Проецирование точки прямой плоскости. Построение проекций точек, принадлежащих поверхностям геометрических тел

Рассмотрим профильную плоскость проекций. Проекции на две перпендикулярные плоскости обычно определяют положение фигуры и дают возможность узнать ее настоящие размеры и форму. Но бывают случаи, когда двух проекций оказывается недостаточно. Тогда применяют построение третьей проекции.

Третью плоскость проекции проводят так, чтобы она была перпендикулярна одновременно обеим плоскостям проекций (рис. 15). Третью плоскость принято называть профильной .

В таких построениях общую прямую горизонтальной и фронтальной плоскостей называют осью х , общую прямую горизонтальной и профильной плоскостей – осью у , а общую прямую фронтальной и профильной плоскостей – осью z . Точка О , которая принадлежит всем трем плоскостям, называется точкой начала координат.

На рисунке 15а показана точка А и три ее проекции. Проекцию на профильную плоскость (а́́ ) называют профильной проекцией и обозначают а́́ .

Для получения эпюра точки А, которая состоит из трех проекций а, а а , необходимо разрезать трехгранник, образующийся всеми плоскостями, вдоль оси у (рис. 15б) и совместить все эти плоскости с плоскостью фронтальной проекции. Горизонтальную плоскость необходимо вращать около оси х , а профильную плоскость – около оси z в направлении, указанном на рисунке 15 стрелкой.

На рисунке 16 изображено положение проекций а, а́ и а́́ точки А , полученное в результате совмещения всех трех плоскостей с плоскостью чертежа.

В результате разреза ось у встречается на эпюре в двух различных местах. На горизонтальной плоскости (рис. 16) она принимает вертикальное положение (перпендикулярно оси х ), а на профильной плоскости – горизонтальное (перпендикулярно оси z ).



На рисунке 16 три проекции а, а́ и а́́ точки А имеют на эпюре строго определенное положение и подчинены однозначным условиям:

а и а́ всегда должны располагаться на одной вертикальной прямой, перпендикулярной оси х ;

а́ и а́́ всегда должны располагаться на одной горизонтальной прямой, перпендикулярной оси z ;

3) при проведении через горизонтальную проекцию а горизонтальной прямой, а через профильную проекцию а́́ – вертикальной прямой построенные прямые обязательно пересекутся на биссектрисе угла между осями проекций, так как фигура Оа у а 0 а н – квадрат.

При выполнении построения трех проекций точки нужно проверять выполняемость всех трех условий для каждой точки.

Координаты точки

Положение точки в пространстве может быть определено с помощью трех чисел, называемых ее координатами . Каждой координате соответствует расстояние точки от какой-нибудь плоскости проекций.

Расстояние определяемой точки А до профильной плоскости является координатой х , при этом х = а˝А (рис. 15), расстояние до фронтальной плоскости – координатой у, причем у = а́А , а расстояние до горизонтальной плоскости – координатой z , при этом z = aA .

На рисунке 15 точка А занимает ширину прямоугольного параллелепипеда, и измерения этого параллелепипеда соответствуют координатам этой точки, т. е., каждая из координат представлена на рисунке 15 четыре раза, т. е.:

х = а˝А = Оа х = а у а = a z á;

y = а́А = Оа y = а x а = а z а˝;

z = aA = Oa z = а x а́ = а y а˝.

На эпюре (рис. 16) координаты х и z встречаются по три раза:

х = а z а ́= Оа x = а y а,

z = а x á = Oa z = а y а˝.

Все отрезки, которые соответствуют координате х (или z ), являются параллельными между собой. Координата у два раза представлена осью, расположенной вертикально:

y = Оа у = а х а

и два раза – расположенной горизонтально:

у = Оа у = а z а˝.

Данное различие появилось из-за того, что ось у присутствует на эпюре в двух различных положениях.

Следует учесть, что положение каждой проекции определяется на эпюре только двумя координатами, а именно:

1) горизонтальной – координатами х и у ,

2) фронтальной – координатами x и z ,

3) профильной – координатами у и z .

Используя координаты х, у и z , можно построить проекции точки на эпюре.

Если точка А задается координатами, их запись определяется так: А (х; у; z ).

При построении проекций точки А нужно проверять выполняемость следующих условий:

1) горизонтальная и фронтальная проекции а и а́ х х ;

2) фронтальная и профильная проекции а́ и а˝ должны располагаться на одном перпендикуляре к оси z , так как имеют общую координату z ;

3) горизонтальная проекция а так же удалена от оси х , как и профильная проекция а удалена от оси z , так как проекции а́ и а˝ имеют общую координату у .

В случае, если точка лежит в любой из плоскостей проекций, то одна из ее координат равна нулю.

Когда точка лежит на оси проекций, две ее координаты равны нулю.

Если точка лежит в начале координат, все три ее координаты равны нулю.

Проекции прямой

Для определения прямой необходимы две точки. Точку определяют две проекции на горизонтальную и фронтальную плоскости, т. е. прямая определяется с помощью проекций двух своих точек на горизонтальной и фронтальной плоскостях.

