Большое и малое магеллановы облака. Магеллановы облака Размеры магеллановых облаков в квадратных километрах

Галактики и Планеты

Две галактики выделяются наблюдателями южного полушария Земли: Большое и Малое Магеллановы Облака. Эти неправильные галактики являются одними из ближайших к галактике Млечный Путь. Недавние наблюдения Большого Магелланова Облака (слева) показали, что эта галактика движется примерно по окружности вокруг нашей Галактики. Она помогла ученым определить состав темного вещества в нашей Галактике. Фотография, которую Вы видите, покрывает область на небе размером 40 градусов. Снизу слева у Большого Магелланова Облака видна красноватая туманность Тарантул. На переднем плане справа от Малого Магелланова Облака находится шаровое скопление 47 Тукана. Оно выглядит как яркий точечный источник.Большое Магелланово облако расположено в созвездии Золотой Рыбы, его звездная величина чуть превосходит 0. Удаленная от нас на 170 000 световых лет, эта галактика является прекрасным объектом для наблюдения звезд вне нашей звездной системы. Размер ее 40 тысяч световых лет, а масса в 15 раз меньше массы нашей Галактики. В этой галактике находилась самая яркая по светимости из известных звезд - S Золотой Рыбы.Эта звездочка, видимая у нас как звезда 6 звездной величины, в миллион раз ярче Солнца. А первенство просто перешло в 1997-м году к звезде Пистолет в созвездии Стрельца. Та еще в 10 раз ярче. Возгордимся: звезда принадлежит Млечному Пути. Приглядитесь к снимку. Не смотря на отношение к неправильным галактикам, Большое Магелланово Облако имеет структуру, близкую к пересеченным спиральным галактикам (см. предыдущую страницу). В галактике есть все те типы звезд, которые известны в Млечном Пути. Здесь есть один из ярчайших среди известных газопылевой комплекс - Туманность Тарантул, район бурного звездообразования. Если поместить ее на место Туманности Ориона, нашего галактического чемпиона, то предметы безлунной зимней ночью отбрасывали бы тень. Кроме того, Большое Магелланово Облако прославилось в конце восьмидесятых. Здесь произошла ярчайшая из наблюдавшихся в новой истории вспышка сверхновой (простите за каламбур)- SN 1987а. Несмотря на удаленность, в максимуме сверхновая достигла блеска 2,8.Малое Магелланово Облако в 3 раза меньше Большого и тоже напоминает собою пересеченную спиральную галактику. Впрочем, некоторые астрономы прямо к таковым и относят оба Магелланова Облака. Видимая звездная величина Малого Облака составляет 2,3. Оно расположено в созвездии Тукана, что по соседству с Золотой Рыбой. До этой галактики 210 000 световых лет. Судя по тому, что Магеллановы Облака погружены в общую газовую оболочку, они находятся в тесном гравитационном взаимодействии. Упомянутая газовая среда перерастает в весьма плотную перемычку между галактиками.Видимо, обеим звездным системам приходится “выносить” еще большее гравитационное воздействие со стороны гиганта Млечного Пути. Наверное, именно поэтому они не смогли быть “более спиральными”. Повторимся: если говорить о неправильных галактиках, то Магеллановы Облака являются большими их представителями.Почти все остальные галактики, близкие к нашей, являются маленькими, как говорят, карликовыми эллиптическими галактиками. Самые массивные из этих карликов (NGC205 и NGC221) являются спутниками Туманности Андромеды. Из неправильных назовем NGC6882 и IC1613.С учетом того, что слабые карликовые галактики на расстояниях, превышающих удаленность Туманности Андромеды, обнаружить трудно, и того, что наша собственная Галактика закрывает от нас значительную часть направлений в пространстве от полноценного исследования, можно предположить, что в окрестностях Млечного Пути есть одна крупная галактика, одна средняя и десятка три карликовых (на сегодня известно около 25). Подобные группы галактик называют скоплениями. Безусловно, галактики в скоплениях связанны гравитацией и общим происхождением. Скопление, в которое входит Млечный Путь принято называть Местной группой (пишется с большой буквы). В Местную группу входят две подсистемы, в каждой из которых есть одна крупная галактика (наша и Туманность Андромеды). У каждой из крупных галактик есть несколько карликовых спутников. Есть и некоторое число одиночных карликов, тоже находящихся в гравитационном единении с остальными членами Местной группы. Радиус Местной группы около 3 млн. световых лет.


