Что называется пределом упругости. Определение характеристик прочности

Основными механическими свойствами являются прочность, упругость, , . Зная механические свойства, конструктор обоснованно выбирает соответствующий материал, обеспечивающий надежность и долговечность конструкций при их минимальной массе. Механические свойства определяют поведение материала при деформации и разрушении от действия внешних нагрузок.

В зависимости от условий нагружения механические свойства могут определяться при:

  1. Статическом нагружении – нагрузка на образец возрастает медленно и плавно.
  2. Динамическом нагружении – нагрузка возрастает с большой скоростью, имеет ударный характер.
  3. Повторно, переменном или циклическим нагружении – нагрузка в процессе испытания многократно изменяется по величине или по величине и направлению.

Для получения сопоставимых результатов образцы и методика проведения механических испытаний регламентированы ГОСТами.

Механические свойства металлов, сталей и сплавов. Прочность.

Прочность – способность материала сопротивляться деформациям и разрушению.

Испытания проводятся на специальных машинах, которые записывают диаграмму растяжения, выражающую зависимость удлинения образца Δl (мм) от действующей нагрузки Р, то есть Δl = f(P) . Но для получения данных по механическим свойствам перестраивают: зависимость относительного удлинения Δl от напряжения δ.

Диаграмма растяжения материала

Рис 1: а – абсолютная , б – относительная; в – схема определения условного предела текучести

Проанализируем процессы, которые происходят в материале образца при увеличении нагрузки: участок оа на диаграмме соответствует упругой деформации материала, когда соблюдается закон Гука. Напряжение, соответствующее упругой предельной деформации в точке а , называется пределом пропорциональности.

Механические свойства металлов, сталей и сплавов. Предел пропорциональности.

Предел пропорциональности (σ пц) – максимальное напряжение, до которого сохраняется линейная зависимость между деформацией и напряжением.

При напряжениях выше предела пропорциональности происходит равномерная пластическая деформация (удлинение или сужение сечения). Каждому напряжению соответствует остаточное удлинение, которое получаем проведением из соответствующей точки диаграммы растяжения линии параллельной оа .

Так как практически невозможно установить точку перехода в неупругое состояние, то устанавливают условный предел упругости , – максимальное напряжение, до которого образец получает только упругую деформацию. Считают напряжение, при котором остаточная деформация очень мала (0,005…0,05%). В обозначении указывается значение остаточной деформации (σ 0.05).

Механические свойства металлов, сталей и сплавов. Предел текучести.

Предел текучести характеризует сопротивление материала небольшим пластическим деформациям. В зависимости от природы материала используют физический или условный предел текучести.

Физический предел текучести σ m – это напряжение, при котором происходит увеличение деформации при постоянной нагрузке (наличие горизонтальной площадки на диаграмме растяжения). Используется для очень пластичных материалов.

Но основная часть металлов и сплавов не имеет площадки текучести.

Условный предел текучести σ 0.2 – это напряжение вызывающее остаточную деформацию δ = 0.20%.

Физический или условный предел текучести являются важными расчетными характеристиками материала. Действующие в детали напряжения должны быть ниже предела текучести. Равномерная по всему объему продолжается до значения предела прочности. В точке в в наиболее слабом месте начинает образовываться шейка – сильное местное утомление образца.

Механические свойства металлов, сталей и сплавов. Предел прочности.

Предел прочности σ в напряжение, соответствующее максимальной нагрузке, которую выдерживает образец до разрушения (временное сопротивление разрыву).

Образование шейки характерно для пластичных материалов, которые имеют диаграмму растяжения с максимумом. Предел прочности характеризует прочность как сопротивления значительной равномерной пластичной деформации. За точкой В, вследствие развития шейки, нагрузка падает и в точке С происходит разрушение.

Истинное сопротивление разрушению – это максимальное напряжение, которое выдерживает материал в момент, предшествующий разрушению образца (рисунок 2).

Истинное сопротивление разрушению значительно больше предела прочности, так как оно определяется относительно конечной площади поперечного сечения образца.

Истинная диаграмма растяжения

Рис. 2

F к - конечная площадь поперечного сечения образца.

Истинные напряжения S i определяют как отношение нагрузки к площади поперечного сечения в данный момент времени.

При испытании на растяжение определяются и характеристики пластичности.

Механические свойства металлов, сталей и сплавов. Пластичность.

Пластичность способность материала к пластической деформации, то есть способность получать остаточное изменение формы и размеров без нарушения сплошности. Это свойство используют при обработке металлов давлением.

Характеристики:

  • относительное удлинение :

l о и l к – начальная и конечная длина образца;

2. Предел упругости

3. Предел текучести

4. Предел прочности или временное сопротивление

5. Напряжение в момент разрыва


Рисунок. 2.3 – Вид цилиндрического образца после разрушения (а) и изменение зоны образца вблизи места разрыва (б)

Чтобы диаграмма отражала только свойства материала (независимо от размеров образца), ее перестраивают в относительных координатах (напряжение-деформация).

