Как сформировалась кислородная атмосфера земли кратко. Атмосфера земли

В конце концов вещество все же разлетается, прекращается деление, но процесс на этом не завершается: энергия перераспределяется между ионизованными осколками разделившихся ядер и другими испущенными при делении частицами. Их энергия — порядка десятков и даже сотен МэВ, но только электрически нейтральные гамма-кванты больших энергий и нейтроны имеют шансы избежать взаимодействия с веществом и «ускользнуть». Заряженные же частицы быстро теряют энергию в актах столкновений и ионизаций. При этом испускается излучение — правда, уже не жесткое ядерное, а более мягкое, с энергией на три порядка меньшей, но все же более чем достаточной, чтобы выбить у атомов электроны — не только с внешних оболочек, но и вообще все. Мешанина из голых ядер, ободранных с них электронов и излучения с плотностью в граммы на кубический сантиметр (попытайтесь представить, как хорошо можно загореть под светом, приобретшим плотность алюминия!) — все то, что мгновение назад было зарядом, — приходит в некое подобие равновесия. В совсем молодом огненном шаре устанавливается температура порядка десятков миллионов градусов.

Огненный шар

Казалось бы, даже и мягкое, но двигающееся со скоростью света излучение должно оставить далеко позади вещество, которое его породило, но это не так: в холодном воздухе пробег квантов кэвных энергий составляет сантиметры, и двигаются они не по прямой, а меняя направление движения, переизлучаясь при каждом взаимодействии. Кванты ионизируют воздух, распространяются в нем, подобно вишневому соку, вылитому в стакан с водой. Это явление называют радиационной диффузией.

Молодой огненный шар взрыва мощностью в 100 кт через несколько десятков наносекунд после завершения вспышки делений имеет радиус 3 м и температуру почти 8 млн кельвинов. Но уже через 30 микросекунд его радиус составляет 18 м, правда, температура спускается ниже миллиона градусов. Шар пожирает пространство, а ионизованный воздух за его фронтом почти не двигается: передать ему значительный импульс при диффузии излучение не может. Но оно накачивает в этот воздух огромную энергию, нагревая его, и, когда энергия излучения иссякает, шар начинает расти за счет расширения горячей плазмы, распираемой изнутри тем, что раньше было зарядом. Расширяясь, подобно надуваемому пузырю, плазменная оболочка истончается. В отличие от пузыря, ее, конечно, ничто не надувает: с внутренней стороны почти не остается вещества, все оно летит от центра по инерции, но через 30 микросекунд после взрыва скорость этого полета — более 100 км/с, а гидродинамическое давление в веществе — более 150 000 атм! Стать чересчур уж тонкой оболочке не суждено, она лопается, образуя «волдыри».

В вакуумной нейтронной трубке между насыщенной тритием мишенью (катодом) 1 и анодным узлом 2 прикладывается импульсное напряжение в сотню киловольт. Когда напряжение максимально, необходимо, чтобы между анодом и катодом оказались ионы дейтерия, которые и требуется ускорить. Для этого служит ионный источник. На его анод 3 подается поджигающий импульс, и разряд, проходя по поверхности насыщенной дейтерием керамики 4, образует ионы дейтерия. Ускорившись, они бомбардируют мишень, насыщенную тритием, в результате чего выделяется энергия 17,6 МэВ и образуются нейтроны и ядра гелия-4. По составу частиц и даже по энергетическому выходу эта реакция идентична синтезу — процессу слияния легких ядер. В 1950-х многие так и считали, но позже выяснилось, что в трубке происходит «срыв»: либо протон, либо нейтрон (из которых состоит ион дейтерия, разогнанный электрическим полем) «увязает» в ядре мишени (трития). Если увязает протон, то нейтрон отрывается и становится свободным.

Какой из механизмов передачи энергии огненного шара окружающей среде превалирует, зависит от мощности взрыва: если она велика — основную роль играет радиационная диффузия, если мала — расширение плазменного пузыря. Понятно, что возможен и промежуточный случай, когда эффективны оба механизма.

Процесс захватывает новые слои воздуха, энергии на то, чтобы ободрать все электроны с атомов, уже не хватает. Иссякает энергия ионизованного слоя и обрывков плазменного пузыря, они уже не в силах двигать перед собой огромную массу и заметно замедляются. Но то, что до взрыва было воздухом, движется, оторвавшись от шара, вбирая в себя все новые слои воздуха холодного… Начинается образование ударной волны.