На рисунке 17 показаны проекции (а и á, b и ) двух точек А и В. С их помощью определяется положение некоторой прямой АВ . При соединении одноименных проекций этих точек (т. е. а и b, а́ и ) можно получить проекции аb и а́b́ прямой АВ.

На рисунке 18 показаны проекции обеих точек, а на рисунке 19 – проекции проходящей через них прямой линии.

Если проекции прямой определяются проекциями двух ее точек, то они обозначаются двумя рядом поставленными латинскими буквами, соответствующими обозначениям проекций точек, взятых на прямой: со штрихами для обозначения фронтальной проекции прямой или без штрихов – для горизонтальной проекции.

Если рассматривать не отдельные точки прямой, а ее проекции в целом, то данные проекции обозначаются цифрами.

Если некоторая точка С лежит на прямой АВ , ее проекции с и с́ находятся на одноименных проекциях прямой ab и а́b́ . Данную ситуацию поясняет рисунок 19.

Следы прямой

След прямой – это точка пересечения ее с некоторой плоскостью или поверхностью (рис. 20).

Горизонтальным следом прямой называется некоторая точка H , в которой прямая встречается с горизонтальной плоскостью, а фронтальным – точка V , в которой данная прямая встречается с фронтальной плоскостью (рис. 20).

На рисунке 21а изображен горизонтальный след прямой, а ее фронтальный след, – на рисунке 21б.

Иногда также рассматривается профильный след прямой, W – точка пересечения прямой с профильной плоскостью.

Горизонтальный след находится в горизонтальной плоскости, т. е. его горизонтальная проекция h совпадает с этим следом, а фронтальная лежит на оси х. Фронтальный след лежит во фронтальной плоскости, поэтому его фронтальная проекция ν́ совпадает с ним же, а горизонтальная v лежит на оси х.

Итак, H = h , и V = ν́. Следовательно, для обозначения следов прямой можно применять буквы h и ν́.

Различные положения прямой

Прямую называют прямой общего положения , если она не параллельна и не перпендикулярна ни одной плоскости проекций. Проекции прямой общего положения тоже не параллельны и не перпендикулярны осям проекций.

Прямые, которые параллельны одной из плоскостей проекций (перпендикулярны одной из осей). На рисунке 22 показана прямая, которая параллельна горизонтальной плоскости (перпендикулярная оси z), – горизонтальная прямая; на рисунке 23 показана прямая, которая параллельна фронтальной плоскости (перпендикулярна оси у ), – фронтальная прямая; на рисунке 24 показана прямая, которая параллельна профильной плоскости (перпендикулярна оси х ), – профильная прямая. Несмотря на то что каждая из данных прямых образует с одной из осей прямой угол, они не пересекают ее, а только скрещиваются с нею.

Из-за того что горизонтальная прямая (рис. 22) параллельна горизонтальной плоскости, ее фронтальная и профильная проекции будут параллельны осям, определяющим горизонтальную плоскость, т. е. осям х и у . Поэтому проекции áb́ || х и a˝b˝ || у z . Горизонтальная проекция ab может занимать любое положение на эпюре.

У фронтальной прямой (рис. 23) проекции аb || x и a˝b˝ || z , т. е. они перпендикулярны оси у , а потому в этом случае фронтальная проекция а́b́ прямой может занимать произвольное положение.

У профильной прямой (рис. 24) аb || у, а́b || z , и обе они перпендикулярны оси х. Проекция а˝b˝ может располагаться на эпюре любым образом.

При рассмотрении той плоскости, которая проецирует горизонтальную прямую на фронтальную плоскость (рис. 22), можно заметить, что она проецирует эту прямую и на профильную плоскость, т. е. она является плоскостью, которая проецирует прямую сразу на две плоскости проекций – фронтальную и профильную. Исходя из этого ее называют дважды проецирующей плоскостью . Таким же образом для фронтальной прямой (рис. 23) дважды проецирующая плоскость проецирует ее на плоскости горизонтальной и профильной проекций, а для профильной (рис. 23) – на плоскости горизонтальной и фронтальной проекций.

Две проекции не могут определить прямую. Две проекции 1 и профильной прямой (рис. 25) без уточнения на них проекций двух точек этой прямой не определят положения данной прямой в пространстве.

В плоскости, которая перпендикулярна двум заданным плоскостям симметрии, возможно существование бесчисленного множество прямых, для которых данные на эпюре 1 и являются их проекциями.

Если точка находится на прямой, то ее проекции во всех случаях лежат на одноименных проекциях этой прямой. Обратное положение не всегда справедливо для профильной прямой. На ее проекциях можно произвольным образом указать проекции определенной точки и не быть уверенным в том, что эта точка лежит на данной прямой.

Во всех трех частных случаях (рис. 22, 23 и 24) положения прямой по отношению к плоскости проекций произвольный ее отрезок АВ , взятый на каждой из прямых, проецируется на одну из плоскостей проекций без искажения, т. е. на ту плоскость, которой он параллелен. Отрезок АВ горизонтальной прямой (рис. 22) дает проекцию в натуральную величину на горизонтальную плоскость (аb = АВ ); отрезок АВ фронтальной прямой (рис. 23) – в натуральную величину на плоскость фронтальной плоскости V (áb́ = AB ) и отрезок АВ профильной прямой (рис. 24) – в натуральную величину на профильную плоскость W (a˝b˝ = АВ), т. е. представляется возможным измерить на чертеже натуральную величину отрезка.

