Как доказать что 2 прямые параллельны. Как доказать параллельность прямых

Эта глава посвящена изучению параллельных прямых. Так называются две прямые на плоскости, которые не пересекаются. Отрезки параллельных прямых мы видим в окружающей обстановке - это два края прямоугольного стола, два края обложки книги, две штанги троллейбуса и т. д. Параллельные прямые играют в геометрии очень важную роль. В этой главе вы узнаете о том, что такое аксиомы геометрии и в чём состоит аксиома параллельных прямых - одна из самых известных аксиом геометрии.

В п. 1 мы отмечали, что две прямые либо имеют одну общую точку, т. е. пересекаются, либо не имеют ни одной общей точки, т. е. не пересекаются.

Определение

Параллельность прямых а и b обозначают так: а || b.

На рисунке 98 изображены прямые а и b, перпендикулярные к прямой с. В п. 12 мы установили, что такие прямые а и b не пересекаются, т. е. они параллельны.

Рис. 98

Наряду с параллельными прямыми часто рассматривают параллельные отрезки. Два отрезка называются параллельными , если они лежат на параллельных прямых. На рисунке 99, а отрезки АВ и CD параллельны (АВ || CD), а отрезки MN и CD не параллельны. Аналогично определяется параллельность отрезка и прямой (рис. 99, б), луча и прямой, отрезка и луча, двух лучей (рис. 99, в).


Рис. 99 Признаки параллельности двух прямых

Прямая с называется секущей по отношению к прямым а и b, если она пересекает их в двух точках (рис. 100). При пересечении прямых а и b секущей с образуется восемь углов, которые на рисунке 100 обозначены цифрами. Некоторые пары этих углов имеют специальные названия:

    накрест лежащие углы : 3 и 5, 4 и 6;
    односторонние углы : 4 и 5, 3 и 6;
    соответственные углы : 1 и 5, 4 и 8, 2 и 6, 3 и 7.


Рис. 100

Рассмотрим три признака параллельности двух прямых, связанные с этими парами углов.

Теорема

Доказательство

Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны: ∠1 = ∠2 (рис. 101, а).

Докажем, что а || b. Если углы 1 и 2 прямые (рис. 101, б), то прямые а и b перпендикулярны к прямой АВ и, следовательно, параллельны.


Рис. 101

Рассмотрим случай, когда углы 1 и 2 не прямые.

Из середины О отрезка АВ проведём перпендикуляр ОН к прямой а (рис. 101, в). На прямой b от точки В отложим отрезок ВН 1 , равный отрезку АН, как показано на рисунке 101, в, и проведём отрезок ОН 1 . Треугольники ОНА и ОН 1 В равны по двум сторонам и углу между ними (АО = ВО, АН = ВН 1 , ∠1 = ∠2), поэтому ∠3 = ∠4 и ∠5 = ∠6. Из равенства ∠3 = ∠4 следует, что точка Н 1 лежит на продолжении луча ОН, т. е. точки Н, О и Н 1 лежат на одной прямой, а из равенства ∠5 = ∠6 следует, что угол 6 - прямой (так как угол 5 - прямой). Итак, прямые а и b перпендикулярны к прямой HH 1 поэтому они параллельны. Теорема доказана.

Теорема

Доказательство

Пусть при пересечении прямых а и b секущей с соответственные углы равны, например ∠1 =∠2 (рис. 102).


Рис. 102

Так как углы 2 и 3 - вертикальные, то ∠2 = ∠3. Из этих двух равенств следует, что ∠1 = ∠3. Но углы 1 и 3 - накрест лежащие, поэтому прямые а и b параллельны. Теорема доказана.

Теорема

Доказательство

    Пусть при пересечении прямых а и b секущей с сумма односторонних углов равна 180°, например ∠1 + ∠4 = 180° (см. рис. 102).

    Так как углы 3 и 4 - смежные, то ∠3 + ∠4 = 180°. Из этих двух равенств следует, что накрест лежащие углы 1 и 3 равны, поэтому прямые а и b параллельны. Теорема доказана.

Практические способы построения параллельных прямых

Признаки параллельности прямых лежат в основе способов построения параллельных прямых с помощью различных инструментов, используемых на практике. Рассмотрим, например, способ построения параллельных прямых с помощью чертёжного угольника и линейки. Чтобы построить прямую, проходящую через точку М и параллельную данной прямой а, приложим чертёжный угольник к прямой а, а к нему линейку так, как показано на рисунке 103. Затем, передвигая угольник вдоль линейки, добьёмся того, чтобы точка М оказалась на стороне угольника, и проведём прямую b. Прямые а и b параллельны, так как соответственные углы, обозначенные на рисунке 103 буквами α и β, равны.


Рис. 103 На рисунке 104 показан способ построения параллельных прямых при помощи рейсшины. Этим способом пользуются в чертёжной практике.