Ударная волна и атомный гриб

При отрыве ударной волны от огненного шара меняются характеристики излучающего слоя и резко возрастает мощность излучения в оптической части спектра (так называемый первый максимум). Далее конкурируют процессы высвечивания и изменения прозрачности окружающего воздуха, что приводит к реализации и второго максимума, менее мощного, но значительно более длительного — настолько, что выход световой энергии больше, чем в первом максимуме.


Вблизи взрыва все окружающее испаряется, подальше — плавится, но и еще дальше, где тепловой поток уже недостаточен для плавления твердых тел, грунт, скалы, дома текут, как жидкость, под чудовищным, разрушающим все прочностные связи напором газа, раскаленного до нестерпимого для глаз сияния.

Наконец, ударная волна уходит далеко от точки взрыва, где остается рыхлое и ослабевшее, но расширившееся во много раз облако из конденсировавшихся, обратившихся в мельчайшую и очень радиоактивную пыль паров того, что побывало плазмой заряда, и того, что в свой страшный час оказалось близко к месту, от которого следовало бы держаться как можно дальше. Облако начинает подниматься вверх. Оно остывает, меняя свой цвет, «надевает» белую шапку сконденсировавшейся влаги, за ним тянется пыль с поверхности земли, образуя «ножку» того, что принято называть «атомным грибом».

Нейтронное инициирование

Внимательные читатели могут с карандашом в руках прикинуть энерговыделение при взрыве. При времени нахождения сборки в сверхкритическом состоянии порядка микросекунд, возрасте нейтронов порядка пикосекунд и коэффициенте размножения менее 2 выделяется около гигаджоуля энергии, что эквивалентно… 250 кг тротила. А где же кило- и мегатонны?

Нейтроны — медленные и быстрые

В неделящемся веществе, «отскакивая» от ядер, нейтроны передают им часть своей энергии, тем большую, чем легче (ближе им по массе) ядра. Чем в большем числе столкновений поучаствовали нейтроны, тем более они замедляются, и, наконец, приходят в тепловое равновесие с окружающим веществом — термализуются (это занимает миллисекунды). Скорость тепловых нейтронов — 2200 м/с (энергия 0,025 эВ). Нейтроны могут ускользнуть из замедлителя, захватываются его ядрами, но с замедлением их способность вступать в ядерные реакции существенно возрастает, поэтому нейтроны, которые «не потерялись», с лихвой компенсируют убыль численности.
Так, если шар делящегося вещества окружить замедлителем, многие нейтроны покинут замедлитель или будут поглощены в нем, но будут и такие, которые вернутся в шар («отразятся») и, потеряв свою энергию, с гораздо большей вероятностью вызовут акты деления. Если шар окружить слоем бериллия толщиной 25 мм, то, можно сэкономить 20 кг U235 и все равно достичь критического состояния сборки. Но за такую экономию платят временем: каждое последующее поколение нейтронов, прежде чем вызвать деление, должно сначала замедлиться. Эта задержка уменьшает число поколений нейтронов, рождающихся в единицу времени, а значит, энерговыделение затягивается. Чем меньше делящегося вещества в сборке, тем больше требуется замедлителя для развития цепной реакции, а деление идет на все более низкоэнергетичных нейтронах. В предельном случае, когда критичность достигается только на тепловых нейтронах, например — в растворе солей урана в хорошем замедлителе — воде, масса сборок — сотни граммов, но раствор просто периодически вскипает. Выделяющиеся пузырьки пара уменьшают среднюю плотность делящегося вещества, цепная реакция прекращается, а, когда пузырьки покидают жидкость — вспышка делений повторяется (если закупорить сосуд, пар разорвет его — но это будет тепловой взрыв, лишенный всех типичных «ядерных» признаков).

Дело в том, что цепь делений в сборке начинается не с одного нейтрона: в нужную микросекунду их впрыскивают в сверхкритическую сборку миллионами. В первых ядерных зарядах для этого использовались изотопные источники, расположенные в полости внутри плутониевой сборки: полоний-210 в момент сжатия соединялся с бериллием и своими альфа-частицами вызывал нейтронную эмиссию. Но все изотопные источники слабоваты (в первом американском изделии генерировалось менее миллиона нейтронов за микросекунду), а полоний уж очень скоропортящийся — всего за 138 суток снижает свою активность вдвое. Поэтому на смену изотопам пришли менее опасные (не излучающие в невключенном состоянии), а главное — излучающие более интенсивно нейтронные трубки (см. врезку): за несколько микросекунд (столько длится формируемый трубкой импульс) рождаются сотни миллионов нейтронов. А вот если она не сработает или сработает не вовремя, произойдет так называемый хлопок, или «пшик» — маломощный тепловой взрыв.

