Когда напало монголо татарское иго. Монголы

На западе Фландрии лежит крошечный городок. Тем не менее его название известно всему миру и долго еще будет сохраняться в памяти человечества как символ одного из величайших преступлений против человечества. Этот городок – Ипр. Креси (в битве при Креси в 1346 г. английскими войсками впервые в Европе применено огнестрельное оружие.) – Ипр – Хиросима – вехи на пути превращения войны в гигантскую машину уничтожения.

В начале 1915 г. на линии западного фронта образовался так называемый Ипрский выступ. Союзные англо-французские войска к северо-востоку от Ипра вклинились на территорию, запятую германской армией. Германское командование решило нанести контрудар и выровнять линию фронта. Утром 22 апреля, когда дул ровный норд-ост, немцы начали необычную подготовку к наступлению – они провели первую в истории войн газовую атаку. На ипрском участке фронта были одновременно открыты 6000 баллонов хлора. В течение пяти минут образовалось огромное, весом в 180 т, ядовитое желто-зеленое облако, которое медленно двигалось по направлению к окопам противника.

Этого никто не ожидал. Войска французов и англичан готовились к атаке, к артиллерийскому обстрелу, солдаты надежно окопались, но перед губительным хлорным облаком они были абсолютно безоружными. Смертоносный газ проникал во все щели, во все укрытия. Результаты первой химической атаки (и первого нарушения Гаагской конвенции 1907 г. о неприменении отравляющих веществ!) были ошеломляющими – хлор поразил около 15 тысяч человек, причем примерно 5 тысяч – на смерть. И все это – ради того, чтобы выровнять линию фронта длиной в 6 км! Спустя два месяца немцы предприняли хлорную атаку и на восточном фронте. А через два года Ипр приумножил свою печальную известность. Во время тяжелого сражения 12 июля 1917 г. в районе этого города было впервые применено отравляющее вещество, названное впоследствии ипритом. Иприт – это производное хлора, дихлордиэтилсульфид.

Об этих эпизодах истории, связанных с одним маленьким городком и одним химическим элементом, мы напомнили для того, чтобы показать, как опасен может быть элемент №17 в руках воинствующих безумцев. Это – самая мрачная страница истории хлора.

Но было бы совершенно неверно видеть в хлоре только отравляющее вещество и сырье для производства других отравляющих веществ...

История хлора

История элементарного хлора сравнительно коротка, она ведет начало с 1774 г. История соединений хлора стара, как мир. Достаточно вспомнить, что хлористый натрий – это поваренная соль. И, видимо, еще в доисторические времена была подмечена способность соли консервировать мясо и рыбу.

Самые древние археологические находки – свидетельства использования соли человеком относятся примерно к 3...4 тысячелетию до н.э. А самое древнее описание добычи каменной соли встречается в сочинениях греческого историка Геродота (V в. до н.э.). Геродот описывает добычу каменной соли в Ливии. В оазисе Синах в центре Ливийской пустыни находился знаменитый храм бога Аммона-Ра. Поэтому-то Ливия и именовалась «Ammonia», и первое название каменной соли было «sal ammoniacum». Позднее, начиная примерно с XIII в. н.э., это название закрепилось за хлористым аммонием.

В «Естественной истории» Плиния Старшего описан метод отделения золота от неблагородных металлов при прокаливании с солью и глиной. А одно из первых описаний очистки хлористого натрия находим в трудах великого арабского врача и алхимика Джабир ибн-Хайяна (в европейском написании – Гебер).

Весьма вероятно, что алхимики сталкивались и с элементарным хлором, так как в странах Востока уже в IX, а в Европе в XIII в. была известна «царская водка» – смесь соляной и азотной кислот. В выпущенной в 1668 г. книге голландца Ван-Гельмонта «Hortus Medicinae» говорится, что при совместном нагревании хлористого аммония и азотной кислоты получается некий газ. Судя по описанию, этот газ очень похож на хлор.

Подробно хлор впервые описан шведским химиком Шееле в его трактате о пиролюзите. Нагревая минерал пиролюзит с соляной кислотой, Шееле заметил запах, характерный для царской водки, собрал и исследовал желто-зеленый газ, порождавший этот запах, и изучил его взаимодействие с некоторыми веществами. Шееле первым обнаружил действие хлора на золото и киноварь (в последнем случае образуется сулема) и отбеливающие свойства хлора.

Шееле не считал вновь открытый газ простым веществом и назвал его «дефлогистонированной соляной кислотой». Говоря современным языком, Шееле, а вслед за ним и другие ученые того времени полагали, что новый газ – это окисел соляной кислоты.

Несколько позже Бертоле и Лавуазье предложили считать этот газ окислом некоего нового элемента «мурия». В течение трех с половиной десятилетий химики безуспешно пытались выделить неведомый мурий.

Сторонником «окиси мурия» был поначалу и Дэви, который в 1807 г. разложил электрическим током поваренную соль на щелочной металл натрий и желто-зеленый газ. Однако, спустя три года, после многих бесплодных попыток получить мурий Дэви пришел к выводу, что газ, открытый Шееле, – простое вещество, элемент, и назвал его chloric gas или chlorine (от греческого χλωροζ – желто-зеленый). А еще через три года Гей-Люссак дал новому элементу более короткое имя – хлор. Правда, еще в 1811 г. немецкий химик Швейгер предложил для хлора другое название – «галоген» (дословно оно переводится как солерод), но это название поначалу не привилось, а впоследствии стало общим для целой группы элементов, в которую входит и хлор.

«Личная карточка» хлора

На вопрос, что же такое хлор, можно дать минимум десяток ответов. Во-первых, это галоген; во-вторых, один из самых сильных окислителей; в-третьих, чрезвычайно ядовитый газ; в-четвертых, важнейший продукт основной химической промышленности; в-пятых, сырье для производства пластмасс и ядохимикатов, каучука и искусственного волокна, красителей и медикаментов; в-шестых, вещество, с помощью которого получают титан и кремний, глицерин и фторопласт; в-седьмых, средство для очистки питьевой воды и отбеливания тканей...

Это перечисление можно было бы продолжить.