Иначе говоря, с помощью эпюр можно определить натуральные размеры углов, которые рассматриваемая прямая образует с плоскостями проекций.

Угол, который составляет прямая с горизонтальной плос костью Н , принято обозначать буквой α, с фронтальной плоскостью – буквой β, с профильной плоскостью – буквой γ.

Любая из рассматриваемых прямых не имеет следа на параллельной ей плоскости, т. е. горизонтальная прямая не имеет горизонтального следа (рис. 22), фронтальная прямая не имеет фронтального следа (рис. 23), а профильная прямая – профильного следа (рис. 24).

Словесная форма

Графическая форма

1. Отложить на осях X, Y, Ζ соответствующие координаты точки А. Получаем точки A x , A y , A z

2. Горизонтальная проекция А 1 находится на пересечении линий связи из точек A x и A y , проведенных параллельно осям X и Y

3. Фронтальная проекция А 2 находится на пересечении линий связи из точек A x и A z , проведенных параллельно осям X и Ζ

4. Профильная проекция А 3 находится на пересечении линий связи из точек A z и A y , проведенных параллельно осям Ζ и Y

3.2. Положение точки относительно плоскостей проекций

Положение точки в пространстве относительно плоскостей проекций определяется её координатами. Координатой Х определяется удалённость точки от плоскости П 3 (проекция на П 2 или П 1), координатой У – удалённость от плоскости П 2 (проекция на П 3 или П 1), координатой Z – удаленность от плоскости П 1 (проекция на П 3 или П 2). В зависимости от значения этих координат точка может занимать в пространстве как общее, так и частное положение по отношению к плоскостям проекций (рис. 3.1).

Рис. 3.1. Классификация точек

Т очка общего положения . Координаты точки общего положения не равны нулю (x ≠0, y ≠0, z ≠0 ), и в зависимости от знака координаты точка может располагаться в одном из восьми октантов (табл. 2.1).

На рис. 3.2 даны чертежи точек общего положения. Анализ их изображений позволяет сделать вывод, что они располагаются в следующих октантах пространства: А(+X;+Y; +Z( Iоктанту;B(+X;+Y;-Z( IVоктанту;C(-X;+Y; +Z( Vоктанту;D(+X;+Y; +Z( IIоктанту.

Точки частного положения . Одна из координат у точки частного положения равна нулю, поэтому проекция точки лежит на соответствующем поле проекций, другие две – на осях проекций. На рис. 3.3 такими точками являются точки А, В,C,D,G.AП 3 ,то точка Х А =0; ВП 3 ,то точка Х В =0; СП 2 ,то точкаY C =0;DП 1 ,то точкаZ D =0.

Точка может принадлежать сразу двум плоскостям проекций, если она лежит на линии пересечения этих плоскостей – оси проекций. У таких точек не равна нулю только координата на этой оси. На рис. 3.3 такой точкой является точкаG(G OZ,то точка Х G =0,Y G =0).

3.3. Взаимное положение точек в пространстве

Рассмотрим три варианта взаимного расположения точек в зависимости от соотношения координат, определяющих их положение в пространстве.

    На рис. 3.4 точки AиBимеют различные координаты.

Их взаимное расположение можно оценить по удаленности к плоскостям проекций: Y А >Y В, тогда точкаAрасположена дальше от плоскости П 2 и ближе к наблюдателю, чем точкаB; Z А >Z В, тогда точкаAрасположена дальше от плоскости П 1 и ближе к наблюдателю, чем точкаB; X А

    На рис. 3.5 представлены точки A, B, С, D, у которых одна из координат совпадает, а две другие отличаются.

Их взаимное расположение можно оценить по удалённости к плоскостям проекций следующим образом:

Y А =Y В =Y D , то точки А, В и D равноудалены от плоскости П 2 , и их горизонтальные и профильные проекции расположены соответственно на прямых [А 1 В 1 ]llОХ и [А 3 В 3 ]llOZ. Геометрическим местом таких точек служит плоскость, параллельная П 2 ;

Z А =Z В =Z С, то точки А, В и С равноудалены от плоскости П 1 , и их фронтальные и профильные проекции расположены соответственно на прямых [А 2 В 2 ]llОХ и [А 3 С 3 ]llOY. Геометрическим местом таких точек служит плоскость, параллельная П 1 ;

X А =X C =X D , то точки А, C и D равноудалены от плоскости П 3 и их горизонтальные и фронтальные проекции расположены соответственно на прямых [А 1 C 1 ]llOY и [А 2 D 2 ]llOZ . Геометрическим местом таких точек служит плоскость, параллельная П 3 .

3. Если у точек равны две одноименные координаты, то они называются конкурирующими . Конкурирующие точки расположены на одной проецирующей прямой. На рис. 3.3 даны три пары таких точек, у которых: X А =X D ; Y А =Y D ; Z D > Z А; X A =X C ; Z A =Z C ; Y C > Y A ; Y A =Y B ; Z A =Z B ; X B > X A .