Рис. 104 Аналогичный способ применяется при выполнении столярных работ, где для разметки параллельных прямых используется малка (две деревянные планки, скреплённые шарниром, рис. 105).


Рис. 105

Задачи

186. На рисунке 106 прямые а и b пересечены прямой с. Докажите, что а || b, если:

    а) ∠1 = 37°, ∠7 = 143°;
    б) ∠1 = ∠6;
    в) ∠l = 45°, а угол 7 в три раза больше угла 3.


Рис. 106

187. По данным рисунка 107 докажите, что АВ || DE.


Рис. 107

188. Отрезки АВ и CD пересекаются в их общей середине. Докажите, что прямые АС и BD параллельны.

189. Используя данные рисунка 108, докажите, что ВС || AD.


Рис. 108

190. На рисунке 109 АВ = ВС, AD = DE, ∠C = 70°, ∠EAC = 35°. Докажите, что DE || АС.


Рис. 109

191. Отрезок ВК - биссектриса треугольника АВС. Через точку К проведена прямая, пересекающая сторону ВС в точке М так, что ВМ = МК. Докажите, что прямые КМ и АВ параллельны.

192. В треугольнике АВС угол А равен 40°, а угол ВСЕ, смежный с углом АСВ, равен 80°. Докажите, что биссектриса угла ВСЕ параллельна прямой АВ.

193. В треугольнике ABC ∠A = 40°, ∠B = 70°. Через вершину В проведена прямая BD так, что луч ВС - биссектриса угла ABD. Докажите, что прямые АС и BD параллельны.

194. Начертите треугольник. Через каждую вершину этого треугольника с помощью чертёжного угольника и линейки проведите прямую, параллельную противоположной стороне.

195. Начертите треугольник АВС и отметьте точку D на стороне АС. Через точку D с помощью чертёжного угольника и линейки проведите прямые, параллельные двум другим сторонам треугольника.


Эта статья о параллельных прямых и о параллельности прямых. Сначала дано определение параллельных прямых на плоскости и в пространстве, введены обозначения, приведены примеры и графические иллюстрации параллельных прямых. Далее разобраны признаки и условия параллельности прямых. В заключении показаны решения характерных задач на доказательство параллельности прямых, которые заданы некоторыми уравнениями прямой в прямоугольной системе координат на плоскости и в трехмерном пространстве.

Навигация по странице.

Параллельные прямые – основные сведения.

Определение.

Две прямые на плоскости называются параллельными , если они не имеют общих точек.

Определение.

Две прямые в трехмерном пространстве называются параллельными , если они лежат в одной плоскости и не имеют общих точек.

Обратите внимание, что оговорка «если они лежат в одной плоскости» в определении параллельных прямых в пространстве очень важна. Поясним этот момент: две прямые в трехмерном пространстве, которые не имеют общих точек и не лежат в одной плоскости не являются параллельными, а являются скрещивающимися.

Приведем несколько примеров параллельных прямых. Противоположные края тетрадного листа лежат на параллельных прямых. Прямые, по которым плоскость стены дома пересекает плоскости потолка и пола, являются параллельными. Железнодорожные рельсы на ровной местности также можно рассматривать как параллельные прямые.

Для обозначения параллельных прямых используют символ «». То есть, если прямые а и b параллельны, то можно кратко записать а b .

Обратите внимание: если прямые a и b параллельны, то можно сказать, что прямая a параллельна прямой b , а также, что прямая b параллельна прямой a .

Озвучим утверждение, которое играет важную роль при изучении параллельных прямых на плоскости: через точку, не лежащую на данной прямой, проходит единственная прямая, параллельная данной. Это утверждение принимается как факт (оно не может быть доказано на основе известных аксиом планиметрии), и оно называется аксиомой параллельных прямых.

Для случая в пространстве справедлива теорема: через любую точку пространства, не лежащую на заданной прямой, проходит единственная прямая, параллельная данной. Эта теорема легко доказывается с помощью приведенной выше аксиомы параллельных прямых (ее доказательство Вы можете найти в учебнике геометрии 10-11 класс, который указан в конце статьи в списке литературы).

Для случая в пространстве справедлива теорема: через любую точку пространства, не лежащую на заданной прямой, проходит единственная прямая, параллельная данной. Эта теорема легко доказывается с помощью приведенной выше аксиомы параллельных прямых.

Параллельность прямых - признаки и условия параллельности.

Признаком параллельности прямых является достаточное условие параллельности прямых, то есть, такое условие, выполнение которого гарантирует параллельность прямых. Иными словами, выполнение этого условия достаточно для того, чтобы констатировать факт параллельности прямых.

Также существуют необходимые и достаточные условия параллельности прямых на плоскости и в трехмерном пространстве.

Поясним смысл фразы «необходимое и достаточное условие параллельности прямых».