При обычных условиях элементарный хлор – довольно тяжелый желто-зеленый газ с резким характерным запахом. Атомный вес хлора 35,453, а молекулярный – 70,906, потому что молекула хлора двухатомна. Один литр газообразного хлора при нормальных условиях (температура 0°C и давление 760 мм ртутного столба) весит 3,214 г. При охлаждении до температуры –34,05°C хлор конденсируется в желтую жидкость (плотностью 1,56 г/см 3), а при температуре – 101,6°C затвердевает. При повышенном давлении хлор можно превратить в жидкость и при более высоких температурах вплоть до +144°C. Хлор хорошо растворяется в дихлорэтане и некоторых других хлорсодержащих органических растворителях.

Элемент №17 очень активен – он непосредственно соединяется почти со всеми элементами периодической системы. Поэтому в природе он встречается только в виде соединений. Самые распространенные минералы, содержащие хлор, галит NaCI, сильвинит KCl · NaCl, бишофит MgCl 2 · 6H 2 O, карналлит KCl · MgCl 2 · 6Н 2 O, каинит KCl · МgSO 4 · 3Н 2 О. Это их в первую очередь «вина» (или «заслуга»), что содержание хлора в земной коре составляет 0,20% по весу. Для цветной металлургии очень важны некоторые относительно редкие хлорсодержащие минералы, например роговое серебро AgСl.

По электропроводности жидкий хлор занимает место среди самых сильных изоляторов: он проводит ток почти в миллиард раз хуже, чем дистиллированная вода, и в 10 22 раз хуже серебра.

Скорость звука в хлоре примерно в полтора раза меньше, чем в воздухе.

И напоследок – об изотопах хлора.

Сейчас известны девять изотопов этого элемента, но в природе встречаются только два – хлор-35 и хлор-37. Первого примерно в три раза больше, чем второго.

Остальные семь изотопов получены искусственно. Самый короткоживущий из них – 32 Cl имеет период полураспада 0,306 секунды, а самый долгоживущий – 36 Cl – 310 тыс. лет.

Как получают хлор

Первое, на что обращаешь внимание, попав на хлорный завод, это многочисленные линии электропередачи. Хлорное производство потребляет много электроэнергии – она нужна для того, чтобы разложить природные соединения хлора.

Естественно, что основное хлорное сырье – это каменная соль. Если хлорный завод расположен вблизи реки, то соль завозят не по железной дороге, а на баржах – так экономичнее. Соль – продукт недорогой, а расходуется ее много: чтобы получить тонну хлора, нужно примерно 1,7...1,8 т соли.

Соль поступает на склады. Здесь хранятся трех – шестимесячные запасы сырья – хлорное производство, как правило, многотоннажное.

Соль измельчают и растворяют в теплой воде. Этот рассол по трубопроводу перекачивается в цех очистки, где в огромных, высотой с трехэтажный дом баках рассол очищают от примесей солей кальция и магния и осветляют (дают ему отстояться). Чистый концентрированный раствор хлористого натрия перекачивается в основной цех хлорного производства – в цех электролиза.

В водном растворе молекулы поваренной соли превращаются в ионы Na + и Сl – . Ион Сl – отличается от атома хлора только тем, что имеет один лишний электрон. Значит, для того чтобы получить элементарный хлор, необходимо оторвать этот лишний электрон. Происходит это в электролизере на положительно заряженном электроде (аноде). С него как бы «отсасываются» электроны: 2Cl – → Cl 2 + 2ē . Аноды сделаны из графита, потому что любой металл (кроме платины и ее аналогов), отбирая у ионов хлора лишние электроны, быстро корродирует и разрушается.

Существуют два типа технологического оформления производства хлора: диафрагменный и ртутный. В первом случае катодом служит перфорированный железный лист, а катодное и анодное пространства электролизера разделены асбестовой диафрагмой. На железном катоде происходит разряд ионов водорода и образуется водный раствор едкого натра. Если в качестве катода применяют ртуть, то на нем разряжаются ионы натрия и образуется амальгама натрия, которая потом разлагается водой. Получаются водород и едкий натр. В этом случае разделительная диафрагма не нужна, а щелочь получается более концентрированной, чем в диафрагменных электролизерах.

Итак, производство хлора – это одновременно производство едкого натра и водорода.

Водород отводят по металлическим, а хлор по стеклянным или керамическим трубам. Свежеприготовленный хлор насыщен парами воды и потому особенно агрессивен. В дальнейшем его сначала охлаждают холодной водой в высоких башнях, выложенных изнутри керамическими плитками и наполненных керамической насадкой (так называемыми кольцами Рашига), а затем сушат концентрированной серной кислотой. Это единственный осушитель хлора и одна из немногих жидкостей, с которыми хлор но взаимодействует.

Сухой хлор уже не так агрессивен, он не разрушает, например, стальную аппаратуру.

Транспортируют хлор обычно в жидком состоянии в железнодорожных цистернах или баллонах под давлением до 10 атм.

В России производство хлора было впервые организовано еще в 1880 г. на Бондюжском заводе. Хлор получали тогда в принципе тем же способом, каким в свое время получил его Шееле – при взаимодействии соляной кислоты с пиролюзитом. Весь производимый хлор расходовался на получение хлорной извести. В 1900 г. на заводе «Донсода» впервые в России был введен в эксплуатацию цех электролитического производства хлора. Мощность этого цеха была всего 6 тыс. т в год. В 1917 г. все хлорные заводы России выпускали 12 тыс. т хлора. А в 1965 г. в СССР было произведено около 1 млн т хлора...

Один из многих

Все многообразие практического применения хлора можно без особой натяжки выразить одной фразой: хлор необходим для производства хлорпродуктов, т.е. веществ, содержащих «связанный» хлор. А вот говоря об этих самых хлорпродуктах, одной фразой не отделаешься. Они очень разные – и по свойствам, и по назначению.

Рассказать обо всех соединениях хлора не позволяет ограниченный объем нашей статьи, но без рассказа хотя бы о некоторых веществах, для получения которых нужен хлор, наш «портрет» элемента №17 был бы неполным и неубедительным.