Различают горизонтально конкурирующие точки А и D, расположенные на горизонтально проецирующей прямой АD, фронтально конкурирующие точки A и C, расположенные на фронтально проецирующей прямой AC, профильно конкурирующие точки A и B, расположенные на профильно проецирующей прямой AB.

Выводы по теме

1. Точка – линейный геометрический образ, одно из основных понятий начертательной геометрии. Положение точки в пространстве можно определить её координатами. Каждая из трёх проекций точки характеризуется двумя координатами, их название соответствует названиям осей, которые образуют соответствующую плоскость проекций: горизонтальная – A 1 (XA; YA); фронтальная – A 2 (XA; ZA); профильная – A 3 (YA; ZA). Трансляция координат между проекциями осуществляется с помощью линий связи. По двум проекциям можно построить проекции точки либо с помощью координат, либо графически.

3. Точка по отношению к плоскостям проекций может занимать в пространстве как общее, так и частное положение.

4. Точка общего положения – точка, не принадлежащая ни одной из плоскостей проекций, т. е. лежащая в пространстве между плоскостями проекций. Координаты точки общего положения не равны нулю (x≠0,y≠0,z≠0).

5. Точка частного положения – это точка, принадлежащая одной или двум плоскостям проекций. Одна из координат у точки частного положения равна нулю, поэтому проекция точки лежит на соответствующем поле плоскости проекций, другие две – на осях проекций.

6. Конкурирующие точки – точки, одноименные координаты которых совпадают. Существуют горизонтально конкурирующие точки, фронтально конкурирующие точки, профильно конкурирующие точки.

Ключевые слова

    Координаты точки

    Точка общего положения

    Точка частного положения

    Конкурирующие точки

Способы деятельности, необходимые для решения задач

– построение точки по заданным координатам в системе трех плоскостей проекций в пространстве;

– построение точки по заданным координатам в системе трех плоскостей проекций на комплексном чертеже.

Вопросы для самопроверки

1. Как устанавливается связь расположения координат на комплексном чертеже в системе трех плоскостей проекций П 1 П 2 П 3 с координатами проекций точек?

2. Какими координатами определяется удалённость точек до горизонтальной, фронтальной, профильной плоскостей проекций?

3. Какие координаты и проекции точки будут изменяться, если точка перемещается в направ­лении, перпендикулярном профильной плоско­сти проекций П 3 ?

4. Какие координаты и проекции точки будут изменяться, если точка перемещается в направ­лении, параллельном оси OZ?

5. Какими координатами, определяется горизонтальная (фронтальная, профильная) проекция точки?

7. В каком случае проекция точки совпадает с самой точкой пространства и где располагаются две другие проекции этой точки?

8. Может ли точка принадлежать одновременно трём плоскостям проекций и в каком случае?

9. Как называют точки, одноимённые проекции которых совпадают?

10. Каким образом можно определить, какая из двух точек ближе к наблюдателю, если их фронтальные проекции совпадают?

Задания для самостоятельного решения

1. Дать наглядное изображение точекA,B,C,Dотносительно плоскостей проекций П 1 , П 2 . Точки заданы своими проекциями (рис. 3.6).

2. Построить проекции точек А и В по их координатам на наглядном изображении и комплексном чертеже: А(13,5; 20), В(6,5; –20). Построить проекцию точки С, расположенной симметрично точке А относительно фронтальной плоскости проекций П 2 .

3. Построить проекции точек А, В, С по их координатам на наглядном изображении и комплексном чертеже: А(–20; 0; 0), В(–30; -20; 10), С(–10, –15, 0). Построить точку D, расположенную симметрично точке С относительно осиOХ.

Пример решения типовой задачи

Задача 1. Даны координатыX,Y,ZточекA,B,C,D,E,F(табл. 3.3)

В ряде случаев, для удобства решения задач необходимо использовать дополнительные плоскости проекций, перпендикулярные к уже имеющимся плоскостям проекций.

Если заданы горизонтальная и фронтальная проекции точки, то профильная проекция определяется по следующему алгоритму.

    Проводим линию проекционной связи перпендикулярную оси Oz .

    На данной линии проекционной связи откладываем отрезок А 1 А X Z А 3 .

Используя данное правило, можно строить проекции точек на дополнительные плоскости проекций (метод замен плоскостей).

Пусть дана точка А(А 2 1 ) и новая дополнительная плоскость проекций П 4 П 1 . Построить А 4 – проекцию точки А на П 4 .

Решение

а) Строим линию пересечения плоскостей П 1 и П 4 = x 1,4 ;

b) Через точку А проводим линию проекционной связи x 1,4 .

c) Строим проекцию А 4 , использую равенство отрезков А 2 А X 4 А X .

    Две проекции точки А 1 и А 4 лежат на одной линии проекционной связи перпендикулярной к оси X 1,4 .

    Расстояние от “новой” проекции точки А 4 до “новой” оси x 1,4 равно расстоянию от “старой” проекции точки А 2 до “старой” оси x 1,2 .

Конкурирующие точки

Конкурирующими точками называют пару точек, лежащих на одном проецирующем луче .

Из двух конкурирующих точек видимой является та точка, которая дальше распологается от плоскости проекций.

Точки А и В называют горизонтально конкурирующими.

Точки С и D называют фронтально конкурирующими.