С достаточным условием параллельности прямых мы уже разобрались. А что же такое «необходимое условие параллельности прямых»? По названию «необходимое» понятно, что выполнение этого условия необходимо для параллельности прямых. Иными словами, если необходимое условие параллельности прямых не выполнено, то прямые не параллельны. Таким образом, необходимое и достаточное условие параллельности прямых – это условие, выполнение которого как необходимо, так и достаточно для параллельности прямых. То есть, с одной стороны это признак параллельности прямых, а с другой стороны – это свойство, которым обладают параллельные прямые.

Прежде чем сформулировать необходимое и достаточное условие параллельности прямых, целесообразно напомнить несколько вспомогательных определений.

Секущая прямая – это прямая, которая пересекает каждую из двух заданных несовпадающих прямых.

При пересечении двух прямых секущей образуются восемь неразвернутых . В формулировке необходимого и достаточного условия параллельности прямых участвуют так называемые накрест лежащие, соответственные и односторонние углы . Покажем их на чертеже.

Теорема.

Если две прямые на плоскости пересечены секущей, то для их параллельности необходимо и достаточно, чтобы накрест лежащие углы были равны, или соответственные углы были равны, или сумма односторонних углов равнялась 180 градусам.

Покажем графическую иллюстрацию этого необходимого и достаточного условия параллельности прямых на плоскости.


Доказательства этих условий параллельности прямых Вы можете найти в учебниках геометрии за 7 -9 классы.

Заметим, что эти условия можно использовать и в трехмерном пространстве – главное, чтобы две прямые и секущая лежали в одной плоскости.

Приведем еще несколько теорем, которые часто используются при доказательстве параллельности прямых.

Теорема.

Если две прямые на плоскости параллельны третьей прямой, то они параллельны. Доказательство этого признака следует из аксиомы параллельных прямых.

Существует аналогичное условие параллельности прямых в трехмерном пространстве.

Теорема.

Если две прямые в пространстве параллельны третьей прямой, то они параллельны. Доказательство этого признака рассматривается на уроках геометрии в 10 классе.

Проиллюстрируем озвученные теоремы.

Приведем еще одну теорему, позволяющую доказывать параллельность прямых на плоскости.

Теорема.

Если две прямые на плоскости перпендикулярны к третьей прямой, то они параллельны.

Существует аналогичная теорема для прямых в пространстве.

Теорема.

Если две прямые в трехмерном пространстве перпендикулярны к одной плоскости, то они параллельны.

Изобразим рисунки, соответствующие этим теоремам.


Все сформулированные выше теоремы, признаки и необходимые и достаточные условия прекрасно подходят для доказательства параллельности прямых методами геометрии. То есть, чтобы доказать параллельность двух заданных прямых нужно показать, что они параллельны третьей прямой, или показать равенство накрест лежащих углов и т.п. Множество подобных задач решается на уроках геометрии в средней школе. Однако следует отметить, что во многих случаях удобно пользоваться методом координат для доказательства параллельности прямых на плоскости или в трехмерном пространстве. Сформулируем необходимые и достаточные условия параллельности прямых, которые заданы в прямоугольной системе координат.

Параллельность прямых в прямоугольной системе координат.

В этом пункте статьи мы сформулируем необходимые и достаточные условия параллельности прямых в прямоугольной системе координат в зависимости от вида уравнений, определяющих эти прямые, а также приведем подробные решения характерных задач.

Начнем с условия параллельности двух прямых на плоскости в прямоугольной системе координат Oxy . В основе его доказательства лежит определение направляющего вектора прямой и определение нормального вектора прямой на плоскости.

Теорема.

Для параллельности двух несовпадающих прямых на плоскости необходимо и достаточно, чтобы направляющие векторы этих прямых были коллинеарны, или нормальные векторы этих прямых были коллинеарны, или направляющий вектор одной прямой был перпендикулярен нормальному вектору второй прямой.

Очевидно, условие параллельности двух прямых на плоскости сводится к (направляющих векторов прямых или нормальных векторов прямых) или к (направляющего вектора одной прямой и нормального вектора второй прямой). Таким образом, если и - направляющие векторы прямых a и b , а и - нормальные векторы прямых a и b соответственно, то необходимое и достаточное условие параллельности прямых а и b запишется как , или , или , где t - некоторое действительное число. В свою очередь координаты направляющих и (или) нормальных векторов прямых a и b находятся по известным уравнениям прямых.

В частности, если прямую a в прямоугольной системе координат Oxy на плоскости задает общее уравнение прямой вида , а прямую b - , то нормальные векторы этих прямых имеют координаты и соответственно, а условие параллельности прямых a и b запишется как .

Если прямой a соответствует уравнение прямой с угловым коэффициентом вида , а прямой b - , то нормальные векторы этих прямых имеют координаты и , а условие параллельности этих прямых примет вид . Следовательно, если прямые на плоскости в прямоугольной системе координат параллельны и могут быть заданы уравнениями прямых с угловыми коэффициентами, то угловые коэффициенты прямых будут равны. И обратно: если несовпадающие прямые на плоскости в прямоугольной системе координат могут быть заданы уравнениями прямой с равными угловыми коэффициентами, то такие прямые параллельны.