Взять, к примеру, хлорорганические инсектициды – вещества, убивающие вредных насекомых, но безопасные для растений. На получение средств защиты растений расходуется значительная часть производимого хлора.

Один из самых важных инсектицидов – гексахлорциклогексан (часто называемый гексахлораном). Это вещество впервые синтезировано еще в 1825 г. Фарадеем, но практическое применение нашло только через 100 с лишним лет – в 30-х годах нашего столетия.

Сейчас гексахлоран получают, хлорируя бензол. Подобно водороду, бензол очень медленно реагирует с хлором в темноте (и в отсутствие катализаторов), но при ярком освещении реакция хлорирования бензола (С 6 Н 6 + 3Сl 2 → С 6 Н 6 Сl 6) идет достаточно быстро.

Гексахлоран, так же как и многие другие инсектициды, применяется в виде дустов с наполнителями (тальком, каолином), или в виде суспензий и эмульсий, или, наконец, в виде аэрозолей. Гексахлоран особенно эффективен при протравливании семян и при борьбе с вредителями овощных и плодовых культур. Расход гексахлорана составляет всего 1...3 кг на гектар, экономический эффект от его применения в 10...15 раз превосходит затраты. К сожалению, гексахлоран не безвреден для человека...

Поливинилхлорид

Если попросить любого школьника перечислить известные ему пластики, он одним из первых назовет поливинилхлорид (иначе, винипласт). С точки зрения химика, ПВХ (так часто поливинилхлорид обозначают в литературе) – это полимер, в молекуле которого на цепочку углеродных атомов «нанизаны» атомы водорода и хлора:

В этой цепочке может быть несколько тысяч звеньев.

А с потребительской точки зрения ПВХ – это изоляция для проводов и плащи-дождевики, линолеум и граммпластинки, защитные лаки и упаковочные материалы, химическая аппаратура и пенопласты, игрушки и детали приборов.

Поливинилхлорид образуется при полимеризации винилхлорида, который чаще всего получают, обрабатывая ацетилен хлористым водородом: HC ≡ CH + HCl → CH 2 = CHCl. Существует и другой способ получения винилхлорида – термический крекинг дихлорэтана.

CH 2 Cl – CH 2 Сl → CH 2 = CHCl + HCl. Представляет интерес сочетание двух этих методов, когда в производстве винилхлорида по ацетиленовому способу используют HCl, выделяющийся при крекинге дихлорэтана.

Хлористый винил – бесцветный газ с приятным, несколько пьянящим эфирным запахом, легко полимеризуется. Для получения полимера жидкий винилхлорид под давлением нагнетают в теплую воду, где он дробится на мельчайшие капельки. Чтобы они не сливались, в воду добавляют немного желатины или поливинилового спирта, а чтобы начала развиваться реакция полимеризации, туда же вводят инициатор полимеризации – перекись бензоила. Через несколько часов капельки затвердевают, и образуется суспензия полимера в воде. Порошок полимера отделяют на фильтре или на центрифуге.

Полимеризация обычно происходит при температуре от 40 до 60°C, причем, чем ниже температура полимеризации, тем длиннее образующиеся полимерные молекулы...

Мы рассказали только о двух веществах, для получения которых необходим элемент №17. Только о двух из многих сотен. Подобных примеров можно привести очень много. И все они говорят о том, что хлор – это не только ядовитый и опасный газ, но очень важный, очень полезный элемент.

Элементарный расчет

При получении хлора электролизом раствора поваренной соли одновременно получаются водород и едкий натр: 2NACl + 2H 2 О = H 2 + Cl 2 + 2NaOH. Конечно, водород – очень важный химический продукт, но есть более дешевые и удобные способы производства этого вещества, например конверсия природного газа... А вот едкий натр получают почти исключительно электролизом растворов поваренной соли – на долю других методов приходится меньше 10%. Поскольку производства хлора и NaOH полностью взаимосвязаны (как следует из уравнения реакции, получение одной грамм-молекулы – 71 г хлора – неизменно сопровождается получением двух грамм-молекул – 80 г электролитической щелочи), зная производительность цеха (или завода, или государства) по щелочи, можно легко рассчитать, сколько хлора он производит. Каждой тонне NaOH «сопутствуют» 890 кг хлора.

Ну и смазка!

Концентрированная серная кислота – практически единственная жидкость, не взаимодействующая с хлором. Поэтому для сжатия и перекачивания хлора на заводах используют насосы, в которых роль рабочего тела и одновременно смазки выполняет серная кислота.

Псевдоним Фридриха Вёлера

Исследуя взаимодействие органических веществ с хлором, французский химик XIX в. Жан Дюма сделал поразительное открытие: хлор способен замещать водород в молекулах органических соединений. Например, при хлорировании уксусной кислоты сначала один водород метильной группы замещается на хлор, затем другой, третий... Но самым поразительным было то, что по химическим свойствам хлоруксусные кислоты мало чем отличались от самой уксусной кислоты. Обнаруженный Дюма класс реакций был совершенно необъясним господствовавшими в то время электрохимической гипотезой и теорией радикалов Берцелиуса (по выражению французского химика Лорана, открытие хлоруксусной кислоты было подобно метеору, который разрушил всю старую школу). Берцелиус, его ученики и последователи бурно оспаривали правильность работ Дюма. В немецком журнале «Annalen der Chemie und Pharmacie» появилось издевательское письмо знаменитого немецкого химика Фридриха Вёлера под псевдонимом S.С.Н. Windier (по немецки «Schwindler» значит «лжец», «обманщик»). В нем сообщалось, что автору удалось заместить в клетчатке (С 6 Н 10 O 5) и все атомы углерода. водорода и кислорода на хлор, причем свойства клетчатки при этом не изменились. И что теперь в Лондоне делают теплые набрюшники из ваты, состоящей... из чистого хлора.

Хлор и вода

Хлор заметно растворяется в воде. При 20°C в одном объеме воды растворяется 2,3 объема хлора. Водные растворы хлора (хлорная вода) – желтого цвета. Но со временем, особенно при хранении на свету, они постепенно обесцвечиваются. Объясняется это тем, что растворенный хлор частично взаимодействует с водой, образуются соляная и хлорноватистая кислоты: Cl 2 + H 2 O → HCl + HOCl. Последняя неустойчива и постепенно распадается на HCl и кислород. Поэтому раствор хлора в воде постепенно превращается в раствор соляной кислоты.