Ввести дополнительную плоскость так, чтобы точки А и В стали конкурирующими.

План решения:

1 Строим ось x 1,4 A 1 , B 1 ;

2 Строим линию проекционной связи x 1,4 ;

3 На линии проекционной связи откладываем отрезки A x A 2 = A / x A 4 , B x B 2 = B / x B 4 .

Материал для самостоятельного изучения Моделирование объектов 2d-графики в графической системе компас Запуск системы компас и завершение работы

Система КОМПАС-3D-V8запускается аналогично другим программам. Для запуска системы необходимо выбрать меню \Пуск \ Все п рограммы \ АСКОН \ КОМПАС-3 D - V 8 и запустить КОМПАС . Можно выбрать указателем мыши на поле рабочего стола ярлык программы и дважды щелкнуть левой кнопкой мыши. Чтобы открыть документ, необходимо нажать кнопкуОткрыть на панели Стандартная . Чтобы начать новый документ нажмите кнопку Создать на панели Стандартная или выполните команду Файл > Создать и в открывшемся диалоговом окне выберите тип создаваемого документа и нажмите ОК .

Для завершения работы выбрать меню Файл \Выход , комбинацию клавиш Alt-F4 или щелкнуть на кнопке Закрыть.

Основные типы документов графической системы компас

Тип документа, создаваемого в системе КОМПАС, зависит от рода информации, хранящейся в этом документе. Каждому типу документа соответствует расширение имени файла и собственная пиктограмма.

1 Чертеж - основной тип графического документа в КОМПАС. Чертеж содержит графическое изображение изделия в одном или нескольких видах, основную надпись, рамку. Чертеж КОМПАС всегда содержит один лист заданного пользователем формата. Файл чертежа имеет расширение .cdw .

2 Фрагмент - вспомогательный тип графического документа в КОМПАС. Фрагмент отличается от чертежа отсутствием рамки, основной надписи и других объектов оформления конструкторского документа. Во фрагментах хранятся созданные типовые решения для последующего использования в других документах. Файл фрагмента имеет расширение .frw .

3 Текстовый документ (расширение файла . kdw );

4 Спецификация (расширение файла . spw );

5 Сборка (расширение файла . a 3 d );

6 Деталь - Трехмерное моделирование (расширение файла . m 3 d );

Точка, как математическое понятие, не имеет размеров. Очевидно, если объект проецирования является нульмерным объектом, то говорить о его проецировании бессмысленно.

Рис.9 Рис.10

В геометрии под точкой целесообразно принимать физический объект, имеющий линейные измерения. Условно за точку можно принять шарик с бесконечно малым радиусом. При такой трактовке понятия точки можно говорить о ее проекциях.

При построении ортогональных проекций точки следует руководствоваться первым инвариантным свойством ортогонального проецирования: ортогональная проекция точки есть точка.

Положение точки в пространстве определяется тремя координатами: X, Y, Z, показывающие величины расстояний, на которые точка удалена от плоскостей проекций. Чтобы определить эти расстояния, достаточно определить точки встречи этих прямых с плоскостями проекций и измерить соответствующие величины, которые укажут соответственно значения абсциссы X , ординаты Y и аппликаты Z точки (рис. 10).

Проекцией точки является основание перпендикуляра, опущенного из точки на соответствующую плоскость проекций. Горизонтальной проекцией точки а называют прямоугольную проекцию точки на горизонтальной плоскости проекций, фронтальной проекцией а / – соответственно на фронтальной плоскости проекций и профильной а // – на профильной плоскости проекций.

Прямые Аа, Аa / и Аa // называются проецирующими прямыми. При этом прямую Аа, проецирующую точку А на горизонтальную плоскость проекций, называют горизонтально- проецирующей прямой, Аa / и Аa // - соответственно: фронтально и профильно-проецирущими прямыми.

Две проецирующие прямые, проходящие через точку А определяют плоскость, которую принято называть проецирующей.

При преобразовании пространственного макета, фронтальная проекция точки А – а / остается на месте, как принадлежащая плоскости, которая не менят своего положения при рассматриваемом преобразовании. Горизонтальная проекция – а вместе с горизонтальной плоскостью проекции повернется понаправлению движения часовой стрелки и расположится на одном перепендикуляре к оси Х с фронтальной проекцией. Профильная проекция - a // будет вращаться вместе с профильной плоскостью и к концу преобразования займет положение, указанное на рисунке 10. При этом - a // будет принадлежать перпендикуляру к оси Z , проведенному из точки а / и будет удалена от оси Z на такое же расстояние, на какое горизонтальная проекция а удалена от оси Х . Поэтому связь между горизонтально и профильной проекциями точки может быть установлена с помощью двух ортогональных отрезков аа y и а y a // и сопрягающей их дуги окружности с центром в точке пересечения осей (О – начало координат). Отмеченной связью пользуются для нахождения недостающей проекции (при двух заданных). Положение профильной (горизонтальной) проекции по заданным горизонтальной (профильной) и фронтальной проекциям может быть найдено с помощью прямой, проведенной под углом 45 0 из начала координат к оси Y (эту биссектрису называют прямой k – постоянной Монжа). Первый из указанных способов предпочтителен, как более точный.