Ординаты произвольной i-той точки такой диаграммы (рис. 2.4) получают делением значений растягивающей силы (рис. 2.2) на первоначальную площадь поперечного сечения образца (), а абсциссы – делением абсолютного удлинения рабочей части образца на первоначальную её длину (). В частности для характерных точек диаграммы ординаты вычисляют по формулам (2.3)…(2.7).

Полученную диаграмму называют условной диаграммой напряжений (рис. 2.4).

Условность диаграммы заключается в способе определения напряжения не по текущей площади поперечного сечения, изменяющейся в процессе испытаний, а по первоначальной – .Диаграмма напряжений сохраняет все особенности.исходной диаграммы растяжения. Характерные напряжения диаграммы называются предельными и отражают свойства прочности испытуемого материала. (формулы 2.3…2.7). Заметим, что поучаемый в этом случае предел текучести металла соответствует новому физическому состоянию металла и поэтому называется физическим пределом текучести


Рисунок. 2.4 – Диаграмма напряжений

Из диаграммы напряжений (рис. 2.4) видно, что

т. е. модуль упругости при растяжении Е численно равен тангенсу угла наклона начального прямолинейного участка диаграммы напряжений к оси абсцисс. В этом – геометрический смысл модуля упругости при растяжении.

Если относить усилия, действующие на образец в каждый момент времени нагружения, к истинному значению поперечного сечения в соответствующий момент времени, то мы получим диаграмму истинных напряжений, часто обозначаемых буквой S (рис. 2.5, сплошная линия). Поскольку на участке диаграммы 0-1-2-3-4 диаметр образца уменьшается незначительно (шейка еще не образовалась), то истинная диаграмма, в пределах этого участка, практически совпадает с условной диаграммой (пунктирная кривая), проходя несколько выше.

Рисунок. 2.5 – Диаграмма истинных напряжений

Построение остального участка истинной диаграммы напряжений (участок 4-5 на рис. 2.5) вызывает необходимость измерения диаметра образца в процессе испытания на растяжение, что не всегда возможно. Существует приближенный способ построения этого участка диаграммы, основанный на определении координат точки 5() истинной диаграммы (рис. 2.5), соответствующей моменту разрыва образца. Сначала определяется истинное напряжение разрыва

где – усилие на образце в момент его разрыва;

– площадь поперечного сечения в шейке образца в момент разрыва.

Вторая координата точки – относительная деформация включает две составляющие – истинную пластическую – и упругую – . Значение может быть определено из условия равенства объемов материала вблизи места разрыва образца до и после испытания (рис. 2.3). Так до испытания объем материала образца единичной длины будет равен , а после разрыва . Здесь – удлинение образца единичной длины вблизи места разрыва. Поскольку истинная деформация здесь , а , то . Упругую состав--ляющую находим по закону Гука: . Тогда абсцисса точки 5 будет равна . Проводя плавную кривую между точками 4 и 5, получим полный вид истинной диаграммы.

Для материалов, диаграмма растяжения которых на начальном участке не имеет резко выраженной площадки текучести (см. рис. 2.6) предел текучести условно определяют как напряжение, при котором остаточная деформация составляет величину, установленную ГОСТом или техническими условиями. По ГОСТу 1497–84 эта величина остаточной деформации составляет 0,2% измеренной длины образца, а условный предел текучести обозначается символом – .

При испытании образцов на растяжение кроме характеристик прочности определяют также характеристики пластичности, к которым относится относительное удлинение образца после разрыва , определяемое как отношение приращения длины образца после разрыва к его первоначальной длине:

и относительное сужение , рассчитываемое по формуле

% (2.10)

В этих формулах – начальная расчетная длина и площадь поперечного сечения образца, – соответственно длина расчетной части и минимальная площадь поперечного сечения образца после разрыва.

Вместо относительной деформации в некоторых случаях используют так называемую логарифмическую деформацию. Так как по мере растяжения длины образца меняется, то приращение длины dl относят не к , а к текущему значению . Если проинтегрировать приращения удлинений при изменении длины от до , то получим логарифмическую или истинную деформацию металла

тогда – деформация при разрыве (т.е. = k ) будет

.

Следует еще учесть, что пластическая деформация в образце по его длине протекает неравномерно.

В зависимости от природы металла их условно подразделяют на весьма пластичные (отожженная медь, свинец) пластичные (низкоуглеродистые стали), хрупкие (серый чугун), весьма хрупкие (белый чугун, керамика).

Скорость приложения нагрузки V деформ влияет на вид диаграммы и характеристики материала. σ Т и σ в возрастает с повышением скорости нагрузки. Деформации, соответствующие пределу прочности и точке разрушения уменьшаются.

Обычные машины обеспечивают скорость деформации

10 -2 …10 -5 1/сек.

С понижением температуры Т исп у перлитных сталей увеличивается σ Т и уменьшается .

Аустенитные стали, Al и Тi сплавы слабее реагируют на понижение Т .

С ростом температуры наблюдается изменение деформаций во времени при постоянных напряжениях, т.е. протекает ползучесть, причем чем > σ , тем < .