Но при низких температурах хлор и вода образуют кристаллогидрат необычного состава – Cl 2 · 5 3 / 4 H 2 O. Эти зеленовато-желтые кристаллы (устойчивые только при температурах ниже 10°C) можно получить, пропуская хлор через воду со льдом. Необычная формула объясняется структурой кристаллогидрата, а она определяется в первую очередь структурой льда. В кристаллической решетке льда молекулы Н 2 О могут располагаться таким образом, что между ними появляются закономерно расположенные пустоты. Элементарная кубическая ячейка содержит 46 молекул воды, между которыми есть восемь микроскопических пустот. В этих пустотах и оседают молекулы хлора. Точная формула кристаллогидрата хлора поэтому должна быть записана так: 8Сl 2 · 46Н 2 О.

Отравление хлором

Присутствие в воздухе уже около 0,0001% хлора раздражающе действует на слизистые оболочки. Постоянное пребывание в такой атмосфере может привести к заболеванию бронхов, резко ухудшает аппетит, придает зеленоватый оттенок коже. Если содержание хлора в воздухе составляет 0,1°/о, то может наступить острое отравление, первый признак которого – приступы сильнейшего кашля. При отравлении хлором необходим абсолютный покой; полезно вдыхать кислород, или аммиак (нюхая нашатырный спирт), или пары спирта с эфиром. По существующим санитарным нормам содержание хлора в воздухе производственных помещений не должно превышать 0,001 мг/л, т.е. 0,00003%.

Не только яд

«Что волки жадны, всякий знает». Что хлор ядовит – тоже. Однако в небольших дозах ядовитый хлор иногда может служить и противоядием. Так, пострадавшим от сероводорода дают нюхать нестойкую хлорную известь. Взаимодействуя, два яда взаимно нейтрализуются.

Анализ на хлор

Для определения содержания хлора пробу воздуха пропускают через поглотители с подкисленным раствором йодистого калия. (Хлор вытесняет йод, количество последнего легко определяется титрованием с помощью раствора Nа 2 S 2 O 3). Для определения микроколичеств хлора в воздухе часто применяется колориметрический метод, основанный на резком изменении окраски некоторых соединений (бензидина, ортотолуидина, метилоранжа) при окислении их хлором. Например, бесцветный подкисленный раствор бензидина приобретает желтый цвет, а нейтральный – синий. Интенсивность окраски пропорциональна количеству хлора.

На западе Фландрии лежит крошечный городок. Тем не менее его название известно всему миру и долго еще будет сохраняться в памяти человечества как символ одного из величайших преступлений против человечества. Этот городок - Ипр. Креси - Ипр - Хиросима - вехи на пути превращения войны в гигантскую машину уничтожения.

В начале 1915 г. на линии западного фронта образовался так называемый Ипрский выступ. Союзные англо-французские войска к северо-востоку от Ипра вклинились на территорию, занятую германской армией. Германское, командование решило нанести контрудар и выровнять линию фронта. Утром 22 апреля, когда дул ровный норд-ост, немцы начали необычную подготовку к наступлению - они провели первую в истории войн газовую атаку. На ипрском участке фронта были одновременно открыты 6000 баллонов хлора. В течение пяти минут образовалось огромное, весом в 180 т, ядовитое желто-зеленое облако, которое медленно двигалось по направлению к окопам противника.

Этого никто не ожидал. Войска французов и англичан готовились к атаке, к артиллерийскому обстрелу, солдаты надежно окопались, но перед губительным хлорным облаком они были абсолютно безоружными. Смертоносный газ проникал во все щели, во все укрытия. Результаты первой химической атаки (и первого нарушения Гаагской конвенции 1907 г. о неприменении отравляющих веществ!) были ошеломляющими - хлор поразил около 15 тысяч человек, причем примерно 5 тысяч - насмерть. И все это - ради того, чтобы выровнять линию фронта длиной в 6 км! Спустя два месяца немцы предприняли хлорную атаку и на восточном фронте. А через два года Ипр приумножил свою печальную известность. Во время тяжелого сражения 12 июля 1917 г. в районе этого города было впервые применено отравляющее вещество, названное впоследствии ипритом. Иприт - это производное хлора, дихлордиэтилсульфид.

Об этих эпизодах истории, связанных с одним маленьким городком и одним химическим элементом, мы напомнили для того, чтобы показать, как опасен может быть элемент № 17 в руках воинствующих безумцев. Это - самая мрачная страница истории хлора. Но было бы совершенно неверно видеть в хлоре только отравляющее вещество и сырье для производства других отравляющих веществ...

История элементного хлора сравнительно коротка, она ведет начало с 1774 г. История соединений хлора стара, как мир. Достаточно вспомнить, что хлористый натрий - это поваренная соль. И, видимо, еще в доисторические времена была подмечена способность соли консервировать мясо и рыбу.

Самые древние археологические находки - свидетельства использования соли человеком относятся примерно к 3-4 тысячелетию до н.э. Но самое древнее описание добычи каменной соли встречается в сочинениях греческого историка Геродота (V в. до н.э.). Геродот описывает добычу каменной соли в Ливии. В оазисе Синах в центре Ливийской пустыни находился знаменитый храм бога Аммона-Ра. Поэтому-то Ливия и именовалась «Ammonia», и первое название каменной соли было «sal ammoniacum». Позднее, начиная примерно с XIII в. н.э., это название закрепилось за хлористым аммонием.

В «Естественной истории» Плиния Старшего описан метод отделения золота от неблагородных металлов при прокаливании с солью и глиной. А одно из первых описаний очистки хлористого натрия находим в трудах великого арабского врача и алхимика Джабир ибн-Хайяна (в европейском написании - Гебер).

Весьма вероятно, что алхимики сталкивались и с элементным хлором, так как в странах Востока уже в IX, а в Европе в XIII в. была известна «царская водка» - смесь соляной и азотной кислот. В выпущенной в 1668 г. книге голландца Ван-Гельмонта «Hortus Medicinae» говорится, что при совместном нагревании хлористого аммония и азотной кислоты получается некий газ. Судя по описанию, этот газ очень похож на хлор.