Из этого следует:

1. Точка в пространстве удалена:

от горизонтальной плоскости H Z,

от фронтальной плоскости V на величину заданной координаты Y,

от профильной плоскости W на величину координаты.X.

2. Две проекции любой точки принадлежат одному перпендикуляру (одной линии связи):

горизонтальная и фронтальная – перпендикуляру к оси X,

горизонтальная и профильная – перпендикуляру к оси Y,

фронтальная и профильная – перпендикуляру к оси Z.

3. Положение точки в пространстве вполне определяется положением ее двух ортогональных проекций. Из этого следует – по двум любым заданным ортогональным проекциям точки всегда иожно построить недостающую ее третью проекцию.


Если точка имеет три определенные координаты, то такую точку называют точкой общего положения. Если у точки одна или две координаты имеют нулевое значение, то такую точку называют точкой частного положения.

Рис. 11 Рис. 12

На рисунке 11 дан пространственный чертеж точек частного положения, на рисунке 12 – комплексных чертеж (эпюр) этих точек. Точка А принадлежит фронтальной плоскости проекций, точка В – горизонтальной плоскости проекций, точка С – профильной плоскости проекций и точка D – оси абсцисс (Х ).

ПРОЕКЦИИ ТОЧКИ.

ОРТОГОНАЛЬНАЯ СИСТЕМА ДВУХ ПЛОСКОСТЕЙ ПРОЕКЦИЙ.

Сущность метода ортогонального проецирования заключается в том, что предмет проецируется на две взаимно перпендикулярные плоскости лучами, ортогональными (перпендикулярными) к этим плоскостям..

Одну из плоскостей проекций H располагают горизонтально, а вторую V — вертикально. Плоскость H называют горизонтальной плоскостью проекций, V — фронтальной. Плоскости H и V бесконечны и непрозрачны. Линия пересечения плоскостей проекций называется осью координат и обозначается OX . Плоскости проекций делят пространство на четыре двугранных угла — четверти.

Рассматривая ортогональные проекции, предполагают, что наблюдатель находится в первой четверти на бесконечно большом расстоянии от плоскостей проекций. Так как эти плоскости непрозрачны, то видимыми для наблюдателя будут только те точки, линии и фигуры, которые расположены в пределах той же первой четверти.

При построении проекций необходимо помнить, что ортогональной проекцией точки на плоскость называется основание перпендикуляра, опущенного из данной точки на эту плоскость.

На рисунке показаны точка А и ее ортогональные проекции а 1 и а 2 .

Точку а 1 называют горизонтальной проекцией точки А, точку а 2 — ее фронтальной проекцией . Каждая из них является основанием перпендикуляра, опущенного из точки А соответственно на плоскости H и V .

Можно доказать, что проекции точки всегда расположены на прямых, перпенди кулярных оси ОХ и пересекающих эту ось в одной и той же точке. Действительно, проецирующие лучи А а 1 и А а 2 определяют плоскость, перпендикулярную плоскостям проекций и линии их пересечения — оси ОХ. Эта плоскость пересекает H и V по прямым а 1 а x и а 1 а x , которые образуют с осью OX и друг с другом прямые углы с вершиной в точке а x .

Справедливо и обратное, т. е. если на плоскостях проекций даны точки a 1 и a 2 , расположенные на прямых, пересекающих ось OX в данной точке под прямым углом, то они являются проекциями некоторой точки А. Эта точка определяется пересечением перпендикуляров, восставленных из точек a 1 и a 2 к плоскостям H и V .

Заметим, что положение плоскостей проекций в пространстве может оказаться иным. Например, обе плоскости, будучи взаимно перпендикулярными, могут быть вертикальными Но и в этом случае доказанное выше предположение об ориентации разноименных проекций точек относительно оси остается справедливым.

Чтобы получить плоский чертеж, состоящий из указанных выше проекций, плоскость H совмещают вращением вокруг оси OX с плоскостью V , как показано стрелками на рисунке. В результате передняя полуплоскость H будет совмещена с нижней полуплоскостью V , а задняя полуплоскость H — с верхней полуплоскостью V .

Проекционный чертеж, на котором плоскости проекций со всем тем, что на них изображено, совмещены определенным образом одна с другой, называется эпюром (от франц. еpure - чертеж). На рисунке показан эпюр точки А.

При таком способе совмещения плоскостей H и V проекции a 1 и a 2 окажутся расположенными на одном перпендикуляре к оси OX . При этом расстояние a 1 a x от горизонтальной проекции точки до оси OX А до плоскости V , а расстояние a 2 a x от фронтальной проекции точки до оси OX равно расстоянию от самой точки А до плоскости H .

Прямые линии, соединяющие разноименные проекции точки на эпюре, условимся называть линиями проекционной связи .

Положение проекций точек на эпюре зависит от того, в какой четверти находится данная точка. Так, если точка В расположена во второй четверти, то после совмещения плоскостей обе проекции окажутся лежащими над осью OX.