Если прямую a и прямую b в прямоугольной системе координат определяют канонические уравнения прямой на плоскости вида и , или параметрические уравнения прямой на плоскости вида и соответственно, то направляющие векторы этих прямых имеют координаты и , а условие параллельности прямых a и b записывается как .

Разберем решения нескольких примеров.

Пример.

Параллельны ли прямые и ?

Решение.

Перепишем уравнение прямой в отрезках в виде общего уравнения прямой: . Теперь видно, что - нормальный вектор прямой , а - нормальный вектор прямой . Эти векторы не коллинеарны, так как не существует такого действительного числа t , для которого верно равенство (). Следовательно, не выполняется необходимое и достаточное условие параллельности прямых на плоскости, поэтому, заданные прямые не параллельны.

Ответ:

Нет, прямые не параллельны.

Пример.

Являются ли прямые и параллельными?

Решение.

Приведем каноническое уравнение прямой к уравнению прямой с угловым коэффициентом: . Очевидно, что уравнения прямых и не одинаковые (в этом случае заданные прямые были бы совпадающими) и угловые коэффициенты прямых равны, следовательно, исходные прямые параллельны.

Второй способ решения.

Сначала покажем, что исходные прямые не совпадают: возьмем любую точку прямой , например, (0, 1) , координаты этой точки не удовлетворяют уравнению прямой , следовательно, прямые не совпадают. Теперь проверим выполнение условия параллельности этих прямых. Нормальный вектор прямой есть вектор , а направляющий вектор прямой есть вектор . Вычислим и : . Следовательно, векторы и перпендикулярны, значит, выполненяется необходимое и достаточное условие параллельности заданных прямых. Таким образом, прямые параллельны.

Ответ:

Заданные прямые параллельны.

Чтобы доказать параллельность прямых в прямоугольной системе координат в трехмерном пространстве пользуются следующим необходимым и достаточным условием.

Теорема.

Для параллельности несовпадающих прямых в трехмерном пространстве необходимо и достаточно, чтобы их направляющие векторы были коллинеарны.

Таким образом, если известны уравнения прямых в прямоугольной системе координат в трехмерном пространстве и нужно ответить на вопрос параллельны эти прямые или нет, то нужно найти координаты направляющих векторов этих прямых и проверить выполнение условия коллинеарности направляющих векторов. Другими словами, если и - направляющие векторы прямых a заданных прямых имеют координаты и . Так как , то . Таким образом, выполнено необходимое и достаточное условие параллельности двух прямых в пространстве. Этим доказана параллельность прямых и .

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.
Параллельные прямые. Свойства и признаки параллельных прямых

1. Аксиома параллельных. Через данную точку можно провести не более одной прямой, параллельной данной.

2. Если две прямые параллельны одной и той же прямой, то они параллельны между собой.

3. Две прямые, перпендикулярные одной и той же прямой, параллельны.

4. Если две параллельные прямые пересечь третьей, то образованные при этом внутренние накрест лежащие углы равны; соответственные углы равны; внутренние односторонние углы в сумме составляют 180°.

5. Если при пересечении двух прямых третьей образуются равные внутренние накрест лежащие углы, то прямые параллельны.

6. Если при пересечении двух прямых третьей образуются равные соответственные углы, то прямые параллельны.

7. Если при пересечении двух прямых третьей сумма внутренних односторонних углов равна 180°, то прямые параллельны.

Теорема Фалеса . Если на одной стороне угла отложить равные отрезки и через их концы провести параллельные прямые, пересекающие вторую сторону угла, то на второй стороне угла отложатся также равные отрезки.

Теорема о пропорциональных отрезках . Параллельные прямые, пересекающие стороны угла, высекают на них пропорциональные отрезки.

Треугольник. Признаки равенства треугольников .

1. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то треугольники равны.

2. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то треугольники равны.

3. Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то треугольники равны.


Признаки равенства прямоугольных треугольников

1. По двум катетам.

2. По катету и гипотенузе.

3. По гипотенузе и острому углу.

4. По катету и острому углу.

Теорема о сумме углов треугольника и следствия из неё

1. Сумма внутренних углов треугольника равна 180°.

2. Внешний угол треугольника равен сумме двух внутренних не смежных с ним углов.

3. Сумма внутренних углов выпуклого n-угольника равна

4. Сумма внешних углов га-угольника равна 360°.

5. Углы со взаимно перпендикулярными сторонами равны, если они оба острые или оба тупые.

6. Угол между биссектрисами смежных углов равен 90°.

7. Биссектрисы внутренних односторонних углов при параллельных прямых и секущей перпендикулярны.

Основные свойства и признаки равнобедренного треугольника

1. Углы при основании равнобедренного треугольника равны.

2. Если два угла треугольника равны, то он равнобедренный.