Подробно хлор впервые описан шведским химиком Шееле в его трактате о пиролюзите. Нагревая минерал пиролюзит с соляной кислотой, Шееле заметил запах, характерный для царской водки, собрал и исследовал желто-зеленый газ, порождавший этот запах, и изучил его взаимодействие с некоторыми веществами. Шееле первым обнаружил действие хлора на золото и киноварь (в последнем случае образуется сулема) и отбеливающие свойства хлора.

Шееле не считал вновь открытый газ простым веществом и назвал его «дефлогистонированной соляной кислотой». Говоря современным языком, Шееле, а вслед за ним и другие ученые того времени полагали, что новый газ - это окисел соляной кислоты.

Несколько позже Бертоле и Лавуазье предложили считать этот газ окислом некоего нового элемента «мурия». В течение трех с половиной десятилетий химики безуспешно пытались выделить неведомый мурий.

Сторонником «окиси мурия» был поначалу и Дэви, который в 1807 г. разложил электрическим током поваренную соль на щелочной металл натрий и желто-зеленый газ. Однако, спустя три года, после многих бесплодных попыток получить мурий Дэви пришел к выводу, что газ, открытый Шееле, - простое вещество, элемент, и назвал его chloric gas или chlorine (от греческого - желто-зеленый). А еще через три года Гей-Люссак дал новому элементу более короткое имя - хлор. Правда, еще в 1811 г. немецкий химик Швейгер предложил для хлора другое название - «галоген» (дословно оно переводится как солерод), но это название поначалу не привилось, а впоследствии стало общим для целой группы элементов, в которую входит и хлор.

«Личная карточка» хлора

На вопрос, что же такое хлор, можно дать минимум десяток ответов. Во-первых, это галоген; во-вторых, один из самых сильных окислителей; в-третьих, чрезвычайно ядовитый газ; в-четвертых, важнейший продукт основной химической промышленности; в-пятых, сырье для производства пластмасс и ядохимикатов, каучука и искусственного волокна, красителей и медикаментов; в-шестых, вещество, с помощью которого получают титан и кремний , глицерин и фторопласт; в-седьмых, средство для очистки питьевой воды и отбеливания тканей...

Это перечисление можно было бы продолжить.

При обычных условиях элементный хлор - довольно тяжелый желтозеленый газ с резким характерным запахом. Атомный вес хлора 35,453, а молекулярный - 70,906, потому что молекула хлора двухатомна. Один литр газообразного хлора при нормальных условиях (температура 0°С и давление 760 мм ртутного столба) весит 3,214 г. При охлаждении до температуры - 34,05°С хлор конденсируется в желтую жидкость (плотностью 1,56 г/см 3), а при температуре - 101,6°С затвердевает. При повышенном давлении хлор можно превратить в жидкость и при более высоких температурах вплоть до +144°С. Хлор хорошо растворяется в дихлорэтане и некоторых других хлорсодержащих органических растворителях.

Элемент № 17 очень активен - он непосредственно соединяется почти со всеми элементами периодической системы. Поэтому в природе он встречается только в виде соединений. Самые распространенные минералы, содержащие хлор, галит NaCl, сильвинит KCl NaCl, бишофит MgCl 2 -6H 2 O, карналлит KCl-MgCl 2 -6H 2 O, каинит KCl-MgSO 4 -3H 2 O. Это их в первую очередь «вина» (или «заслуга»), что содержание хлора в земной коре составляет 0,20% по весу. Для цветной металлургии очень важны некоторые относительно редкие хлорсодержащие минералы, например роговое серебро AgCl.

По электропроводности жидкий хлор занимает место среди самых сильных изоляторов: он проводит ток почти в миллиард раз хуже, чем дистиллированная вода, и в 1022 раз хуже серебра .

Скорость звука в хлоре примерно в полтора раза меньше, чем в воздухе.

И напоследок - об изотопах хлора.

Сейчас известны десять изотопов этого элемента, но в природе встречаются только два - хлор-35 и хлор-37. Первого примерно в три раза больше, чем второго.

Остальные восемь изотопов получены искусственно. Самый короткоживущий из них - 32 Cl имеет период полураспада 0,306 секунды, а самый долгоживущий - 36 Cl - 310 тыс. лет.

ЭЛЕМЕНТАРНЫЙ РАСЧЕТ. При получении хлора электролизом раствора поваренной соли одновременно получаются водород и едкий натр: 2NaCl + 2H 2 O = H 2 + Cl 2 + 2NaOH. Конечно, водород - очень важный химический продукт, но есть более дешевые и удобные способы производства этого вещества, например конверсия природного газа... А вот едкий натр получают почти исключительно электролизом растворов поваренной соли - на долю других методов приходится меньше 10%. Поскольку производства хлора и NaOH полностью взаимосвязаны (как следует из уравнения реакции, получение одной грамм-молекулы - 71 г хлора - неизменно сопровождается получением двух грамм-молекул - 80 г электролитической щелочи), зная производительность цеха (или завода, или государства) по щелочи, можно легко рассчитать, сколько хлора он производит. Каждой тонне NaOH «сопутствуют» 890 кг хлора.

НУ И СМАЗКА! Концентрированная серная кислота - практически единственная жидкость, не взаимодействующая с хлором. Поэтому для сжатия и перекачивания хлора на заводах используют насосы, в которых роль рабочего тела и одновременно смазки выполняет серная кислота.