Если точка С находится в третьей четверти, то ее горизонтальная проекция после совмещения плоскостей окажется над осью, а фронтальная — под осью OX . Наконец, если точка D расположена в четвертой четверти, то обе проекции ее окажутся под осью OX . На рисунке показаны точки М и N , лежащие на плоскостях проекций. При таком положении точка совпадает с одной из своих проекций, другая же проекция ее оказывается лежащей на оси OX . Эта особенность отражена и в обозначении: около той проекции, с которой совпадает сама точка, пишется заглавная буква без индекса.

Следует отметить и тот случай, когда обе проекции точки совпадают. Так будет, если точка находится во второй или четвертой четверти на одинаковом расстоянии от плоскостей проекций. Обе проекции совмещаются с самой точкой, если последняя расположена на оси OX .

ОРТОГОНАЛЬНАЯ СИСТЕМА ТРЕХ ПЛОСКОСТЕЙ ПРОЕКЦИЙ.

Выше было показано, что две проекции точки определяют ее положение в пространстве. Так как каждая фигура или тело представляет собой совокупность точек, то можно утверждать, что и две ортогональные проекции предмета (при наличии буквенных обозначений) вполне определяют его форму.

Однако в практике изображения строительных конструкций, машин и различных инженерных сооружений возникает необходимость в создании дополнительных проекций. Поступают так с единственной целью — сделать проекционный чертеж более ясным, удобочитаемым.

Модель трех плоскостей проекций показана на рисунке. Третья плоскость, перпендикулярная и H и V , обозначается буквой W и называется профильной.

Проекции точек на эту плоскость будут также именоваться профильными, а обозначают их заглавными буквами или цифрами с индексом 3 (a з, b з, c з, ... 1з, 2з, 3 3 ...).

Плоскости проекций, попарно пересекаясь, определяют три оси: О X , О Y и О Z , которые можно рассматривать как систему прямоугольных декартовых координат в пространстве с началом в точке О. Система знаков, указанная на рисунке, соответствует «правой системе» координат.

Три плоскости проекций делят пространство на восемь трехгранных углов — это так называемые октанты . Нумерация октантов дана на рисунке.

Для получения эпюра плоскости H и W вращают, как показано на рисунке, до совмещения с плоскостью V . В результате вращения передняя полуплоскость H оказывается совмещенной с нижней полуплоскостью V , а задняя полуплоскость H — с верхней полуплоскостью V . При повороте на 90° вокруг оси О Z передняя полуплоскость W совместится с правой полуплоскостью V , а задняя полуплоскость W — с левой полуплоскостью V .

Окончательный вид всех совмещенных плоскостей проекций дан на рисунке. На этом чертеже оси О X и О Z , лежащие в не подвижной плоскости V , изображены только один раз, а ось О Y показана дважды. Объясняется это тем, что, вращаясь с плоскостью H , ось О Y на эпюре совмещается с осью О Z , а вращаясь вместе с плоскостью W , эта же ось совмещается с осью О X .

В дальнейшем при обозначении осей на эпюре отрицательные полуоси (— О X , О Y , О Z ) указываться не будут.

ТРИ КООРДИНАТЫ И ТРИ ПРОЕКЦИИ ТОЧКИ И ЕЕ РАДИУСА-ВЕКТОРА.

Координатами называют числа, которые ставят в соответствие точке для определе ния ее положения в пространстве или на поверхности.

В трехмерном пространстве положение точки устанавливают с помощью прямоугольных декартовых координат х, у и z .

Координату х называют абсциссой , у ординатой и z аппликатой. Абсцисса х определяет расстояние от данной точки до плоскости W , ордината у — до плоскости V и аппликата z - до плоскости H . Приняв для отсчета координат точки систему, показанную на рисунке, составим таблицу знаков координат во всех восьми октантах. Какая-либо точка пространства А, заданная координатами, будет обозначаться так: A (х, у, z ).

Если х = 5, y = 4 и z = 6, то запись примет следующий вид А (5, 4, 6). Эта точка А, все координаты которой положительны, находится в первом октанте

Координаты точки А являются вместе с тем и координатами ее радиуса-вектора

ОА по отношению к началу координат. Если i , j , k — единичные векторы, направленные соответственно вдоль координатных осей х, у, z (рисунок), то

ОА = О A x i +ОА y j + ОА z k , где ОА Х, ОА У, ОА г — координаты вектора ОА

Построение изображения самой точки и ее проекций на пространственной модели (рисунок) рекомендуется осуществлять с помощью координатного прямоугольного параллелепипеда. Прежде всего на осях координат от точки О откладывают отрезки, соответственно равные 5, 4 и 6 единицам длины. На этих отрезках a x , О a y , О a z ), как на ребрах, строят прямоугольный параллелепипед. Вершина его, противоположная началу координат, и будет определять заданную точку А. Легко заметить, что для определения точки А достаточно построить только три ребра параллелепипеда, например О a x , a x a 1 и a 1 А или О a y , a y a 1 и a 1 A и т. д. Эти ребра образуют координатную ломаную линию, длина каждого звена которой определяется соответствующей координатой точки.

Однако построение параллелепипеда позволяет определить не только точку А, но и все три ее ортогональные проекции.

Лучами, проецирующими точку на плоскости H , V , W являются те три ребра параллелепипеда, которые пересекаются в точке А.

Каждая из ортогональных проекций точки А, будучи расположенной на плоскости, определяется только двумя координатами.