Обычно бывает три стадии ползучести. Для машиностроения наибольший интерес представляет II стадия, где έ= const (установившаяся стадия ползучести).

Для сопоставления сопротивления ползучести различных металлов введена условная характеристика – предел ползучести.

Пределом ползучести σ пл называется напряжение, при котором пластическая деформация за заданный промежуток времени достигает величины, установленной техническими условиями.

Наряду с понятием “ползучести” известно еще понятие “релаксация напряжений”.

Процесс релаксации напряжений протекает при постоянных деформациях.

Образец, находящийся под постоянной нагрузкой при высокой Т может разрушиться либо с образованием шейки (вязкое интеркристаллическое разрушение), либо без нее (хрупкое транскристаллическое разрушение). Первое характерно для более низких Т и высоких σ .

Прочность материала при высоких Т оценивается пределом длительной прочности.

Пределом длительной прочности (σ дп) называется отношение нагрузки, при которой растянутый образец через определенный промежуток времени разрушается, к первоначальной площади поперечного сечения.

При проектировании сварных изделий, работающих при повышенных Т , ориентируются на следующие величины при назначении [σ ]:

а) при Т 260 о С на предел прочности σ в ;

б) при Т 420 о С для углеродистых сталей Т < 470 о С для стали 12Х1МФ, Т < 550 о С для 1Х18Н10Т – на σ Т ;

в) при более высоких Т на предел длительной прочности σ дп .

Кроме перечисленных методов испытаний при статических нагрузках производят еще испытания на изгиб, кручение, срез, сжатие, смятие, устойчивость, твердость.

Казалось бы, что полученные в предыдущих параграфах результаты решают задачу проверки сжатого стержня на устойчивость; остается выбрать лишь коэффициент запаса . Однако это далеко не так. Ближайшее же изучение числовых величин, получаемых по формуле Эйлера, показывает, что она дает правильные результаты лишь в известных пределах.

На рис.1 приведена зависимость величины критических напряжений, вычисленных при различных значениях гибкости для стали 3, обычно применяемой в металлических конструкциях. Эта зависимость представляется гиперболической кривой, так называемой «гиперболой Эйлеpa»:

При пользовании этой кривой надо вспомнить, что представляемая ею формула получена при помощи интегрирования дифференциального уравнения изогнутой оси, т. е. в предположении, что напряжения в стержне в момент потери устойчивости не превосходят предела пропорциональности .


Рис.1. Гиперболическая зависимость критического напряжения от гибкости стержня

Следовательно, мы не имеем права пользоваться величинами критических напряжений, вычисленных по формуле Эйлера, если они получаются выше этого предела для данного материала. Иначе говоря, формула Эйлера применима лишь при соблюдении условия:

Если из этого неравенства выразить гибкость , то условие применимости формул Эйлера получит иной вид:

Подставляя соответствующие значения модуля упругости и предела пропорциональности для данного материала, находим наименьшее значение гибкости, при которой еще можно пользоваться формулой Эйлера. Для стали 3 предел пропорциональности может быть принят равным , поэтому, для стержней из этого материала можно пользоваться формулой Эйлера лишь при гибкости

т. е. большей, чем 100 %

Для стали 5 при формула Эйлера применима при гибкости ; для чугуна — при , для сосны — при и т. д. Если мы на Рис.1 проведем горизонтальную линию с ординатой, равной , то она рассечет гиперболу Эйлера на две части; пользоваться можно лишь нижней частью графика, относящейся к сравнительно тонким и длинным стержням, потеря устойчивости которых происходит при напряжениях, лежащих не выше предела пропорциональности.

Теоретическое решение, полученное Эйлером, оказалось применимым на практике лишь для очень ограниченной категории стержней, а именно, тонких и длинных, с большой гибкостью. Между тем, в конструкциях очень часто встречаются стержни с малой гибкостью. Попытки использовать формулу Эйлера для вычисления критических напряжений и проверки устойчивости при малых гибкостях вели иногда к весьма серьезным катастрофам, да и опыты над сжатием стержней показывают, что при критических напряжениях, больших предела пропорциональности, действительные критические силы значительно ниже определенных по формуле Эйлера.

Таким образом, надо найти способ вычисления критических напряжений и для тех случаев, когда они превышают предел пропорциональности материалов, например, для стержней из мягкой стали при гибкостях от 0 до 100.

Необходимо сразу же отметить, что в настоящее время важнейшим источником для установления критических напряжений за пределом пропорциональности, т. е. при малых и средних гибкостях, являются результаты экспериментов. Имеются попытки и теоретического решения этой задачи, но они скорее указывают путь к дальнейшим исследованиям, чем дают основания для практических расчетов.

Прежде всего надо выделить стержни с малой гибкостью, от 0 примерно до 30—40; у них длина сравнительно невелика по отношению к размерам поперечного сечения. Например, для стержня круглого сечения гибкости 20 соответствует отношение длины к диаметру, равное 5. Для таких стержней трудно говорить о явлении потери устойчивости прямолинейной формы всего стержня в целом в том смысле, как это имеет место для тонких и длинных стержней.

