неопределимости находится любой замкнутый контур, который всегда трижды статически неопределим.

Примером сооружения с одним замкнутым контуром является также система, изображенная на рис. 3.12, а. Замкнутым контуром является и бесшарнирная рама, изображенная на рис. 3.12, б; она ограничена снизу землей, которую можно рассматривать как бесконечно жесткий стержень.

В рамной конструкции, представленной на рис. 4.12, а, верхний контур снабжен шарниром; в разрезе, проведенном по этому шарниру, действуют только два внутренних усилия: N и Q (рис. 4.12, б). Такой контур дважды статически неопределим. Если рассматривать всю систему в целом, то она пять раз статически неопределима, так как нижний контур рамы замкнутый и, следовательно, неопределим трижды.

Систему, освобожденную от лишних связей, можно представить состоящей из двух защемленных внизу стержней с горизонтальными консолями (рис. 4.12, б).

Выяснить степень статической неопределимости этой системы можно иначе. Верхний контур рамы, имеющий один внутренний шарнир, дважды статически неопределим (имеет две лишние связи). Кроме того, каждая из заделок дает три составляющие опорной реакции (две силы и момент), т. е. на раму наложено шесть внешних связей, а уравнений статики для плоской системы можно составить лишь три. Следовательно, три внешние связи являются лишними, а всего имеется пять лишних связей, т. е. система пять раз статически неопределима.

Необходимо заметить, что исключение лишних связей для превращения одной и той же статически неопределимой конструкции в статически определимую можно произвести различными способами, однако число отбрасываемых связей всегда одно и то же. Так, например, статически определимые системы, изображенные на рис. 1.12, б, в, получены из статически неопределимой системы (см. рис. 1.12, а); одна - путем удаления промежуточной опоры, а другая - путем постановки промежуточного шарнира, т. е. удаления связи, препятствующей взаимному повороту частей балки, расположенных по обе стороны от введенного шарнира.

Включение шарнира в узел рамы, в котором сходятся два стержня, или же установка его в любое место на оси стержня нарушает (снимает) одну связь и снижает общую степень статической неопределимости системы на единицу. Такой шарнир будем называть одиночным, или простым.

При удалении связей системы необходимо следить за тем, чтобы получаемая конструкция была геометрически неизменяема. Поэтому в раме, показанной на рис. 5.12, а, имеющей одно лишнее опорное закрепление, было бы ошибочным удаление вертикального стерженька (рис. 5.12, б), так как оставшиеся три стерженька не могли бы препятствовать повороту рамы вокруг точки , в которой пересекаются их оси.

Правильный вариант удаления лишнего стержня показан на рис. 5.12, б.

Для конструкций со сложным внутренним образованием можно применить следующий общий прием определения степени статической неопределимости. Идея его заключается в том, что каждый шарнир, включенный в узел, соединяющий k стержней, снижает степень статической неопределимости на так как такой шарнир заменяет одиночных шарниров (рис. 6.12, а). Поэтому для определения степени статической неопределимости конструкции необходимо взять утроенное количество замкнутых контуров (предполагая, что все шарниры, в том числе и опорные, заменены жесткими соединениями) и затем уменьшить его на число включенных в конструкцию одиночных шарниров, учитывая при этом, что один общий шарнир эквивалентен одиночным шарнирам.

Представим это в виде формулы

где - степень статической неопределимости системы; - число замкнутых контуров в конструкции в предположении отсутствия шарнирных соединений; - число одиночных шарниров; шарнир, соединяющий два стержня, считается за один (одиночный шарнир), соединяющий три стержня - за два одиночных шарнира (двойной шарнир) и т. д.

На рис. 6.12, б изображены одиночные шарниры, на рис. 6.12, в - двойные, а на рис. 6.12, г - тройные.

Шарнирно неподвижную опору (рис. 6.12, д) можно изображать в виде одного шарнира, связывающего конструкцию с землей (рис. 6.12, е). Если такая опора соединяет с землей один прямой или ломаный элемент конструкции (рис. 6.12, ж) и то ее следует рассматривать как одиночный шарнир, если два элемента (рис. 6.12, з), - то как двойной шарнир, и т. д.

Рассмотрим теперь раму, изображенную на рис. 7.12, а. Эту раму можно представлять как один замкнутый контур с введен ными в него двумя одиночными шарнирами (рис. 7.12, б). Степень ее статической неопределимости на основании формулы (1.12) равна единице:

Раму, изображенную на рис. 7.12, в, можно рассматривать как состоящую из двух замкнутых контуров с введенными в нее пятью одиночными шарнирами (рис. 7.12, г). Следовательно, степень статической неопределимости этой рамы равна единице:

Систему, изображенную на рис. 7.12, д, можно рассматривать как три замкнутых контура, в которые введены три одиночных и один двойной шарнир (посередине правой стойки).