Накопление O 2 в атмосфере Земли:
1 . (3,85-2,45 млрд лет назад) - O 2 не производился
2 . (2,45-1,85 млрд лет назад) O 2 производился, но поглощался океаном и породами морского дна
3 . (1,85-0,85 млрд лет назад) O 2 выходит из океана, но расходуется при окислении горных пород на суше и при образовании озонового слоя
4 . (0,85-0,54 млрд лет назад) все горные породы на суше окислены, начинается накопление O 2 в атмосфере
5 . (0,54 млрд лет назад - по настоящее время) современный период, содержание O 2 в атмосфере стабилизировалось

Кислородная катастрофа (кислородная революция) - глобальное изменение состава атмосферы Земли , произошедшее в самом начале протерозоя , около 2,4 млрд лет назад (период сидерий). Результатом Кислородной катастрофы стало появление в составе атмосферы свободного кислорода и изменение общего характера атмосферы с восстановительного на окислительный. Предположение о кислородной катастрофе было сделано на основе изучения резкого изменения характера осадконакопления.

Первичный состав атмосферы

Точный состав первичной атмосферы Земли на сегодняшний день неизвестен, однако считается общепризнанным, что она сформировалась в результате дегазации мантии и носила восстановительный характер. Основу её составляли углекислый газ , сероводород , аммиак , метан . В пользу этого свидетельствуют:

  • неокисленные отложения, образовавшиеся явно на поверхности (например, речная галька из нестойкого к кислороду пирита);
  • отсутствие известных значимых источников кислорода и других окислителей;
  • изучение потенциальных источников первичной атмосферы (вулканические газы, состав других небесных тел).

Причины кислородной катастрофы

Единственным значимым источником молекулярного кислорода является биосфера, точнее, фотосинтезирующие организмы. Появившись в самом начале существования биосферы, фотосинтезирующие архебактерии вырабатывали кислород, который практически сразу расходовался на окисление горных пород, растворённых соединений и газов атмосферы. Высокая концентрация создавалась лишь локально, в пределах бактериальных матов (т. н. «кислородные карманы»). После того, как поверхностные породы и газы атмосферы оказались окисленными, кислород начал накапливаться в атмосфере в свободном виде.

Одним из вероятных факторов, повлиявших на смену микробных сообществ, было изменение химического состава океана, вызванное угасанием вулканической активности.

Последствия кислородной катастрофы

Биосфера

Поскольку подавляющая часть организмов того времени была анаэробной , неспособной существовать при значимых концентрациях кислорода, произошла глобальная смена сообществ: анаэробные сообщества сменились аэробными , ограниченными ранее лишь «кислородными карманами»; анаэробные же сообщества, наоборот, оказались оттеснены в «анаэробные карманы» (образно говоря, «биосфера вывернулась наизнанку»). В дальнейшем наличие молекулярного кислорода в атмосфере привело к формированию озонового экрана , существенно расширившего границы биосферы и привело к распространению более энергетически выгодного (по сравнению с анаэробным) кислородного дыхания.

Литосфера

В результате кислородной катастрофы практически все метаморфические и осадочные породы , составляющие большую часть земной коры, являются окисленными.

Заметное увеличение содержания свободного кислорода в атмосфере Земли 2,4 млрд лет назад, по-видимому, явилось результатом очень быстрого перехода от одного равновесного состояния к другому. Первый уровень соответствовал крайне низкой концентрации О 2 - примерно в 100 000 раз ниже той, что наблюдается сейчас. Второй равновесный уровень мог быть достигнут при более высокой концентрации, составляющей не менее чем 0,005 от современной. Содержание кислорода между двумя этими уровнями характеризуется крайней неустойчивостью. Наличие подобной «бистабильности» позволяет понять, почему в атмосфере Земли было так мало свободного кислорода в течение по крайней мере 300 млн лет после того, как его стали вырабатывать цианобактерии (синезеленые «водоросли»).