Эти короткие стержни будут выходить из строя главным образом за счет того, что напряжения сжатия в них будут достигать предела текучести (при пластичном материале) или предела прочности (при хрупких материалах). Поэтому для коротких стержней, до гибкости примерно 3040, критические напряжения «будут равны, или немного ниже (за счет наблюдающегося все же некоторого искривления оси стержня), соответственно или (сталь), или (чугун, дерево).

Таким образом, мы имеем два предельных случая работы сжатых стержней: короткие стержни, которые теряют грузоподъемность в основном за счет разрушения материала от сжатия, и длинные, для которых потеря грузоподъемности вызывается нарушением устойчивости прямолинейной формы стержня. Количественное изменение соотношения длины и поперечных размеров стержня меняет и весь характер явления разрушения. Общим остается лишь внезапность наступления критического состояния в смысле внезапного резкого возрастания деформаций.

В сжатых стержнях большой гибкости, для которых применима формула Эйлера, после достижения силой Р критического значения обычно наблюдается резкий рост деформаций. До этого момента прогибы, как правило, растут с ростом нагрузки, но остаются незначительными. Теоретически можно было бы ожидать, что до критической силы стержень будет оставаться прямым; однако ряд неизбежных на практике обстоятельств — начальная кривизна стержня, некоторый эксцентриситет приложения нагрузки, местные перенапряжения, неоднородность материала — вызывают небольшие прогибы и при сжимающих силах, меньших критических.

Подобный же характер имеет и зависимость укорочений от напряжения при сжатии коротких стержней; мы имеет ту же внезапность роста деформаций при определенной величине напряжений (когда ).

Нам остается теперь рассмотреть поведение сжатых стержней при средних величинах гибкости, например для стальных стержней при гибкостях от 40 до 100; с подобными значениями гибкостей инженер чаще всего встречается на практике.

По характеру разрушения эти стержни приближаются к категории ^ тонких и длинных стержней; они теряют свою прямолинейную форму и разрушаются при явлениях значительного бокового выпучивания. При опытах для них можно отметить наличие ясно выраженной критической силы в «эйлеровом» смысле; критические напряжения получаются выше предела пропорциональности и ниже предела текучести для пластичных и предела прочности для хрупких материалов.

Однако потеря прямолинейной формы и понижение критических напряжений по сравнению с короткими стержнями для этих стержней «средней» гибкости связаны с такими же явлениями нарушения прочности материала, какие вызывают потерю грузоподъемности в коротких стержнях. Здесь комбинируются и влияние длины, понижающее величину критических напряжений, и влияние значительного роста деформаций материала при напряжениях за пределом пропорциональности.

Экспериментальное определение критических сил для сжатых стержней производилось неоднократно как у нас, так и заграницей. Особенно обширный опытный материал собрал проф. Ф. Ясинский, составивший таблицу критических («ломающих») напряжений в. зависимости от гибкости для целого ряда материалов и положивший начало современным методам расчета сжатых стержней на устойчивость.

На основании полученного опытного материала можно считать, что при критических напряжениях, меньших предела пропорциональности, все эксперименты подтверждают формулу Эйлера для любого материала.

Для стержней средней и малой гибкости были предложены различные эмпирические формулы, показывающие, что критические напряжения при таких гибкостях меняются по закону, близкому к линейному:

где а и b — коэффициенты, зависящие от материала, a — гибкость стержня. Для литого железа Ясинский получил: а = 338,7МПа , b = 1,483 МПа . Для стали 3 при гибкостях от = 40 до = 100 коэффициенты а и b могут быть приняты: а = 336 МПа ; b = 1,47МПа . Для дерева (сосна): а = 29,3 МПа ; b = 0,194 МПа.

Иногда удобны эмпирические формулы, дающие для неупругой области изменение критических напряжений по закону квадратной параболы; к ним относится формула

Здесь при = 0 считают для пластичного и для хрупкого материала; коэффициент а , подобранный из условия плавного сопряжения с гиперболой Эйлера, имеет значение:

для стали с пределом текучести = 280 МПа а = 0,009 МПа

При наличии приведенных здесь данных может быть построен полный график критических напряжений (в зависимости от гибкости) для любого материала. На Рис.2 приведен такой график для строительной стали с пределом текучести и пределом пропорциональности .


Рис.2. Полный график критических напряжений для строительной стали.

График состоит из трех частей: гиперболы Эйлера при, наклонной прямой при и горизонтальной, или слабо наклонной, прямой при . Подобные же графики можно построить, комбинируя формулу Эйлера с результатами экспериментов, и для других материалов.

Проверка сжатых стержней на устойчивость.

Ранее было отмечено, что для сжатых стержней должны быть произведены две проверки:

на прочность

на устойчивость

где

Для установления допускаемого напряжения на устойчивость нам остается теперь выбрать только коэффициент запаса k .