Следовательно, эта система четырежды статически неопределима:

Если в статически определимой системе устранить какую-либо связь, то система, как отмечалось, превратится в геометрически изменяемую. Следовательно, статически определимая система содержит в своем составе такое количество связей, которое является минимально необходимым для обеспечения ее геометрической неизменяемости; избыточные связи (сверх этого количества) создают статическую неопределимость.

Из любой статически неопределимой системы можно устранить по крайней мере одну связь без нарушения ее изменяемости; однако удаление некоторых связей может превратить статически неопределимую систему в геометрически изменяемую. Такие связи статически неопределимой системы являются абсолютно необходимыми. Усилия в них всегда можно определить при помощи одних лишь уравнении статики.

Примером абсолютно необходимых связей являются вертикальные опорные стержни рамы, показанной на рис. 5.12, а; удаление одного из них делает раму геометрически изменяемой.

Связи, удаление которых не превращает статически неопределимую систему в геометрически изменяемую, называются условно необходимыми. Усилия в них нельзя определить при помощи одних лишь уравнений статики. Примером таких связей являются горизонтальные опорные стержни рамы, изображенной на рис. 5.12, а.


Стержневые системы, опорные реакции и внутренние силовые факторы в которых не могут быть найдены из одних лишь уравнений равновесия, называются статически неопределимыми .

Разность между числом искомых неизвестных усилий и независимых уравнений равновесия определяет степень статической неопределимости системы . Степень статической неопределимости всегда равна числу избыточных (лишних) связей, удаление которых превращает статически неопределимую систему в статически определимую геометрически неизменяемую систему. Избыточными могут быть как внешние (опорные) связи, так и внутренние, накладывающие определенные ограничения на перемещение сечений системы друг относительно друга.

Геометрически неизменяемой называется такая система, изменение формы которой возможно лишь в связи с деформациями ее элементов.

Геометрически изменяемой называется такая система, элементы которой могут перемещаться под действием внешних сил без деформации (механизм).

Изображенная на рис. 12.1 рама имеет семь внешних (опорных) связей. Для определения усилий в этих связях (опорных реакций) можно составить всего лишь три независимых уравнения равновесия. Следовательно, данная система имеет четыре избыточных связи, а это означает, что она четыре раза статически неопределима. Таким образом, степень статической неопределимости для плоских рам равна:

где R - число опорных реакций.

Контур, состоящий из ряда элементов (прямых или криволинейных), жестко (без шарниров) связанных между собой и образующих замкнутую цепь, называется замкнутым . Прямоугольная рама, изображенная на рисунке 12.2, представляет собой замкнутый контур. Она трижды статически неопределима, так как для превращения ее в статически определимую необходимо перерезать один из ее элементов и устранить три лишние связи. Реакциями этих связей являются: продольная сила, поперечная сила и изгибающий момент, действующие в месте разреза; их нельзя определить при помощи уравнений статики. В аналогичных условиях в смысле статической неопределимости находится любой замкнутый контур, который всегда трижды статически неопределим .

Включение шарнира в узел рамы, в которой сходятся два стержня, или же постановка его в любое место на оси стержня снимает одну связь и снижает общую степень статической неопределимости на единицу. Такой шарнир называется одиночным или простым (рис. 12.3).

В общем случае каждый шарнир, включенный в узел, соединяющий c стержней, снижает степень статической неопределимости на c -1 , так как такой шарнир заменяет c -1 одиночных шарниров (рис. 12.3). Таким образом, степень статической неопределимости системы при наличии замкнутых контуров определяется по формуле.

Методические указания по выполнению расчетно-графической работы для студентов специальностей 2903, 2906,2907, 2908, 2910

Казань, 2006 г.


Составитель: Р.А.Каюмов

УДК 539.3

Расчет статически неопределимой стержневой системы, содержащей абсолютно жесткий элемент; Методические указания по выполнению расчетно-графической работы для студентов специальностей 2903, 2906, 2907, 2908, 2910 / КазГАСУ; сост. Р.А. Каюмов. Казань, 2005, 24 с.

В данных методических указаниях кратко излагается методика расчета простейших ферменных конструкций с жестким элементом и приводится пример расчета.

Илл.6.