ПСЕВДОНИМ ФРИДРИХА ВЕЛЕРА. Исследуя взаимодействие органических веществ с хлором, французский химик XIX в. Жан Дюма сделал поразительное открытие: хлор способен замещать водород в молекулах органических соединений. Например, при хлорировании уксусной кислоты сначала один водород метильной группы замещается на хлор, затем другой, третий. Но самым поразительным было то, что по химическим свойствам хлоруксусные кислоты мало чем отличались от самой уксусной кислоты. Обнаруженный Дюма класс реакций был совершенно необъясним господствовавшими в то время электрохимической гипотезой и теорией радикалов Берцелиуса. Берцелиус, его ученики и последователи бурно оспаривали правильность работ Дюма. В немецком журнале «Annalen der Chemie und Pharmacie» появилось издевательское письмо знаменитого немецкого химика Фридриха Вёлера под псевдонимом S. С. Н. Windier (по-немецки «Schwindler» значит «лжец», «обманщик»). В нем сообщалось, что автору удалось заместить в клетчатке (C 6 H 10 O 5), все атомы углерода , водорода и кислорода на хлор, причем свойства клетчатки при этом не изменились. И что теперь в Лондоне делают теплые набрюшники из ваты, состоящей из чистого хлора.

ХЛОР И ВОДА. Хлор заметно растворяется в воде. При 20°С в одном объеме воды растворяется 2,3 объема хлора. Водные растворы хлора (хлорная вода) - желтого цвета. Но со временем, особенно при хранении на свету, они постепенно обесцвечиваются. Объясняется это тем, что растворенный хлор частично взаимодействует с водой, образуются соляная и хлорноватистая кислоты: Cl 2 + H 2 O → HCl + HOCl. Последняя неустойчива и постепенно распадается на HCl и кислород. Поэтому раствор хлора в воде постепенно превращается в раствор соляной кислоты.

Но при низких температурах хлор и иода образуют кристаллогидрат необычного состава - Cl 2 *5 3 / 4 H 2 O. Эти зеленовато-желтые кристаллы (устойчивые только при температурах ниже 10°С) можно получить, пропуская хлор через воду со льдом. Необычная формула объясняется структурой кристаллогидрата, а она определяется в первую очередь структурой льда. В кристаллической решетке льда молекулы H 2 O могут располагаться таким образом, что между ними появляются закономерно расположенные пустоты. Элементарная кубическая ячейка содержит 46 молекул воды, между которыми есть восемь микроскопических пустот. В этих пустотах и оседают молекулы хлора. Точная формула кристаллогидрата хлора поэтому должна быть записана так: 8Cl 2 *46H 2 O.

ОТРАВЛЕНИЕ ХЛОРОМ. Присутствие в воздухе уже около 0,0001% хлора раздражающе действует на слизистые оболочки. Постоянное пребывание в такой атмосфере может привести к заболеванию бронхов, резко ухудшает аппетит, придает зеленоватый оттенок коже. Если содержание хлора в воздухе составляет 0,1%, то может наступить острое отравление, первый признак которого - приступы сильнейшего кашля. При отравлении хлором необходим абсолютный покой; полезно вдыхать кислород или аммиак (нюхая нашатырный спирт), или пары спирта с эфиром. По существующим санитарным нормам содержание хлора в воздухе производственных помещений не должно превышать 0,001 мг/л, т. е. 0,00003%.

HE ТОЛЬКО ЯД. «Что волки жадны, всякий знает». Что хлор ядовит - тоже. Однако в небольших дозах ядовитый хлор иногда может служить и противоядием. Так, пострадавшим от сероводорода дают нюхать нестойкую хлорную известь. Взаимодействуя, два яда взаимно нейтрализуются.

АНАЛИЗ НА ХЛОР. Для определения содержания хлора пробу воздуха пропускают через поглотители с подкисленным раствором иодистого калия . (Хлор вытесняет под, количество последнего легко определяется фильтрованием с помощью раствора Na 2 S 2 O 3 .) Для определения микроколичеств хлора в воздухе часто применяется колориметрический метод, основанный на резком изменении окраски некоторых соединений (бензидина, ортотолуидина, метилоранжа) при окислении их хлором. Например, бесцветный подкисленный раствор бензидина приобретает желтый цвет, а нейтральный - синий. Интенсивность окраски пропорциональна количеству хлора.

ОПРЕДЕЛЕНИЕ

Хлор находится в третьем периоде VII группе главной (А) подгруппе Периодической таблицы.

Относится к элементам p-семейства. Неметалл. Элементы-неметаллы, входящие в эту группу, носят общее название галогены. Обозначение - Cl. Порядковый номер - 17. Относительная атомная масса - 35,453 а.е.м.

Электронное строение атома хлора

Атом хлора состоит из положительно заряженного ядра (+17), состоящего из 17 протонов и 18 нейтронов, вокруг которого по 3-м орбитам движутся 17 электронов.

Рис.1. Схематическое строение атома хлора.

Распределение электронов по орбиталям выглядит следующим образом:

17Cl) 2) 8) 7 ;

1s 2 2s 2 2p 6 3s 2 3p 5 .

На внешнем энергетическом уровне атома хлора находится семь электронов, все они считаются валентными. Энергетическая диаграмма основного состояния принимает следующий вид:

Наличие одного неспаренного электрона свидетельствует о том, что хлор способен проявлять степень окисления +1. Также возможно несколько возбужденных состояний из-за наличия вакантной 3d -орбитали. Сначала распариваются электроны 3p -подуровня и занимают свободные d -орбитали, а после - электроны 3s -подуровня:

Этим объясняется наличие у хлора ещё трех степеней окисления: +3, +5 и +7.

Примеры решения задач

ПРИМЕР 1

Задание Даны два элемента с зарядами ядер Z=17 и Z=18. Простое вещество, образованное первым элементом, — ядовитый газ с резким запахом, а вторым - не ядовитый, лишенный запаха, не поддерживающий дыхания газ. Напишите электронные формулы атомов обоих элементов. Какой из них образует ядовитый газ?
Решение Электронные формулы заданных элементов будут записываться следующим образом:

17 Z 1s 2 2s 2 2p 6 3s 2 3p 5 ;

18 Z 1s 2 2s 2 2p 6 3s 2 3p 6 .

Заряд ядра атома химического элемента равен его порядковому номеру в Периодической таблице. Следовательно, это хлор и аргон. Два атома хлора образуют молекулу простого вещества - Cl 2 , которое представляет собой ядовитый газ с резким запахом

Ответ Хлор и аргон.

Рассмотрены физические свойства хлора: плотность хлора, его теплопроводность, удельная теплоемкость и динамическая вязкость при различных температурах. Физические свойства Cl 2 представлены в виде таблиц для жидкого, твердого и газообразного состояния этого галогена.