3. В равнобедренном треугольнике медиана, биссектриса и высота, проведенные к основанию, совпадают.

4. Если в треугольнике совпадает любая пара отрезков из тройки - медиана, биссектриса, высота, то он является равнобедренным.

Неравенство треугольника и следствия из него

1. Сумма двух сторон треугольника больше его третьей стороны.

2. Сумма звеньев ломаной больше отрезка, соединяющего начало

первого звена с концом последнего.

3. Против большего угла треугольника лежит большая сторона.

4. Против большей стороны треугольника лежит больший угол.

5. Гипотенуза прямоугольного треугольника больше катета.

6. Если из одной точки проведены к прямой перпендикуляр и наклонные, то

1) перпендикуляр короче наклонных;

2) большей наклонной соответствует большая проекция и наоборот.

Средняя линия треугольника.

Отрезок, соединяющий середины двух сторон треугольника, называется средней линией треугольника.

Теорема о средней линии треугольника .

Средняя линия треугольника параллельна стороне треугольника и равна её половине.

Теоремы о медианах треугольника

1. Медианы треугольника пересекаются в одной точке и делятся ею в отношении 2: 1, считая от вершины.

2. Если медиана треугольника равна половине стороны, к которой она проведена, то треугольник прямоугольный.

3. Медиана прямоугольного треугольника, проведенная из вершины прямого угла, равна половине гипотенузы.

Свойство серединных перпендикуляров к сторонам треугольника . Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, которая является центром окружности, описанной около треугольника.

Теорема о высотах треугольника . Прямые, содержащие высоты треугольника, пересекаются в одной точке.

Теорема о биссектрисах треугольника . Биссектрисы треугольника пересекаются в одной точке, которая является центром окружности, вписанной в треугольник.

Свойство биссектрисы треугольника . Биссектриса треугольника делит его сторону на отрезки, пропорциональные двум другим сторонам.

Признаки подобия треугольников

1. Если два угла одного треугольника соответственно равны двум углам другого, то треугольники подобны.

2. Если две стороны одного треугольника соответственно пропорциональны двум сторонам другого, а углы, заключенные между этими сторонами, равны, то треугольники подобны.

3. Если три стороны одного треугольника соответственно пропорциональны трём сторонам другого, то треугольники подобны.

Площади подобных треугольников

1. Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

2. Если два треугольника имеют равные углы, то их площади относятся как произведения сторон, заключающих эти углы.

В прямоугольном треугольнике

1. Катет прямоугольного треугольника равен произведению гипотенузы на синус противолежащего или на косинус прилежащего к этому катету острого угла.

2. Катет прямоугольного треугольника равен другому катету, умноженному на тангенс противолежащего или на котангенс прилежащего к этому катету острого угла.

3. Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы.

4. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, противолежащий этому катету, равен 30°.

5. R = ; г = , где а, b - катеты, а с - гипотенуза прямоугольного треугольника; г и R - радиусы вписанной и описанной окружности соответственно.

Теорема Пифагора и теорема, обратная теореме Пифагора

1. Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов.

2. Если квадрат стороны треугольника равен сумме квадратов двух других его сторон, то треугольник - прямоугольный.

Средние пропорциональные в прямоугольном треугольнике.

Высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное проекций катетов на гипотенузу, а каждый катет есть среднее пропорциональное гипотенузы и своей проекции на гипотенузу.


Метрические соотношения в треугольнике

1. Теорема косинусов. Квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними.

2. Следствие из теоремы косинусов. Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.

3. Формула для медианы треугольника. Если m - медиана треугольника, проведенная к стороне с, то m = , где а и b - остальные стороны треугольника.

4. Теорема синусов. Стороны треугольника пропорциональны синусам противолежащих углов.

5. Обобщённая теорема синусов. Отношение стороны треугольника к синусу противолежащего угла равно диаметру окружности, описанной около треугольника.

Формулы площади треугольника

1. Площадь треугольника равна половине произведения основания на высоту.

2. Площадь треугольника равна половине произведения двух его сторон на синус угла между ними.

3. Площадь треугольника равна произведению его полупериметра на радиус вписанной окружности.

4. Площадь треугольника равна произведению трёх его сторон, делённому на учетверённый радиус описанной окружности.

5. Формула Герона: S=, где p - полупериметр; а, b, с - стороны треугольника.

Элементы равностороннего треугольника . Пусть h, S, r, R - высота, площадь, радиусы вписанной и описанной окружностей равностороннего треугольника со стороной а. Тогда
Четырёхугольники

Параллелограмм. Параллелограммом называется четырёхугольник, противоположные стороны которого попарно параллельны.

Свойства и признаки параллелограмма .

1. Диагональ разбивает параллелограмм на два равных треугольника.

2. Противоположные стороны параллелограмма попарно равны.

3. Противоположные углы параллелограмма попарно равны.

4. Диагонали параллелограмма пересекаются и делятся точкой пересечения пополам.