На практике этот коэффициент колеблется для стали в пределах от 1,8 до 3,0. Коэффициент запаса на устойчивость выбирается выше коэффициента запаса на прочность, равного для стали 1,5 — 1,6.

Это объясняется наличием ряда обстоятельств, неизбежных на практике (начальная кривизна, эксцентриситет действия, нагрузки, неоднородность материала и т. д.) и почти не отражающихся на работе конструкции при других видах деформации (кручение, изгиб, растяжение).

Для сжатых же стержней, ввиду возможности потери устойчивости, эти обстоятельства могут сильно снизить грузоподъемность стержня. Для чугуна коэффициент запаса колеблется от 5,0 до 5,5, для дерева — от 2,8 до 3,2.

Чтобы установить связь между допускаемым напряжением на устойчивость и допускаемым напряжением на прочность , возьмем их отношение:

Обозначая

здесь — коэффициент уменьшения основного допускаемого напряжения для сжатых стержней.

Имея график зависимости от для данного материала, зная или и выбрав коэффициенты запаса на прочность и на устойчивость , можно составить таблицы значений коэффициента в функции от гибкости. Такие данные приводятся в наших технических условиях на проектирование сооружений; они сведены в таблицу.

На сегодняшний день существует несколько методик испытания образцов материалов. При этом одним из самых простых и показательных являются испытания на растяжение (на разрыв), позволяющие определить предел пропорциональности, предел текучести, модуль упругости и другие важные характеристики материала. Так как важнейшей характеристикой напряженного состояния материала является деформация, то определение значения деформации при известных размерах образца и действующих на образец нагрузок позволяет установить вышеуказанные характеристики материала.

Тут может возникнуть вопрос: почему нельзя просто определить сопротивление материала? Дело в том, что абсолютно упругие материалы, разрушающиеся только после преодоления некоторого предела - сопротивления, существуют только в теории. В реальности большинство материалов обладают как упругими так и пластическими свойствами, что это за свойства, рассмотрим ниже на примере металлов.

Испытания металлов на растяжение проводятся согласно ГОСТ 1497-84. Для этого используются стандартные образцы. Методика испытаний выглядит приблизительно так: к образцу прикладывается статическая нагрузка, определяется абсолютное удлинение образца Δl , затем нагрузка увеличивается на некоторое шаговое значение и снова определяется абсолютное удлинение образца и так далее. На основании полученных данных строится график зависимости удлинений от нагрузки. Этот график называется диаграммой напряжений.

Рисунок 318.1 . Диаграмма напряжений для стального образца.

На данной диаграмме мы видим 5 характерных точек:

1. Предел пропорциональности Р п (точка А)

Нормальные напряжения в поперечном сечении образца при достижении предела пропорциональности будут равны:

σ п = Р п /F o (318.2.1)

Предел пропорциональности ограничивает участок упругих деформаций на диаграмме. На этом участке деформации прямо пропорциональны напряжениям, что выражается законом Гука:

Р п = kΔl (318.2.2)

где k - коэффициент жесткости:

k = EF/l (318.2.3)

где l - длина образца, F - площадь сечения, Е - модуль Юнга.

Модули упругости

Главными характеристиками упругих свойств материалов являются модуль Юнга Е (модуль упругости первого рода, модуль упругости при растяжении), модуль упругости второго рода G (модуль упругости при сдвиге) и коэффициент Пуассона μ (коэффициент поперечной деформации).

Модуль Юнга Е показывает отношение нормальных напряжений к относительным деформациям в пределах пропорциональности

Модуль Юнга также определяется опытным путем при испытании стандарт-ных образцов на растяжение. Так как нормальные напряжения в материале равны силе, деленной на начальную площадь сечения:

σ = Р/F о (318.3.1), (317.2)

а относительное удлинение ε - отношению абсолютной деформации к начальной длине

ε пр = Δl/l o (318.3.2)

то модуль Юнга согласно закону Гука можно выразить так

Е = σ/ε пр = Pl o /F o Δl = tgα (318.3.3)

Рисунок 318.2 . Диаграммы напряжений некоторых сплавов металлов

Коэффициент Пуассона μ показывает отношение поперечных деформаций к продольным

Под воздействием нагрузок не только увеличивается длина образца, но и уменьшается площадь рассматриваемого поперечного сечения (если предположить, что объем материала в области упругих деформаций остается постоянным, то значит увеличение длины образца приводит к уменьшению площади сечения). Для образца, имеющего круглое сечение, изменение площади сечения можно выразить так:

ε поп = Δd/d o (318.3.4)

Тогда коэффициент Пуассона можно выразить следующим уравнением:

μ = ε поп /ε пр (318.3.5)

Модуль сдвига G показывает отношение касательных напряжений т к углу сдвига

Модуль сдвига G может быть определен опытным путем при испытании образцов на кручение.