Основные физические свойства хлора

Хлор входит в VII группу третьего периода периодической системы элементов под номером 17. Он относится к подгруппе галогенов, имеет относительные атомную и молекулярные массы 35,453 и 70,906, соответственно. При температурах выше -30°С хлор представляет собой зеленовато-желтый газ с характерным резким раздражающим запахом. Он легко сжижается под обычным давлением (1,013·10 5 Па), будучи охлажден до -34°С, и образует прозрачную жидкость янтарного цвета, затвердевающую при температуре -101°С.

Из-за своей высокой химической активности свободный хлор не встречается в природе, а существует только в форме соединений. Он содержится главным образом в минерале галите (), также входит в состав таких минералов, как: сильвин (KCl), карналлит (KCl·MgCl 2 ·6H 2 O) и сильвинит (KCl·NaCl). Содержание хлора в земной коре приближается к 0,02% от общего числа атомов земной коры, где он находится в виде двух изотопов 35 Cl и 37 Cl в процентном соотношении 75,77% 35 Cl и 24,23% 37 Cl.

Физические свойства хлора — таблица основных показателей
Свойство Значение
Температура плавления, °С -100,5
Температура кипения, °С -30,04
Критическая температура, °С 144
Критическое давление, Па 77,1·10 5
Критическая плотность, кг/м 3 573
Плотность газа (при 0°С и 1,013·10 5 Па), кг/м 3 3,214
Плотность насыщенного пара (при 0°С и 3,664·10 5 Па), кг/м 3 12,08
Плотность жидкого хлора (при 0°С и 3,664·10 5 Па), кг/м 3 1468
Плотность жидкого хлора (при 15,6°С и 6,08·10 5 Па), кг/м 3 1422
Плотность твердого хлора (при -102°С), кг/м 3 1900
Относительная плотность по воздуху газа (при 0°С и 1,013·10 5 Па) 2,482
Относительная плотность по воздуху насыщенного пара (при 0°С и 3,664·10 5 Па) 9,337
Относительная плотность жидкого хлора при 0°С (по воде при 4°С) 1,468
Удельный объем газа (при 0°С и 1,013·10 5 Па), м 3 /кг 0,3116
Удельный объем насыщенного пара (при 0°С и 3,664·10 5 Па), м 3 /кг 0,0828
Удельный объем жидкого хлора (при 0°С и 3,664·10 5 Па), м 3 /кг 0,00068
Давление паров хлора при 0°С, Па 3,664·10 5
Динамическая вязкость газа при 20°С, 10 -3 Па·с 0,013
Динамическая вязкость жидкого хлора при 20°С, 10 -3 Па·с 0,345
Теплота плавления твердого хлора (при температуре плавления), кДж/кг 90,3
Теплота парообразования (при температуре кипения), кДж/кг 288
Теплота сублимации (при температуре плавления), кДж/моль 29,16
Молярная теплоемкость C p газа (при -73…5727°С), Дж/(моль·К) 31,7…40,6
Молярная теплоемкость C p жидкого хлора (при -101…-34°С), Дж/(моль·К) 67,1…65,7
Коэффициент теплопроводности газа при 0°С, Вт/(м·К) 0,008
Коэффициент теплопроводности жидкого хлора при 30°С, Вт/(м·К) 0,62
Энтальпия газа, кДж/кг 1,377
Энтальпия насыщенного пара, кДж/кг 1,306
Энтальпия жидкого хлора, кДж/кг 0,879
Показатель преломления при 14°С 1,367
Удельная электропроводность при -70°С, См/м 10 -18
Сродство к электрону, кДж/моль 357
Энергия ионизации, кДж/моль 1260

Плотность хлора

При нормальных условиях хлор представляет собой тяжелый газ, плотность которого приблизительно в 2,5 раза выше . Плотность газообразного и жидкого хлора при нормальных условиях (при 0°С) равна, соответственно 3,214 и 1468 кг/м 3 . При нагревании жидкого или газообразного хлора его плотность снижается из-за увеличения объема вследствие теплового расширения.

Плотность газообразного хлора

В таблице представлены значения плотности хлора в газообразном состоянии при различных температурах (в интервале от -30 до 140°С) и нормальном атмосферном давлении (1,013·10 5 Па). Плотность хлора меняется с изменением температуры — при нагревании она уменьшается. Например, при 20°С плотность хлора равна 2,985 кг/м 3 , а при повышении температуры этого газа до 100°С, величина плотности снижается до значения 2,328 кг/м 3 .

Плотность газообразного хлора при различных температурах
t, °С ρ, кг/м 3 t, °С ρ, кг/м 3
-30 3,722 60 2,616
-20 3,502 70 2,538
-10 3,347 80 2,464
0 3,214 90 2,394
10 3,095 100 2,328
20 2,985 110 2,266
30 2,884 120 2,207
40 2,789 130 2,15
50 2,7 140 2,097

При росте давления плотность хлора увеличивается . Ниже в таблицах приведена плотность газообразного хлора в интервале температуры от -40 до 140°С и давлении от 26,6·10 5 до 213·10 5 Па. С повышением давления плотность хлора в газообразном состоянии увеличивается пропорционально. Например, увеличение давления хлора с 53,2·10 5 до 106,4·10 5 Па при температуре 10°С приводит к двукратному увеличению плотности этого газа.