5. Если противоположные стороны четырёхугольника попарно равны, то этот четырёхугольник - параллелограмм.

6. Если две противоположные стороны четырёхугольника равны и параллельны, то этот четырёхугольник - параллелограмм.

7. Если диагонали четырёхугольника делятся точкой пересечения пополам, то этот четырёхугольник - параллелограмм.

Свойство середин сторон четырёхугольника . Середины сторон любого четырёхугольника являются вершинами параллелограмма, площадь которого равна половине площади четырёхугольника.

Прямоугольник. Прямоугольником называется параллелограмм с прямым углом.

Свойства и признаки прямоугольника.

1. Диагонали прямоугольника равны.

2. Если диагонали параллелограмма равны, то этот параллелограмм - прямоугольник.

Квадрат. Квадратом называется прямоугольник, все стороны которого равны.

Ромб. Ромбом называется четырёхугольник, все стороны которого равны.

Свойства и признаки ромба.

1. Диагонали ромба перпендикулярны.

2. Диагонали ромба делят его углы пополам.

3. Если диагонали параллелограмма перпендикулярны, то этот параллелограмм - ромб.

4. Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм - ромб.

Трапеция. Трапецией называется четырёхугольник, у которого только две противоположные стороны (основания) параллельны. Средней линией трапеции называется отрезок, соединяющий середины непараллельных сторон (боковых сторон).

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

2. Отрезок, соединяющий середины диагоналей трапеции, равен полуразности оснований.

Замечательное свойство трапеции . Точка пересечения диагоналей трапеции, точка пересечения продолжений боковых сторон и середины оснований лежат на одной прямой.

Равнобедренная трапеция . Трапеция называется равнобедренной, если её боковые стороны равны.

Свойства и признаки равнобедренной трапеции.

1. Углы при основании равнобедренной трапеции равны.

2. Диагонали равнобедренной трапеции равны.

3. Если углы при основании трапеции равны, то она равнобедренная.

4. Если диагонали трапеции равны, то она равнобедренная.

5. Проекция боковой стороны равнобедренной трапеции на основание равна полуразности оснований, а проекция диагонали - полусумме оснований.

Формулы площади четырёхугольника

1. Площадь параллелограмма равна произведению основания на высоту.

2. Площадь параллелограмма равна произведению его соседних сторон на синус угла между ними.

3. Площадь прямоугольника равна произведению двух его соседних сторон.

4. Площадь ромба равна половине произведения его диагоналей.

5. Площадь трапеции равна произведению полусуммы оснований на высоту.

6. Площадь четырёхугольника равна половине произведения его диагоналей на синус угла между ними.

7. Формула Герона для четырёхугольника, около которого можно описать окружность:

S = , где а, b, с, d - стороны этого четырёхугольника, p - полупериметр, а S - площадь.

Подобные фигуры

1. Отношение соответствующих линейных элементов подобных фигур равно коэффициенту подобия.

2. Отношение площадей подобных фигур равно квадрату коэффициента подобия.

Правильный многоугольник .

Пусть а n - сторона правильного n-угольника, а г n и R n - радиусы вписанной и описанной окружностей. Тогда

Окружность.

Окружностью называется геометрическое место точек плоскости, удаленных от данной точки, называемой центром окружности, на одно и то же положительное расстояние.

Основные свойства окружности

1. Диаметр, перпендикулярный хорде, делит хорду и стягиваемые ею дуги пополам.

2. Диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде.

3. Серединный перпендикуляр к хорде проходит через центр окружности.

4. Равные хорды удалены от центра окружности на равные расстояния.

5. Хорды окружности, удалённые от центра на равные расстояния, равны.

6. Окружность симметрична относительно любого своего диаметра.

7. Дуги окружности, заключённые между параллельными хордами, равны.

8. Из двух хорд больше та, которая менее удалена от центра.

9. Диаметр есть наибольшая хорда окружности.

Касательная к окружности . Прямая, имеющая с окружностью единственную общую точку, называется касательной к окружности.

1. Касательная перпендикулярна радиусу, проведённому в точку касания.

2. Если прямая а, проходящая через точку на окружности, перпендикулярна радиусу, проведённому в эту точку, то прямая а - касательная к окружности.

3. Если прямые, проходящие через точку М, касаются окружности в точках А и В, то MA = MB и ﮮАМО = ﮮВМО, где точка О - центр окружности.

4. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

Касающиеся окружности . Говорят, что две окружности касаются, если они имеют единственную общую точку (точку касания).

1. Точка касания двух окружностей лежит на их линии центров.

2. Окружности радиусов г и R с центрами О 1 и О 2 касаются внешним образом тогда и только тогда, когда R + г = O 1 O 2 .

3. Окружности радиусов г и R (г

4. Окружности с центрами О 1 и O 2 касаются внешним образом в точке К. Некоторая прямая касается этих окружностей в различных точках А и В и пересекается с общей касательной, проходящей через точку К, в точке С. Тогда ﮮАК В = 90° и ﮮО 1 СО 2 = 90°.