Магеллановы Облака

- галактики-спутники нашей Галактики; расположены относительно близко друг к другу, образуют гравитационно связанную (двойную) систему. Для невооружённого глаза выглядят как изолированные облака Млечного Пути. Впервые М. О. описал Пигафетта, участвовавший в кругосветном плавании Магеллана (1519-22 гг.). Оба Облака - Большое (БМО) и Малое (ММО) - явл. неправильными галактиками. Интегральные характеристики М. О. даны в таблице.

Интегральные характеристики Магеллановых Облаков

БМО ММО
Координаты центра 05 h 24 m -70 o 00 h 51 m -73 o
Галактическая широта -33 o -45 o
Угловой диаметр 8 o 2,5 o
Соответствующий линейный размер, кпк 9 3
Расстояние, кпк 50 60
Интегральная величина, M V -17,9 m -16,3 m
Наклонение к лучу зрения 27 o 60 o
Средняя лучевая скорость, км/с +275 +163
Общая масса,
Масса межзвездного водорода HI,

На крупнейших телескопах в М. О. можно разрешить звёзды со светимостью, близкой к солнечной; в то же время вследствие значит. превышения расстояния до М. О. над их поперечником различие видимых звёздных величин входящих в М. О. объектов равно различию их абс. (для БМО погрешность не превосходит 0,1 m ). Так как М. О. расположены на высоких галактич. широтах, поглощение света межзвёздной средой нашей Галактики и примесь её звёзд мало искажают картину М. О. К тому же плоскость БМО (рис. 1) почти перпендикулярна лучу зрения, так что видимое соседство входящих в него объектов означает, как правило, и пространственную их близость. Всё это помогает изучению взаимосвязи звёзд различного типа, скоплений и диффузного вещества (в частности, звёзды высокой светимости видны там не далее 5-10" от места своего рождения). М. О. наз. "мастерской астрономических методов" (X. Шепли), в частности в М. О. была открыта зависимость период-светимость для . Объекты М. О. обладают, наряду со сходством, и рядом поразительных отличий от аналогичных членов Галактики, что указывает на связь структурных особенностей галактик с характеристиками их населения.

В М. О. имеется огромное количество всевозможных возрастов и масс; каталог скоплений БМО включает 1600 объектов, а полное их число составляет ок. 5000. Около сотни из них выглядят как Галактики и весьма близки к ним по массам и степени концентрации звёзд. Однако шаровые скопления Галактики все очень стары [(10-18) лет], тогда как в М. О. наряду со столь же старыми скоплениями имеется ряд шаровых скоплений (23 в БМО) с возрастами ~10 7 -10 8 лет. Возраст скоплений М. О. однозначно коррелирует с хим. составом (молодые скопления содержат относительно больше тяжёлых элементов), тогда как у скоплений галактич. диска такая корреляция отсутствует.

В БМО известно также 120 обширных группировок молодых звёзд высокой светимости (ОВ-ассоциаций), связанных, как правило, с областями ионизованного водорода (зонами НII). В ММО таких группировок на порядок меньше, молодые звёзды сосредоточены там в осн. теле и в "крыле" ММО, вытянутом к БМО, тогда как в БМО они разбросаны по всему Облаку, а в осн. теле преобладают звёзды с возрастом 10 8 -10 10 лет. Радиоастрономич. наблюдения в линии = 21 см нейтрального водорода (HI) показали, что в БМО имеются 52 изолированных комплекса HI со ср. массой и размерами 300-900 пк, а в ММО плотность HI почти равномерно нарастает к центру. Доля HI по отношению к полной массе в БМО в неск. раз больше, чем в Галактике, а в ММО больше на порядок. Даже в наиболее молодых объектах БМО содержание тяжёлых элементов, по-видимому, несколько меньше, чем в Галактике, в ММО оно, без сомнения, ниже в 2-4 раза. Все эти особенности М. О. можно объяснить тем, что там не было первоначальной бурной вспышки , приведшего в Галактике к исчерпанию осн. запасов газа и сравнительно быстрому обогащению его остатков тяжёлыми элементами на протяжении первых миллиардов (или сотен миллионов) лет существования Галактики. Присутствие старых шаровых скоплении и типа RR Лиры доказывает, однако, что звездообразование началось в М. О. и в Галактике примерно в одно время. Наличие большого числа молодых шаровых скоплений в М. О. (в Галактике их нет), возможно, означает, что их образованию в совр. диске Галактики препятствует спиральная волна плотности, к-рая может инициировать звездообразование и в газовых облаках, не достигших высокой степени сжатия (см. ).