При угловых деформациях рассматриваемое сечение перемещается не линейно, а под некоторым углом - углом сдвига γ к начальному сечению. Так как касательные напряжения равны силе, деленной на площадь в плоскости которой действует сила:

т = Р/F (318.3.6)

а тангенс угла наклона можно выразить отношением абсолютной деформации Δl к расстоянию h от места фиксации абсолютной деформации до точки, относительно которой осуществлялся поворот:

tgγ = Δl/h (318.3.7)

то при малых значениях угла сдвига модуль сдвига можно выразить следующим уравнением:

G = т /γ = Ph/FΔl (318.3.8)

Модуль Юнга, модуль сдвига и коэффициент Пуассона связаны между собой следующим отношением:

Е = 2(1 + μ)G (318.3.9)

Значения постоянных Е, G и µ приводятся в таблице 318.1

Таблица 318.1 . Ориентировочные значения упругих характеристик некоторых материалов

Примечание: Модули упругости являются постоянными величинами, однако технологии изготовления различных строительных материалов меняются и более точные значения модулей упругости следует уточнять по действующим в настоящий момент нормативным документам. Модули упругости бетона зависят от класса бетона и потому здесь не приводятся.

Упругие характеристики определяются для различных материалов в пределах упругих деформаций, ограниченных на диаграмме напряжений точкой А. Между тем на диаграмме напряжений можно выделить еще несколько точек:

2. Предел упругости Р у

Нормальные напряжения в поперечном сечении образца при достижении предела упругости будут равны:

σ у = Р у /F o (318.2.4)

Предел упругости ограничивает участок на котором появляющиеся пластические деформации находятся в пределах некоторой малой величины, нормированной техническими условиями (например 0,001%; 0,01% и т. д.). Иногда предел упругости обозначается соответственно допуску σ 0.001 , σ 0.01 и т.д.

3. Предел текучести Р т

σ т = Р т /F o (318.2.5)

Ограничивает участок диаграммы на котором деформация увеличивается без значительного увеличения нагрузки (состояние текучести). При этом по всему объему образца происходит частичный разрыв внутренних связей, что и проводит к значительным пластическим деформациям. Материал образца полностью не разрушается, но его начальные геометрические размеры претерпевают необратимые изменения. На отшлифованной поверхности образцов наблюдаются фигуры текучести - линии сдвигов (открытые профессором В. Д. Черновым). Для различных металлов углы наклона этих линий различны, но находятся в пределах 40-50 о. При этом часть накопленной потенциальной энергии необратимо расходуется на частичный разрыв внутренних связей. При испытании на растяжение принято различать верхний и нижний пределы текучести - соответственно наибольшее и наименьшее из напряжений, при которых возрастает пластическая (остаточная) деформация при почти постоянной величине действующей нагрузки.

На диаграммах напряжений отмечен нижний предел текучести. Именно этот предел для большинства материалов принимается за нормативное сопротивление материала.

Некоторые материалы не имеют выраженной площадки текучести. Для них за условный предел текучести σ 0.2 принимается напряжение, при котором остаточное удлинение образца достигает значения ε ≈0,2%.

4. Предел прочности Р макс (временное сопротивление)

Нормальные напряжения в поперечном сечении образца при достижении предела прочности будут равны:

σ в = Р макс /F o (318.2.6)

После преодоления верхнего предела текучести (на диаграммах напряжения не показан) материал снова начинает сопротивляться нагрузкам. При максимальном усилии Р макс начинается полное разрушение внутренних связей материала. При этом пластические деформации концентрируются в одном месте, образуя в образце так называемую шейку.

Напряжение при максимальной нагрузке называется пределом прочности или временным сопротивлением материала.

В таблицах 318.2 - 318.5 приведены ориентировочные величины пределов прочности для некоторых материалов:

Таблица 318.2 Ориентировочные пределы прочности на сжатие (временные сопротивления) некоторых строительных материалов.

Примечание : Для металлов и сплавов значение пределов прочности следует определять согласно нормативных документов. Значение временных сопротивлений для некоторых марок стали можно посмотреть .

Таблица 318.3 . Ориентировочные пределы прочности (временные сопротивления) для некоторых пластмасс

Таблица 318.4 . Ориентировочные пределы прочности для некоторых волокон

Таблица 318.5 . Ориентировочные пределы прочности для некоторых древесных пород

5. Разрушение материала Р р

Если посмотреть на диаграмму напряжений, то создается впечатление, что разрушение материала наступает при уменьшении нагрузки. Такое впечатление создается потому, что в результате образования "шейки" значительно изменяется площадь сечения образца в районе "шейки". Если построить диаграмму напряжений для образца из малоуглеродистой стали в зависимости от изменяющейся площади сечения, то будет видно, что напряжения в рассматриваемом сечении увеличиваются до некоторого предела:

Рисунок 318.3 . Диаграмма напряжений: 2 - по отношению к начальной площади поперечного сечения, 1 - по отношению к изменяющейся площади сечения в районе шейки.

Тем не менее более правильным является рассмотрение прочностных характеристик материала по отношению к площади первоначального сечения, так как расчетами на прочность изменение первоначальной геометрической формы редко предусматривается.