Рецензент канд.физ.-мат. наук, проф. Кафедры теоретической механики КГАСУ Шигабутдинов Ф.Г.

ã Казанский государственный архитектурно-строительный университет


ЗАДАНИЕ № 3

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ ШАРНИРНО-стержневой системы

Для заданной шарнирно-стержневой системы (см.схему), состоящей из абсолютно жесткого бруса и упругих стержней с заданными соотношениями площадей поперечных сечений, требуется:

1. Установить степень статической неопределимости.

2. Найти усилия в стержнях.

3. Записать условия прочности для стержней от силовых воздействий и произвести подбор поперечных сечений стержней с учетом заданных соотношений площадей. Материал Ст-3, предел текучести принять равным 240 МПа = 24 кН/см 2 , коэффициент запаса прочности k = 1,5.

4. Найти напряжения в стержнях от неточности изготовления стержней d 1 = d 2 = d 3 = (см. табл.3). Если имеет знак плюс, то, значит, стержень сделан длиннее; если минус – короче.

5. Найти напряжения в стержнях от изменения температуры в стержнях на Dt° (см. табл.3). Коэффициент линейного расширения для стали 1/град.

6. Сделать проверку прочности системы при различных вариантах силовых и несиловых воздействий: 1) конструкция собрана, еще не нагружена, но произошел перепад температур; 2) случай, когда нет перепада температур, а конструкция собрана и нагружена. 3) случай, когда конструкция собрана, нагружена и произошел перепад температур.

7. Определить предельную грузоподъемность системы и истинный коэффициент запаса прочности, приняв постоянное соотношение между и .

Задание выполняется в полном объеме студентами специальностей ПГС и АД. Студенты других специальностей выполняют расчет системы только на внешнее нагружение по допускаемым напряжениям и по допускаемой нагрузке, исключив стержень 3.

Исходные данные для выполнения расчетно-графической работы выбираются по шифру, выдаваемому преподавателем.


Схемы к заданию № 3



таблица 3

А Б В Г Б в В
, кН , кН/м , м , м , м , м , м , мм
0.3 3/2
-30 -0.4 1/2
0.5 3/2
-25 -0.6 3/4 3/2
0.7 5/4 1/2
-35 -0.4 1/2 4/5
0.5 2/3 1/2
-0.7 1/2 4/5
-20 -0.3 3/2 2/3
0.6 2/3 5/4

ПОСТАНОВКА ЗАДАЧИ

Рассматривается шарнирно-стержневая система (рис.1), состоящая из жесткого бруса и деформируемых стержней, изготовленных с заданным соотношением площадей поперечных сечений, которое указывается в задании. Известны проектные нагрузки F , q ; размеры конструкции h 1 , h 2 , L 1 , L 2 , L 3 ; проектные колебания температуры: Dt 1 - в первом стержне, Dt 2 - во втором, Dt 3 - в третьем; неточности изготовления стержней, а именно d 1 – отличие от проектной длины в первом стержне, d 2 – во втором, d 3 – в третьем. Известны механические характеристики материала: модуль упругости Е = 2×10 4 кн/см 2 , предел текучести s т = 24 кн/см 2 , коэффициент температурного расширения a =125×10 -7 1/Град. Коэффициент запаса прочности k для этой конструкции принимается равным 1,5.



Необходимо решить 3 задачи:

1. Произвести подбор сечений стержней для изготовления этой системы из условия прочности этих стержней по допустимым напряжениям при проектных нагрузках.

2. Сделать заключение о допустимости проектных колебаний температуры и неточностей изготовления стержней.

3. Найти предельную грузоподъемность конструкции, допустимые нагрузки и истинный запас прочности.

Таким образом, работа состоит из проектировочного расчета, поверочного расчета, расчета предельных нагрузок для системы.

В РГР должны быть приведены 3 рисунка (выполненных в масштабе): исходная схема стержневой системы, силовая схема и кинематическая схема деформирования конструкции.

2. Метод сечений.

3. Закон Гука.

4. Удлинение от изменения температуры.

5. Предел прочности, допустимое напряжение, условие прочности.

6. Пластическое течение, предел текучести.

7. Статическая неопределимость.

8. Условие совместности деформаций.

9. Расчет по допускаемым напряжениям.

10. Расчет по теории предельного равновесия.