В настоящее время атмосфера Земли на 20% состоит из свободного кислорода, который есть не что иное как побочный продукт фотосинтеза цианобактерий, водорослей и высших растений. Очень много кислорода выделяется тропическими лесами, которые в популярных изданиях нередко называют легкими планеты. При этом, правда, умалчивается, что за год тропические леса потребляют практически столько же кислорода, сколько образуют. Расходуется он на дыхание организмов, разлагающих готовое органическое вещество, - в первую очередь бактерий и грибов. Для того, чтобы кислород начал накапливаться в атмосфере, хотя бы часть образованного в ходе фотосинтеза вещества должна быть выведена из круговорота - например, попасть в донные отложения и стать недоступной для бактерий, разлагающих его аэробно, то есть с потреблением кислорода.

Суммарную реакцию оксигенного (то есть «дающего кислород») фотосинтеза можно записать как:
CO 2 + H 2 O + → (CH 2 O) + O 2 ,
где - энергия солнечного света, а (CH 2 O) - обобщенная формула органического вещества. Дыхание же - это обратный процесс, который можно записать как:
(CH 2 O) + O 2 → CO 2 + H 2 O.
При этом будет высвобождаться необходимая для организмов энергия. Однако аэробное дыхание возможно только при концентрации O 2 не меньше чем 0,01 от современного уровня (так называемая точка Пастера). В анаэробных условиях органическое вещество разлагается путем брожения, а на завершающих стадиях этого процесса нередко образуется метан. Например, обобщенное уравнение метаногенеза через образование ацетата выглядит как:
2(СH 2 O) → CH 3 COOH → CH 4 + CO 2 .
Если комбинировать процесс фотосинтеза с последующим разложением органического вещества в анаэробных условиях, то суммарное уравнение будет иметь вид:
CO 2 + H 2 O + → 1/2 CH 4 + 1/2 CO 2 + O 2 .
Именно такой путь разложения органического вещества, видимо, был основным в древней биосфере.

Многие важные детали того, как установилось современное равновесие между поступлением кислорода в атмосферу и его изъятием, остаются невыясненными. Ведь заметное увеличение содержания кислорода, так называемое «Великое окисление атмосферы» (Great Oxidation), произошло только 2,4 млрд лет назад, хотя точно известно, что осуществляющие оксигенный фотосинтез цианобактерии были уже достаточно многочисленны и активны 2,7 млрд лет назад, а возникли они еще раньше - возможно, 3 млрд лет назад. Таким образом, в течение по крайней мере 300 миллионов лет деятельность цианобактерий не приводила к увеличению содержания кислорода в атмосфере .

Предположение о том, что в силу каких-то причин вдруг произошло радикальное увеличение чистой первичной продукции (то есть прироста органического вещества, образованного в ходе фотосинтеза цианобактерий), критики не выдержало. Дело в том, что при фотосинтезе преимущественно потребляется легкий изотоп углерода 12 С, а в окружающей среде возрастает относительное содержание более тяжелого изотопа 13 С. Соответственно, донные отложения, содержащие органическое вещество, должны быть обеднены изотопом 13 С, который скапливается в воде и идет на образование карбонатов. Однако соотношение 12 С и 13 С в карбонатах и в органическом веществе отложений остается неизменным несмотря на радикальные изменения в концентрации кислорода в атмосфере. Значит, всё дело не в источнике О 2 , а в его, как выражаются геохимики, «стоке» (изъятии из атмосферы), который вдруг существенным образом сократился, что и привело к существенному увеличению количества кислорода в атмосфере.

Обычно считается, что непосредственно до «Великого окисления атмосферы» весь образующийся тогда кислород расходовался на окисление восстановленных соединений железа (а потом серы), которых на поверхности Земли было довольно много. В частности, тогда образовались так называемые «полосчатые железные руды». Но недавно Колин Гольдблатт , аспирант Школы наук об окружающей среде при Университете Восточной Англии (Норвич, Великобритания), совместно с двумя коллегами из того же университета пришли к выводу о том, что содержание кислорода в земной атмосфере может быть в одном из двух равновесных состояний: его может быть или очень мало - примерно в 100 тысяч раз меньше, чем сейчас, или уже довольно много (хотя с позиции современного наблюдателя мало) - не менее, чем 0,005 от современного уровня.