Плотность газообразного хлора при различных температурах и давлении от 0,26 до 1 атм.
↓ t, °С | P, кПа → 26,6 53,2 79,8 101,3
-40 0,9819 1,996
-30 0,9402 1,896 2,885 3,722
-20 0,9024 1,815 2,743 3,502
-10 0,8678 1,743 2,629 3,347
0 0,8358 1,678 2,528 3,214
10 0,8061 1,618 2,435 3,095
20 0,7783 1,563 2,35 2,985
30 0,7524 1,509 2,271 2,884
40 0,7282 1,46 2,197 2,789
50 0,7055 1,415 2,127 2,7
60 0,6842 1,371 2,062 2,616
70 0,6641 1,331 2 2,538
80 0,6451 1,292 1,942 2,464
90 0,6272 1,256 1,888 2,394
100 0,6103 1,222 1,836 2,328
110 0,5943 1,19 1,787 2,266
120 0,579 1,159 1,741 2,207
130 0,5646 1,13 1,697 2,15
140 0,5508 1,102 1,655 2,097
Плотность газообразного хлора при различных температурах и давлении от 1,31 до 2,1 атм.
↓ t, °С | P, кПа → 133 160 186 213
-20 4,695 5,768
-10 4,446 5,389 6,366 7,389
0 4,255 5,138 6,036 6,954
10 4,092 4,933 5,783 6,645
20 3,945 4,751 5,565 6,385
30 3,809 4,585 5,367 6,154
40 3,682 4,431 5,184 5,942
50 3,563 4,287 5,014 5,745
60 3,452 4,151 4,855 5,561
70 3,347 4,025 4,705 5,388
80 3,248 3,905 4,564 5,225
90 3,156 3,793 4,432 5,073
100 3,068 3,687 4,307 4,929
110 2,985 3,587 4,189 4,793
120 2,907 3,492 4,078 4,665
130 2,832 3,397 3,972 4,543
140 2,761 3,319 3,87 4,426

Плотность жидкого хлора

Жидкий хлор может существовать в относительно узком температурном диапазоне, границы которого лежат от минус 100,5 до плюс 144°С (то есть от температуры плавления до критической температуры). Выше температуры 144°С хлор не перейдет в жидкое состояние ни при каком давлении. Плотность жидкого хлора в этом температурном интервале изменяется от 1717 до 573 кг/м 3 .

Плотность жидкого хлора при различных температурах
t, °С ρ, кг/м 3 t, °С ρ, кг/м 3
-100 1717 30 1377
-90 1694 40 1344
-80 1673 50 1310
-70 1646 60 1275
-60 1622 70 1240
-50 1598 80 1199
-40 1574 90 1156
-30 1550 100 1109
-20 1524 110 1059
-10 1496 120 998
0 1468 130 920
10 1438 140 750
20 1408 144 573

Удельная теплоемкость хлора

Удельная теплоемкость газообразного хлора C p в размерности кДж/(кг·К) в интервале температуры от 0 до 1200°С и нормальном атмосферном давлении может быть рассчитана по формуле:

где T — абсолютная температура хлора в градусах Кельвина.

Следует отметить, что при нормальных условиях удельная теплоемкость хлора имеет значение 471 Дж/(кг·К) и при нагревании увеличивается. Рост теплоемкости при температурах выше 500°С становится незначительным, и при высоких температурах удельная теплоемкость хлора практически не изменяется.

В таблице приведены результаты расчета удельной теплоемкости хлора по указанной выше формуле (погрешность расчета составляет около 1%).

Удельная теплоемкость газообразного хлора в зависимости от температуры
t, °С C p , Дж/(кг·К) t, °С C p , Дж/(кг·К)
0 471 250 506
10 474 300 508
20 477 350 510
30 480 400 511
40 482 450 512
50 485 500 513
60 487 550 514
70 488 600 514
80 490 650 515
90 492 700 515
100 493 750 515
110 494 800 516
120 496 850 516
130 497 900 516
140 498 950 516
150 499 1000 517
200 503 1100 517

При температуре близкой к абсолютному нулю хлор находится в твердом состоянии и имеет низкую величину удельной теплоемкости (19 Дж/(кг·К)). По мере увеличения температуры твердого Cl 2 его теплоемкость растет и достигает при минус 143°С величины 720 Дж/(кг·К).

Жидкий хлор имеет удельную теплоемкость 918…949 Дж/(кг·К) в интервале от 0 до -90 градусов Цельсия. По данным таблицы видно, что удельная теплоемкость жидкого хлора выше чем газообразного и при увеличении температуры снижается.

Теплопроводность хлора

В таблице представлены значения коэффициентов теплопроводности газообразного хлора при нормальном атмосферном давлении в интервале температуры от -70 до 400°С.

Коэффициент теплопроводности хлора при нормальных условиях составляет 0,0079 Вт/(м·град), что в 3 раза меньше чем у при тех же температуре и давлении. Нагревание хлора приводит к повышению его теплопроводности. Так, при температуре 100°С, значение этого физического свойства хлора увеличивается до 0,0114 Вт/(м·град).

Теплопроводность газообразного хлора
t, °С λ, Вт/(м·град) t, °С λ, Вт/(м·град)
-70 0,0054 50 0,0096
-60 0,0058 60 0,01
-50 0,0062 70 0,0104
-40 0,0065 80 0,0107
-30 0,0068 90 0,0111
-20 0,0072 100 0,0114
-10 0,0076 150 0,0133
0 0,0079 200 0,0149
10 0,0082 250 0,0165
20 0,0086 300 0,018
30 0,009 350 0,0195
40 0,0093 400 0,0207

Вязкость хлора

Коэффициент динамической вязкости газообразного хлора в интервале температуры 20…500°С можно приближенно вычислить по формуле:

где η T — коэффициент динамической вязкости хлора при заданной температуре T, К;
η T 0 — коэффициент динамической вязкости хлора при температуре T 0 =273 К (при н. у.);
С — константа Сюзерленда (для хлора С=351).

При нормальных условиях динамическая вязкость хлора равна 0,0123·10 -3 Па·с. При нагревании такое физическое свойство хлора, как вязкость, принимает более высокие значения.

Жидкий хлор имеет вязкость на порядок выше, чем газообразный. Например, при температуре 20°С динамическая вязкость жидкого хлора имеет величину 0,345·10 -3 Па·с и при росте температуры снижается.

Источники:

  1. Барков С. А. Галогены и подгруппа марганца. Элементы VII группы периодической системы Д. И. Менделеева. Пособие для учащихся. М.: Просвещение, 1976 — 112 с.
  2. Таблицы физических величин. Справочник. Под ред. акад. И. К. Кикоина. М.: Атомиздат, 1976 - 1008 с.
  3. Якименко Л. М., Пасманик М. И. Справочник по производству хлора, каустической соды и основных хлорпродуктов. Изд. 2-е, пер. и др. М.: Химия, 1976 — 440 с.