ОБЩИЙ ПЛАН РАСЧЕТА КОНСТРУКЦИИ

Вначале конструкцию освобождают от связей, заменяя их реакциями. Методом сечений вводят в рассмотрение внутренние продольные силы (нормальные силы), возникающие в стержнях. При этом направлять их нужно от сечения, т.е. условно считать стержни растянутыми. Определить реакции и продольные силы из уравнений равновесия не удается, т.к. в плоской задаче статики можно составить 3 независимых уравнения равновесия, число же неизвестных силовых факторов (реакций и продольных сил) больше трех. Поэтому необходимо составить дополнительные уравнения, вытекающие из предположения о деформируемости стержней (уравнения совместности деформаций, связывающие удлинения стержней между собой). Вытекают они из геометрических соображений. При этом используется предположение о малости деформаций. Кроме того, необходимо учесть следующее правило знаков. Полную разницу между проектной длиной стержня l и конечной истинной длиной l кон обозначают через Dl . Следовательно, если стержень удлиняется, то , если укорачивается, то .

Как видно из рис.2, изменение длины стержня Dl складывается из удлинения Dl ( N ) , вызванного усилием осевого растяжения N , удлинения Dl (t) , вызванного изменением температуры, и неточности изготовления d .



Если температура понижается, то Dt < 0, то длина стержня уменьшается, т.е. ; если стержень сделан короче проектного, то d < 0. С учетом закона Гука это соотношение примет вид:

Поскольку удлинения выражаются через продольные силы по формулам (1), то из уравнений совместности вытекают соотношения, связывающие между собой искомые усилия. Здесь и далее для упрощения записи используются следующие обозначения: продольная сила и напряжение в стержне с номером i .

В рассматриваемой РГР не требуется отыскивать реакции. Поэтому из 3-х уравнений равновесия достаточно оставить одно – условие равенства нулю моментов всех внешних и внутренних сил относительно оси, проходящей через центр шарнира D (рис.1). Решение полученной системы (уравнений равновесия и совместности деформаций) позволяет отыскать усилия в стержнях.

Далее проводятся проектировочный (задача 1) и поверочный (задача 2) расчеты методом допустимых напряжений. За опасное напряжение принимается предел текучести s т . Согласно метода допустимых напряжений конструкция считается вышедшей из строя, если напряжение достигло опасного значения хотя бы в одном стержне, т.е. оказался разрушенным хотя бы один из стержней:

Для обеспечения безопасности конструкции требуется наличие запаса прочности, т.е. должно выполняться условие прочности вида

, (3)

где k - коэффициент запаса, [s ] - допустимое напряжение.

Разрушение одного элемента конструкции не всегда означает потерю ее эксплуатационных свойств (т.е. обрушения). Другие элементы могут взять на себя нагрузку или ее часть, которую должен был нести разрушенный элемент. Это соображение используется в задаче 3, решаемой методом предельного равновесия, называемого еще методом допустимых нагрузок .

В постановке задачи предполагается, что силы Р и Q увеличиваются пропорционально (Р / Q = const), площади сечений стержней известны из решения задачи 1, материал стержней - упруго-идеально-пластический. При увеличении нагрузки сначала "потечет" один стержень, напряжение в нем при дальнейшей деформации не будет увеличиваться и по модулю останется равным пределу текучести s т (см.рис.3). Последующее увеличение нагрузок приведет к тому, что сначала во втором, а затем и в третьем стержнях начнется пластическое течение, т.е. напряжения достигнут предела текучести. Очевидно, что какими бы ни были в начале процесса монтажные или температурные напряжения, наконец наступает момент, когда во всех стержнях напряжения достигнут предела текучести (т.к. они не могут принять больших значений, согласно диаграмме деформирования на рис.3). Достигнутые значения сил F = F пр и Q = Q пр называются предельными, т.к. их увеличение невозможно, а система начнет неограниченно деформироваться. Поскольку усилия N i в предельном состоянии известны (т.к. выражаются через напряжения), то из уравнения равновесия определяется F пр . Из условия безопасности нагружения находятся допустимые нагрузки


Как видно из рассуждений при решении задачи 3, наличие изменений температуры или неточностей изготовления стержней не уменьшает грузоподъемности конструкции, если стержни изготовлены из упруго-идеально-пластического материала.

ПРИМЕЧАНИЯ

1. Преподаватель может конкретизировать задачу подбора стержней, потребовав использовать сортамент прокатной стали, например, подобрать составное сечение из уголков по таблицам сортамента (см. пример расчета).

2. При вычислениях достаточно оставлять 3 значащие цифры.

3. При подборе размеров стержней допускается 5 % перегрузки.


Пример расчета

Пусть дана шарнирно-стержневая система (рис.4). Известно, что

E = 2×10 4 кн/см 2 , s т = 24 кн/см 2 , a = 125×10 -7 1/град. (5)