Одной из механических характеристик металлов является относительное изменение ψ площади поперечного сечения в районе шейки, выражаемое в процентах:

ψ = 100(F o - F)/F o (318.2.7)

где F o - начальная площадь поперечного сечения образца (площадь поперечного сечения до деформации), F - площадь поперечного сечения в районе "шейки". Чем больше значение ψ, тем более ярко выражены пластические свойства материала. Чем меньше значение ψ, тем больше хрупкость материала.

Если сложить разорванные части образца и измерить его удлинение, то выяснится, что оно меньше удлинения на диаграмме (на длину отрезка NL), так как после разрыва упругие деформации исчезают и остаются только пластические. Величина пластической деформации (удлинения) также является важной характеристикой механических свойств материала.

За пределами упругости, вплоть до разрушения, полная деформация состоит из упругой и пластической составляющих. Если довести материал до напряжений, превышающих предел текучести (на рис. 318.1 некоторая точка между пределом текучести и пределом прочности), и затем разгрузить его, то в образце останутся пластические деформации, но при повторном загружении через некоторое время предел упругости станет выше, так как в данном случае изменение геометрической формы образца в результате пластических деформаций становится как бы результатом действия внутренних связей, а изменившаяся геометрическая форма, становится начальной. Этот процесс загрузки и разгрузки материала можно повторять несколько раз, при этом прочностные свойства материала будут увеличиваться:

Рисунок 318.4 . Диаграмма напряжений при наклепе (наклонные прямые соответствуют разгрузкам и повторным загружениям)

Такое изменение прочностных свойств материала, получаемое путем повторяющихся статических загружений, называется наклепом. Тем не менее при повышении прочности металла путем наклепа уменьшаются его пластические свойства, а хрупкость увеличивается, поэтому полезным как правило считается относительно небольшой наклеп.

Работа деформации

Прочность материала тем выше, чем больше внутренние силы взаимодействия частиц материала. Поэтому величина сопротивления удлинению, отнесенная к единице объема материала, может служить характеристикой его прочности. В этом случае предел прочности не является исчерпывающей характеристикой прочностных свойств данного материала, так как он характеризует только поперечные сечения. При разрыве разрушаются взаимосвязи по всей площади сечения, а при сдвигах, которые происходят при всякой пластической деформации, разрушаются только местные взаимосвязи. На разрушение этих связей затрачивается определенная работа внутренних сил взаимодействия, которая равна работе внешних сил, затрачиваемой на перемещения:

А = РΔl/2 (318.4.1)

где 1/2 - результат статического действия нагрузки, возрастающей от 0 до Р в момент ее приложения (среднее значение (0 + Р)/2)

При упругой деформации работа сил определяется площадью треугольника ОАВ (см. рис. 318.1). Полная работа, затраченная на деформацию образца и его разрушение:

А = ηР макс Δl макс (318.4.2)

где η - коэффициент полноты диаграммы, равный отношению площади всей диаграммы, ограниченной кривой АМ и прямыми ОА, MN и ON, к площади прямоугольника со сторонами 0Р макс (по оси Р) и Δl макс (пунктир на рис. 318.1). При этом надо вычесть работу, определяемую площадью треугольника MNL (относящуюся к упругим деформациям).

Работа, затрачиваемая на пластические деформации и разрушение образца, является одной из важных характеристик материала, определяющих степень его хрупкости.

Деформация сжатия

Деформации сжатия подобны деформациям растяжения: сначала происходят упругие деформации, к которым за пределом упругости добавляются пластические. Характер деформации и разрушения при сжатии показан на рис. 318.5:

Рисунок 318.5

а - для пластических материалов; б - для хрупких материалов; в - для дерева вдоль волокон, г - для дерева поперек волокон.

Испытания на сжатие менее удобны для определения механических свойств пластических материалов из-за трудности фиксирования момента разрушения. Методы механических испытаний металлов регламентируются ГОСТ 25.503-97. При испытании на сжатие формы образца и его размеры могут быть различными. Ориентировочные значения пределов прочности для различных материалов приведены в таблицах 318.2 - 318.5.

Если материал находится под нагрузкой при постоянном напряжении, то к практически мгновенной упругой деформации постепенно прибавляется добавочная упругая деформация. При полном снятии нагрузки упругая деформация уменьшается пропорционально уменьшающимся напряжениям, а добавочная упругая деформация исчезает медленнее.

Образовавшаяся добавочная упругая деформация при постоянном напряжении, которая исчезает не сразу после разгрузки, называется упругим последействием.

Влияние температуры на изменение механических свойств материалов

Твердое состояние - не единственное агрегатное состояние вещества. Твердые тела существуют только в определенном интервале температур и давлений. Повышение температуры приводит к фазовому переходу из твердого состояния в жидкое, а сам процесс перехода называется плавлением. Температуры плавления, как и другие физические характеристики материалов, зависят от множества факторов и также определяются опытным путем.

Таблица 318.6 . Температуры плавления некоторых веществ

Примечание : В таблице приведены температуры плавления при атмосферном давлении (кроме гелия).