Так, горизонтальная проекция a 1 определяется координатами х и у, фронтальная проекция a 2 — координатами х и z , профильная проекция a 3 координатами у и z . Но две любые проекции определяются тремя координатами. Вот почему задание точки двумя проекциями равносильно заданию точки тремя координатами.

На эпюре (рисунок), где все плоскости проекций совмещены, проекции a 1 и a 2 окажутся на одном перпендикуляре к оси О X , а проекции a 2 и a 3 на одном перпендикуляре к оси OZ .

Что касается проекций a 1 и a 3 , то и они связаны прямыми a 1 a y и a 3 a y , перпендикулярными оси О Y . Но так как эта ось на эпюре занимает два положения, то отрезок a 1 a y не может быть продолжением отрезка a 3 a y .

Построение проекций точки А (5, 4, 6) на эпюре по заданным координатам выполняют в такой последовательности: прежде всего на оси абсцисс от начала координат откладывают отрезок О a x = х (в нашем случае х = 5), затем через точку a x проводят перпендикуляр к оси О X , на котором с учетом знаков откладываем отрезки a x a 1 = у (получаем a 1 ) и a x a 2 = z (получаем a 2 ). Остается построить профильную проекцию точки a 3 . Так как профильная и фронтальная проекции точки должны быть расположены на одном перпендикуляре к оси OZ , то через a 3 проводят прямую a 2 a z ^ OZ .

Наконец, возникает последний вопрос: на каком расстоянии от оси О Z должна находиться a 3 ?

Рассматривая координатный параллелепипед (см. рисунок), ребра которого a z a 3 = Oa y = a x a 1 = y заключаем, что искомое расстояние a z a 3 равно у. Отрезок a z a 3 откладывают вправо от оси ОZ, если у>0, и влево, если у

Проследим за тем, какие изменения произойдут на эпюре, когда точка начнет менять свое положение в пространстве.

Пусть, например, точка А (5, 4, 6) станет перемещаться по прямой, перпендикулярной плоскости V . При таком движении будет меняться только одна координата у, показывающая расстояние от точки до плоскости V . Постоянными будут оставаться координаты х и z , а проекция точки, определяемая этими координатами, т. е. a 2 не изменит своего положения.

Что касается проекций a 1 и a 3 , то первая начнет приближаться к оси О X , вторая — к оси О Z . На рисунках новому положению точки соответствуют обозначения a 1 (a 1 1 a 2 1 a 3 1 ). В тот момент, когда точка окажется на плоскости V (y = 0), две из трех проекций (a 1 2 и a 3 2 ) будут лежать на осях.

Переместившись из I октанта во II , точка начнет удаляться от плоскости V , координата у станет отрицательной, ее абсолютная величина будет возрастать. Горизонтальная проекция этой точки, будучи расположенной на задней полуплоскости H , на эпюре окажется выше оси О X , а профильная проекция, находясь на задней полуплоскости W , на эпюре будет слева от оси О Z . Как всегда, отрезок a z a 3 3 = у.

На последующих эпюрах мы не станем обозначать буквами точки пересечения координатных осей с линиями проекционной связи. Это в какой-то мере упростит чертеж.

В дальнейшем встретятся эпюры и без координатных осей. Так поступают на практике при изображении предметов, когда существенно только само изображе ние предмета, а не его положение относи тельно плоскостей проекций.

Плоскости проекций в этом случае определены с точностью лишь до параллельного переноса (рисунок). Их обычно перемещают параллельно самим себе с таким расчетом, чтобы все точки предмета оказались над плоскостью H и перед плоскостью V . Так как положение оси X 12 оказывается неопределенным, то образование эпюра в этом случае не нужно связывать с вращением плоскостей вокруг координатной оси. При переходе к эпюру плоскости H и V совмещают так, чтобы разноименные проекции точек были расположены на вертикальных прямых.

Безосный эпюр точек А и В (рисунок) не определяет их положения в пространстве, но позволяет судить об их относительной ориентировке. Так, отрезок △x характеризует смещение точки А по отношению к точке В в направлении, параллельном плоскостям H и V. Иными словами, △x указывает, насколько точка А расположена левее точки В. Относительное смещение точки в направлении, перпендикулярном плоскости V, определяется отрезком △y, т. е. точка А в нашем примере ближе к наблюдателю, чем точка В, на расстояние, равное △y.

Наконец, отрезок △z показывает превышение точки А над точкой В.

Сторонники безосного изучения курса начертательной геометрии справедливо указывают, что при решении многих задач можно обходиться без осей координат. Однако полный отказ от них нельзя признать целесообразным. Начертательная геометрия призвана подготовить будущего инженера не только к грамотному выполнению чертежей, но и к решению различных технических задач, среди которых не последнее место занимают задачи пространственной статики и механики. А для этого необходимо воспитывать умение ориентировать тот или иной предмет относительно декартовых осей координат. Указанные навыки будут необходимы и при изучении таких разделов начертательной геометрии, как перспектива и аксонометрия. Поэтому на ряде эпюров этой книги мы сохраняем изображения координатных осей. Такие чертежи определяют не только форму предмета, но и его расположение относительно плоскостей проекций.