В каждом из М. О. известно ~ 10 3 цефеид, причём максимум в их распределении по периодам сдвинут в ММО к малым периодам (по сравнению с цефеидами в Галактике), что также можно объяснить меньшим содержанием в звёздах ММО тяжелых элементов. Распределение цефеид по периодам неодинаково в разных участках М. О., что в соответствии с зависимостью период-возраст объясняется различием возраста массивных звёзд в этих областях. Поперечник областей, в к-рых цефеиды и скопления имеют близкие возрасты, составляет 300-900 пк. Объекты в этих звёздных комплексах, очевидно, генетически связаны друг с другом - они возникли из одного газового комплекса.

В неск. участках М. О. изучены звёзды типа RR Лиры, к-рые в БМО имеют ср. звёздную величину 19,5 m с весьма небольшой дисперсией, из чего следуют малая дисперсия их светимостей и слабое поглощение света в БМО. Пылевых туманностей в БМО найдено немного (около 70), и лишь в некоторых участках внутри и вблизи гигантской зоны НII Тарантул (30 Золотой Рыбы) поглощение достигает 1-2 m . Отношение массы пыли к массе газа в БМО на порядок меньше, чем в Галактике, и низкое содержание пыли должно отражаться на особенностях звездообразования в М. О. Оболочки в БМО (известно неск. десятков) заметно больше по размерам при той же поверхностной яркости, что и в Галактике, диаметры их, как и кольцевых зон НII, достигают 200 пк. Имеется 9 сверхгигантских оболочек НII с поперечником ок. 1 кпк. В М. О. наиболее тесную связь с газом показывают не 0-звёзды, а . Замечено также, что области звездообразования в БМО находятся, как правило, в районах с наибольшим градиентом плотности HI.

Зоны НII, сверхгиганты и планетарные туманности (последних открыто 137 в БМО и 47 в ММО) позволяют определить центр вращения БМО. Он находится в 1 кпк от его оптич. центра. Расхождение объясняется, по-видимому, тем, что последний определяется по ярким объектам, масса к-рых не явл. доминирующей. Быстрое вращение и небольшая дисперсия скоростей (порядка 10 км/с для молодых объектов) свидетельствуют о высокой степени сплюснутости БМО (нек-рые астрономы считают БМО спиральной галактикой с массивной перемычкой и слабо выраженными спиральными ветвями). Старые шаровые скопления и, по-видимому, звезды типа RR Лиры также сосредоточены в диске, а не в короне БМО. Своеобразие кинематики ММО и очень большую поверхностную плотность цефеид в нём можно объяснить тем, что ММО ориентировано к нам торцом своего осн. тела, тогда как БМО видно с направления, почти перпендикулярного плоскости его диска.

Замечательной особенностью БМО явл. открытая в нём звёздная сверхассоциация, в центре к-рой расположена гигантская зона НII (30 Золотой Рыбы, рис. 2) поперечником ок. 250 пк и массой . В центре зоны находится компактное скопление звёзд очень высокой светимости с общей массой (рис. 3). Оно явл. наиболее молодым из известных шаровых скоплений и содержит самые массивные из молодых звёзд. Центральный объект скопления ярче на 2 m остальных звезд. По-видимому, это компактная группа горячих звёзд, возбуждающая область НII. По ряду характеристик скопление 30 Золотой Рыбы похоже на умеренно активные

Подобно планетам-гигантам Солнечной системы, наш Млечный путь обладает множеством спутников — небольших галактик, которые гравитационно с ним связанны. Наиболее известными подобными объектами являются Большое и Малое Магеллановы облака. Это две карликовые галактики, удаленные от нас на расстояние около 170 тысяч световых лет. Их можно увидеть невооруженным глазом на южном небе.
Астрономам давно известно, что часть светил в Большом Магеллановом облаке являются «неправильными». Их скорости, орбиты и химический состав существенно отличаются от большинства соседей. По мнению ученых, скорее всего эти звезды были украдены Большим Магеллановым облаком у другой галактики. Но какой именно?

До недавних пор в качестве основного кандидата на эту роль рассматривалось Малое Магелланова облака. Аномальные звезды его соседа имеют схожий с ним химический состав. Кроме того, обе галактики соединены , состоящим из водорода и цепочки светил. Предполагается, что он образовался 200 миллионов лет назад, когда обе галактики прошли на небольшом расстоянии друг от друга и гравитация Большого Магелланова облака буквально вырвала из своего соседа поток звезд и газа.