Упругие и прочностные характеристики материалов, приведенные в таблицах 318.1-318.5, определяются как правило при температуре +20 о С. ГОСТом 25.503-97 допускается проводить испытания металлических образцов в диапазоне температур от +10 до +35 о С.

При изменении температуры изменяется потенциальная энергия тела, а значит, изменяется и значение внутренних сил взаимодействия. Поэтому механические свойства материалов зависят не только от абсолютной величины температуры, но и от продолжительности ее действия. Для большинства материалов при нагреве прочностные характеристики (σ п, σ т и σ в) уменьшаются, при этом пластичность материала увеличивается. При снижении температуры прочностные характеристики увеличиваются, но при этом повышается хрупкость. При нагреве уменьшается модуль Юнга Е, а коэффициент Пуассона увеличивается. При снижении температуры происходит обратный процесс.

Рисунок 318.6 . Влияние температуры на механические характеристики углеродистой стали.

При нагревании цветных металлов и сплавов из них прочность их сразу падает и при температуре, близкой к 600° С, практически теряется. Исключение составляет алюмотермический хром, предел прочности которого с увеличением температуры увеличивается и при температуре равной 1100° С достигает максимума σ в1100 = 2σ в20 .

Характеристики пластичности меди, медных сплавов и магния с ростом температуры уменьшаются, а алюминия - увеличиваются. При нагреве пластмасс и резины их предел прочности резко снижается, а при охлаждении эти материалы становятся очень хрупкими.

Влияние радиоактивного облучения на изменение механических свойств

Радиоактивное облучение по-разному влияет на различные материалы. Облучение материалов неорганического происхождения по своему влиянию на механические характеристики и характеристики пластичности подобно понижению температуры: с увеличением дозы радиоактивного облучения увеличивается предел прочности и особенно предел текучести, а характеристики пластичности снижаются.

Облучение пластмасс также приводит к увеличению хрупкости, причем на предел прочности этих материалов облучение оказывает различное влияние: на некоторых пластмассах оно почти не сказывается (полиэтилен), у других вызывает значительное понижение предела прочности (катамен), а в третьих - повышение предела прочности (селектрон).

- – напряжение растяжения, при котором в условиях кратковременного нагружения начинается необратимая пластическая деформация арматуры, в МПа, Н/мм2. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ им. А. А … Энциклопедия терминов, определений и пояснений строительных материалов

предел упругости - Характеристика деформационных свойств упругих материалов, выражаемая через наибольшее напряжение, при котором появляются остаточные деформации, значения которых не превышают допускаемых техническими условиями [Терминологический словарь по… … Справочник технического переводчика

ПРЕДЕЛ УПРУГОСТИ - (Elastic limit) наибольшая величина напряжения, при котором тело еще не получает остаточных деформаций. На практике за предел упругости принимают то напряжение, при котором остаточная деформация после удаления нагрузки не превышает определенной… … Морской словарь

Предел упругости - Elastic limit Предел упругости. Максимальное напряжение, которое материал способен выдержать без пластической деформации, остающейся после полного снятия напряжения. Материал превышает предел упругости, когда нагрузка достаточна, чтобы вызвать… … Словарь металлургических терминов

предел упругости - tamprumo riba statusas T sritis fizika atitikmenys: angl. elastic limit; limit of elasticity vok. Elastizitätsgrenze, f rus. предел упругости, m pranc. élasticité limite, f; limite d’élasticité, f; limite élastique, f … Fizikos terminų žodynas

предел упругости - условное напряжение, соответствующее появлению после разгрузки незначительной остаточной деформации, обычно равной 0,05 %. Смотри также: Предел физический предел текучести … Энциклопедический словарь по металлургии

ПРЕДЕЛ УПРУГОСТИ - механич хар ка материалов: напряжение, при к ром остаточные деформации впервые достигают нек рого значения, характеризуемого определ. допуском, устанавливаемым технич. условиями (напр., 0,001; 0,005; 0,03%), Обозначается бу. П. у. ограничивает… … Большой энциклопедический политехнический словарь

ПРЕДЕЛ УПРУГОСТИ - характеристика деформационных свойств упругих материалов, выражаемая через наибольшее напряжение, при котором появляются остаточные деформации, значения которых не превышают допускаемых техническими условиями (Болгарский язык; Български) граница… … Строительный словарь

ПРЕДЕЛ УПРУГОСТИ - напряжение, при котором остаточные деформации впервые достигают некоторой малой величины, характеризуемой определенным допуском, устанавливаемым техническими условиями (например, 0,001; 0,003; 0,005; 0,03%) … Словарь по гидрогеологии и инженерной геологии

ПРЕДЕЛ УПРУГОСТИ - условное напряжение, соответствующее появлению после разгрузки незначительной остаточной деформации, обычно равной 0,05 % … Металлургический словарь

Книги

  • Оптический метод иследования напряжений. , Кокер Э.. Книга Кокера и Файлона`Оптический метод исследования напряжений`представляет весьма большой научный и практический интерес. Авторы этой книги, видные специалистыв области теории упругости и…