В предлагаемой модели они учли поступление в атмосферу как кислорода, так и восстановленных соединений, в частности обратив внимание на соотношение свободного кислорода и метана. Они отметили, что если концентрация кислорода превышает 0,0002 от современного уровня, то часть метана уже может окисляться бактериями метанотрофами согласно реакции:
CH 4 + 2O 2 → CO 2 + 2H 2 O.
Но остальной метан (а его довольно много, особенно при низкой концентрации кислорода) поступает в атмосферу.

Вся система находится в неравновесном состоянии с точки зрения термодинамики. Основной же механизм восстановления нарушенного равновесия - окисление метана в верхних слоях атмосферы гидроксильным радикалом (см. Колебания метана в атмосфере: человек или природа - кто кого , «Элементы», 06.10.2006). Гидроксильный радикал, как известно образуется в атмосфере под действием ультрафиолетового излучения. Но если кислорода в атмосфере много (по меньшей мере 0,005 от современного уровня), то в верхних ее слоях образуется озоновый экран, хорошо защищающий Землю от жестких ультрафиолетовых лучей и вместе с тем мешающий физико-химическому окислению метана.

Авторы приходят к несколько парадоксальному выводу о том, что само по себе существование оксигенного фотосинтеза не является достаточным условием ни для того, чтобы сформировалась богатая кислородом атмосфера, ни для того, чтобы возник озоновый экран. Данное обстоятельство следует учитывать в тех случаях, когда мы пытаемся найти признаки существования жизни на других планетах основываясь на результатах обследования их атмосферы.

Формирование атмосферы. Сегодня атмосфера Земли представляет собой смесь газов - 78% азота, 21% кислорода и небольшого количества других газов,- например, двуокиси углерода. Но когда планета только возникла, в атмосфере не было кислорода - она состояла из газов, первоначально существовавших в Солнечной системе.

Земля возникла, когда небольшие каменные тела, состоящие из пыли и газа солнечной туманности и известные как планетоиды, сталкивались друг с другом и постепенно принимали форму планеты. По мере ее роста газы, заключенные в планетоидах, вырывались наружу и окутывали земной шар. Через некоторое время первые растения начали выделять кислород, и первозданная атмосфера развилась в нынешнюю плотную воздушную оболочку.

Зарождение атмосферы

  1. Дождь из мелких планетоидов обрушился на зарождающуюся Землю 4,6 миллиарда лет назад. Газы солнечной туманности, заключенные внутри планеты, при столкновении вырвались наружу и образовали примитивную атмосферу Земли, состоящую из азота, двуокиси углерода и водяного пара.
  2. Тепло, выделяющееся при образовании планеты, удерживается слоем плотных облаков первозданной атмосферы. «Парниковые газы» - такие, как двуокись углерода и водяной пар - останавливают излучение тепла в космос. Поверхность Земли залита бурлящим морем расплавленной магмы.
  3. Когда столкновения планетоидов стали не такими частыми, Земля начала охлаждаться и появились океаны. Водяной пар конденсируется из густых облаков, и дождь, продолжающийся несколько эпох, постепенно заливает низменности. Таким образом появляются первые моря.
  4. Воздух очищается по мере того, как водяной пар конденсируется и образует океаны. С течением времени в них растворяется двуокись углерода, и в атмосфере теперь преобладает азот. Из-за отсутствия кислорода не образуется защитный озоновый слой, и ультрафиолетовые солнечные лучи беспрепятственно достигают земной поверхности.
  5. Жизнь появляется в древних океанах в течение первого миллиарда лет. Простейшие сине-зеленые водоросли защищены от ультрафиолета морской водой. Они используют для производства энергии солнечный свет и двуокись углерода, при этом в качестве побочного продукта выделяется кислород, который начинает постепенно накапливаться в атмосфере.
  6. Миллиарды лет спустя формируется богатая кислородом атмосфера. Фотохимические реакции в верхних атмосферных слоях создают тонкий слой озона, который рассеивает вредный ультрафиолетовый свет. Теперь жизнь может выйти из океанов на сушу, где в результате эволюции возникает множество сложных организмов.

Миллиарды лет назад толстый слой примитивных водорослей начал выделять в атмосферу кислород. Они сохранились до сегодняшнего дня в виде окаменелостей, которые называются строматолитами.

Вулканическое происхождение

1. Древняя, безвоздушная Земля. 2. Извержение газов.

Согласно этой теории, на поверхности юной планеты Земля активно извергались вулканы. Ранняя атмосфера, вероятно, сформировалась тогда, когда газы, заключенные в кремниевой оболочке планеты, вырвались наружу через сопла вулканов.