Однако в свежем выпуске журнала Monthly Notices of the Royal Astronomical Society была , предполагающая иное происхождение аномальных светил. Ее автор, австралийский астроном Бенджамин Армстронг, провел компьютерное моделирование, показавшее что причиной всему могло стать поглощения Большим Магеллановым облаком соседней карликовой галактики, произошедшее 3 - 5 миллиарда лет назад. Подобный процесс должен привести к появлению в центре галактики большой группы звезд с ретроградными орбитами, что очень похоже на реально наблюдаемую картину.

По мнению Армстронга, такой сценарий может объяснить, почему звезды в шаровых скоплениях Большого Магелланова облака или очень старые или очень молодые без промежуточных по возрасту светил. Поглощение соседней галактики должно было спровоцировать мощную вспышку звездообразования, в результате которой одновременно сформировалось большое количество новых светил.

Краткое описание

Большое Магелланово Облако занимает область неба южного полушария в созвездиях Золотой Рыбы и Столовой Горы и с территории России никогда не видно. БМО приблизительно в 10 раз меньше по диаметру чем Млечный Путь и содержит приблизительно 30 миллиардов звёзд (1/20 от их числа в нашей Галактике), в то время как Малое Магелланово Облако содержит только 1,5 миллиарда звёзд. Масса БМО примерно в 300 раз меньше массы нашей галактики (Масса БМО = 10 10 масс Солнца). БМО является четвёртой по массе галактикой в Местной Группе (после Андромеды , Млечного Пути и Треугольника). По образному выражению Ф. Ю. Зигеля, Большое Магелланово Облако отдалённо напоминает сегнерово колесо .

В 2013 году международной группой астрономов было измерено наиболее точное расстояние до БМО. Оно составляет 163 тысячи световых лет или 49,97 (± 0,19 (статистическая погрешность) ± 1,11 (систематическая погрешность)) килопарсек . Наблюдения проводились за затменными двойными звёздами в галактике на протяжении почти десяти лет. Такие звёзды обращаются очень близко друг к другу вокруг общего центра масс , заслоняя одна другую. При этом их общий блеск падает. Так, отслеживая пульсации этих звёзд, можно определить их массы, размеры и расстояние до них. По словам Вольфганга Гирена (Wolfgang Gieren, Universidad de Concepción, Чили), одного из руководителей коллектива, «астрономы в течение ста лет пытались точно измерить расстояние до Большого Магелланова Облака, и это оказалось крайне трудной задачей. И вот теперь мы решили эту задачу, достигнув убедительной точности измерений в 2 %» .

История наблюдений

Первое письменное упоминание о Большом Магеллановом Облаке содержится в «Книге созвездий неподвижных звёзд » персидского астронома Абдуррахмана ас-Суфи аш-Ширази (964 г), позже известного в Европе как «Azophi» .

Следующее документированное наблюдение было зарегистрировано в 1503-1504 годах Америго Веспуччи .

Большое Магелланово Облако названо в честь Фернана Магеллана , наблюдавшего эту галактику в 1519 году во время кругосветного путешествия .

Измерения, проведённые на космическом телескопе Хаббл, объявленные в 2006 году, показывают, что Большие и Малые Магеллановы Облака могут двигаться слишком быстро, чтобы вращаться вокруг Млечного Пути . В 2014 году измерения космического телескопа Хаббл позволили определить, что БМО имеет период вращения 250 миллионов лет .

В результате наблюдений 2018-2019 годов команда астрономов-любителей получила рекордное в своём роде (не принимая во внимание профессиональную астрономию) изображение Большого Магелланова Облака. Суммарное разрешение изображения достигает 14 400 × 14 200 точек .

Объекты

Самая массивная и яркая звезда БМО - R136a1 , расположенная в компактном звёздном скоплении R136 . Это голубой гипергигант, имеющий массу, равную 265 массам Солнца . Температура поверхности звезды составляет более 40 000 кельвинов , она в 8,7 миллионов раз ярче Солнца. Подобные сверхтяжёлые звёзды исключительно редки и образуются только в очень плотных звёздных скоплениях.

Крупнейшая звезда галактики - WOH G64 - является также одной из крупнейших , известных науке. Её радиус составляет приблизительно 1540 радиусов Солнца . Если WOH G64 поместить в центре Солнечной системы , то поверхность достигнет орбиты Сатурна . Звезда также окружена плотным тором из пыли и газа.