5. Отрезок общей внешней касательной к двум касающимся окружностям радиусов г и R равен отрезку общей внутренней касательной, заключённому между общими внешними. Оба эти отрезка равны .

Углы, связанные с окружностью

1. Величина дуги окружности равна величине центрального угла, на неё опирающегося.

2. Вписанный угол равен половине угловой величины дуги, на которую он опирается.

3. Вписанные углы, опирающиеся на одну и ту же дугу, равны.

4. Угол между пересекающимися хордами равен полусумме противоположных дуг, высекаемых хордами.

5. Угол между двумя секущими, пересекающимися вне круга, равен полуразности дуг, высекаемых секущими на окружности.

6. Угол между касательной и хордой, проведённой из точки касания, равен половине угловой величины дуги, высекаемой на окружности этой хордой.

Свойства хорд окружности

1. Линия центров двух пересекающихся окружностей перпендикулярна их общей хорде.

2. Произведения длин отрезков хорд АВ и CD окружности, пересекающихся в точке Е, равны, то есть АЕ ЕВ = СЕ ED.

Вписанные и описанные окружности

1. Центры вписанной и описанной окружностей правильного треугольника совпадают.

2. Центр окружности, описанной около прямоугольного треугольника, - середина гипотенузы.

3. Если в четырёхугольник можно вписать окружность, то суммы его противоположных сторон равны.

4. Если четырёхугольник можно вписать в окружность, то сумма его противоположных углов равна 180°.

5. Если сумма противоположных углов четырёхугольника равна 180°, то около него можно описать окружность.

6. Если в трапецию можно вписать окружность, то боковая сторона трапеции видна из центра окружности под прямым углом.

7. Если в трапецию можно вписать окружность, то радиус окружности есть среднее пропорциональное отрезков, на которые точка касания делит боковую сторону.

8. Если в многоугольник можно вписать окружность, то его площадь равна произведению полупериметра многоугольника на радиус этой окружности.

Теорема о касательной и секущей и следствие из неё

1. Если из одной точки проведены к окружности касательная и секущая, то произведение всей секущей на её внешнюю часть равно квадрату касательной.

2. Произведение всей секущей на её внешнюю часть для данной точки и данной окружности постоянно.

Длина окружности радиуса R равна C= 2πR

Определение 1

Прямую $с$ называют секущей для прямых $а$ и $b$, если она пересекает их в двух точках.

Рассмотрим две прямые $a$ и $b$ и секущую прямую $с$.

При их пересечении возникают углы, которые обозначим цифрами от $1$ до $8$.

У каждого из этих углов есть название, которое часто приходиться употреблять в математике:

  • пары углов $3$ и $5$, $4$ и $6$ называются накрест лежащими ;
  • пары углов $1$ и $5$, $4$ и $8$, $2$ и $6$, $3$ и $7$ называют соответственными ;
  • пары углов $4$ и $5$, $5$ и $6$ называют односторонними .

Признаки параллельности прямых

Теорема 1

Равенство пары накрест лежащих углов для прямых $a$ и $b$ и секущей $с$ говорит о том, что прямые $a$ и $b$ – параллельны:

Доказательство .

Пусть накрест лежащие углы для прямых $а$ и $b$ и секущей $с$ равны: $∠1=∠2$.

Покажем, что $a \parallel b$.

При условии, что углы $1$ и $2$ будут прямыми, получим, что прямые $а$ и $b$ будут перпендикулярными относительно прямой $АВ$, а значит – параллельными.

При условии, что углы $1$ и $2$ не являются прямыми, проведем из точки $О$ – середины отрезка $АВ$, перпендикуляр $ОН$ к прямой $а$.

На прямой $b$ отложим отрезок $BH_1=AH$ и проведем отрезок $OH_1$. Получаем два равных треугольника $ОНА$ и $ОH_1В$ по двум сторонам и углу между ними ($∠1=∠2$, $АО=ВО$, $BH_1=AH$), поэтому $∠3=∠4$ и $∠5=∠6$. Т.к. $∠3=∠4$, то точка $H_1$ лежит на луче $ОН$, таким образом точки $Н$, $О$ и $H_1$ принадлежат одной прямой. Т.к. $∠5=∠6$, то $∠6=90^{\circ}$. Таким образом, прямые $а$ и $b$ являются перпендикулярными относительно прямой $HH_1$ являются параллельными. Теорема доказана.

Теорема 2

Равенство пары соответственных углов для прямых $a$ и $b$ и секущей $с$ говорит о том, что прямые $a$ и $b$ – параллельны:

если $∠1=∠2$, то $a \parallel b$.

Доказательство .

Пусть соответственные углы для прямых $а$ и $b$ и секущей $с$ равны: $∠1=∠2$. Углы $2$ и $3$ являются вертикальными, поэтому $∠2=∠3$. Значит $∠1=∠3$. Т.к. углы $1$ и $3$ – накрест лежащие, то прямые $а$ и $b$ являются параллельными. Теорема доказана.

Теорема 3

Если сумма двух односторонних углов для прямых $a$ и $b$ и секущей $с$ равна $180^{\circ}C$, то прямые $a$ и $b$ – параллельны:

если $∠1+∠4=180^{\circ}$, то $a \parallel b$.

Доказательство .

Пусть односторонние углы для прямых $а$ и $b$ и секущей $с$ в сумме дают $180^{\circ}$, например

$∠1+∠4=180^{\circ}$.

Углы $3$ и $4$ являются смежными, поэтому

$∠3+∠4=180^{\circ}$.

Из полученных равенств видно, что накрест лежащие углы $∠1=∠3$, из чего следует, что прямые $а$ и $b$ являются параллельными.

Теорема доказана.

Из рассмотренных признаков вытекает параллельность прямых.

Примеры решения задач

Пример 1

Точка пересечения делит отрезки $АВ$ и $CD$ пополам. Доказать, что $AC \parallel BD$.

Дано : $AO=OB$, $CO=OD$.

Доказать : $AC \parallel BD$.

Доказательство .

Из условия задачи $AO=OB$, $CO=OD$ и равенства вертикальных углов $∠1=∠2$ согласно I-му признаку равенства треугольников следует, что $\bigtriangleup COA=\bigtriangleup DOB$. Таким образом, $∠3=∠4$.

Углы $3$ и $4$ – накрест лежащие при двух прямых $AC$ и $BD$ и секущей $AB$. Тогда согласно I-му признаку параллельности прямых $AC \parallel BD$. Утверждение доказано.

Пример 2

Дан угол $∠2=45^{\circ}$, а $∠7$ в $3$ раза больше данного угла. Доказать, что $a \parallel b$.

Дано : $∠2=45^{\circ}$, $∠7=3∠2$.

Доказать : $a \parallel b$.

Доказательство :

  1. Найдем значение угла $7$:

$∠7=3 \cdot 45^{\circ}=135^{\circ}$.

  1. Вертикальные углы $∠5=∠7=135^{\circ}$, $∠2=∠4=45^{\circ}$.
  2. Найдем сумму внутренних углов $∠5+∠4=135^{\circ}+45^{\circ}=180^{\circ}$.

Согласно III-му признаку параллельности прямых $a \parallel b$. Утверждение доказано.

Пример 3

Дано : $\bigtriangleup ABC=\bigtriangleup ADB$.

Доказать : $AC \parallel BD$, $AD \parallel BC$.

Доказательство :

У рассматриваемых рисунков сторона $АВ$ – общая.

Т.к. треугольники $АВС$ и $ADB$ равны, то $AD=CB$, $AC=BD$, а также соответствующие углы равны $∠1=∠2$, $∠3=∠4$, $∠5=∠6$.

Пара углов $3$ и $4$ – накрест лежащие для прямых $АС$ и $BD$ и соответствующей секущей $АВ$, поэтому согласно I-му признаку параллельности прямых $AC \parallel BD$.

Пара углов $5$ и $6$ – накрест лежащие для прямых $AD$ и $BC$ и соответствующей секущей $АВ$, поэтому согласно I-му признаку параллельности прямых $AD \parallel BC$.

1. Если две прямые параллельны третьей прямой, то они являются параллельными:

Если a ||c и b ||c , то a ||b .

2. Если две прямые перпендикулярны третьей прямой, то они параллельны:

Если a c и b c , то a ||b .

Остальные признаки параллельности прямых основаны на углах, образующихся при пересечении двух прямых третьей.

3. Если сумма внутренних односторонних углов равна 180°, то прямые параллельны:

Если ∠1 + ∠2 = 180°, то a ||b .

4. Если соответственные углы равны, то прямые параллельны:

Если ∠2 = ∠4, то a ||b .

5. Если внутренние накрест лежащие углы равны, то прямые параллельны:

Если ∠1 = ∠3, то a ||b .

Свойства параллельных прямых

Утверждения, обратные признакам параллельности прямых, являются их свойствами. Они основаны на свойствах углов, образованных пересечением двух параллельных прямых третьей прямой.

1. При пересечении двух параллельных прямых третьей прямой, сумма образованных ими внутренних односторонних углов равна 180°:

Если a ||b , то ∠1 + ∠2 = 180°.

2. При пересечении двух параллельных прямых третьей прямой, образованные ими соответственные углы равны:

Если a ||b , то ∠2 = ∠4.

3. При пересечении двух параллельных прямых третьей прямой, образованные ими накрест лежащие углы равны:

Если a ||b , то ∠1 = ∠3.

Следующее свойство является частным случаем для каждого предыдущего:

4. Если прямая на плоскости перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой:

Если a ||b и c a , то c b .

Пятое свойство - это аксиома параллельности прямых:

5. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной прямой.