  • БМО светит в 10 раз слабее, чем Млечный Путь, однако является самым ярким его компаньоном из двух десятков галактик-спутников. За счёт своей гравитации БМО перетягивает к себе миллионы звёзд из Малого Магелланова облака (ММО). В галактике присутствует несколько тысяч оранжевых и красных гигантов, стареющих звёзд, которые больше, ярче и холоднее, чем Солнце. Около 5 % этих звёзд имеют совершенно особенные скоростные характеристики: они вращаются под углом 54 градуса к плоскости БМО, а также в другую сторону по сравнению с основной массой звёзд. Отличается и химический состав данных звёзд: по процентному содержанию железа они соответствуют ММО.
  • В отличие от большинства объектов далёкого космоса БМО не является отдельным объектом NGC .
  • Согласно опубликованном данным, по одной из моделей, через 4 млрд лет Млечный Путь «поглотит» Большое и Малое Магеллановы Облака, а через 5 млрд лет сам Млечный Путь будет поглощён Туманностью Андромеды . По расчётам учёных из Института вычислительной космологии Даремского университета, Большое Магелланово облако, которое сейчас отдаляется от Млечного пути, и примерно через 1 млрд лет развернётся и направится к центру нашей Галактики, где в течение примерно 1,5 млрд лет будет происходить их слияние. При этом центральная сверхмассивная чёрная дыра нашей Галактики Стрелец А* увеличится в размерах в 10 раз. В результате столкновения через 2 млрд лет Солнечная система может быть вытолкнута из нашей Галактики в межгалактическое пространство .
  • По расчётам учёных из Калифорнийского университета в Риверсайде (США), 1 миллиард лет назад карликовая галактика в Киле , Карликовая галактика в созвездии Печь и ещё несколько ультраслабых карликовых галактик были спутниками Большого Магелланова Облака, а не Млечного Пути .

Галерея

См. также

Примечания

  1. Pietrzyński, G; D. Graczyk; W. Gieren; I. B. Thompson; B. Pilecki; A. Udalski; I. Soszyński et al. An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent (англ.) // Nature: journal. - 2013. - 7 March (vol. 495 , no. 7439 ). - P. 76-79 . - DOI :10.1038/nature11878 . - Bibcode : 2013Natur.495...76P . - arXiv :1303.2063 . - PMID 23467166 .
  2. SIMBAD Astronomical Database
  3. R. Brent Tully, Courtois H. M., Sorce J. G. Cosmicflows-3 // Astron. J. / J. G. III - IOP Publishing , 2016. - Vol. 152, Iss. 2. - P. 50–50. - ISSN 0004-6256 ; 1538-3881 - doi:10.3847/0004-6256/152/2/50
  4. Genevieve; Shattow; Loeb, Abraham. Implications of recent measurements of the Milky Way rotation for the orbit of the Large Magellanic Cloud (англ.) // Monthly Notices of the Royal Astronomical Society: Letters: journal. - 2009. - Vol. 392 . - P. L21 . - DOI :10.1111/j.1745-3933.2008.00573.x . - Bibcode : 2009MNRAS.392L..21S . - arXiv :0808.0104 .
  5. Macri, L. M. et al. A New Cepheid Distance to the Maser-Host Galaxy NGC 4258 and Its Implications for the Hubble Constant (англ.) // The Astrophysical Journal : journal. - IOP Publishing , 2006. - Vol. 652 , no. 2 . - P. 1133-1149 . - DOI :10.1086/508530 . - Bibcode : 2006ApJ...652.1133M . - arXiv :astro-ph/0608211 .
  6. Freedman, Wendy L; Madore, Barry F. The Hubble Constant (неизв.) // Annual Review of Astronomy and Astrophysics. - 2010. - Т. 48 . - С. 673-710 . - DOI :10.1146/annurev-astro-082708-101829 . - Bibcode : 2010ARA&A..48..673F . - arXiv :1004.1856 .
  7. Majaess, Daniel J.; Turner, David G.; Lane, David J.; Henden, Arne; Krajci, Tom. Anchoring the Universal Distance Scale via a Wesenheit Template (англ.) // Journal of the American Association of Variable Star Observers: journal. - 2010. - Bibcode : 2011JAVSO..39..122M . - arXiv :1007.2300 .
  8. Peterson, Barbara Ryden, Bradley M. Foundations of astrophysics. - New York: Pearson Addison-Wesley, 2009. - P. 471. -

> Большое Магелланово Облако

Большое Магелланово Облако – карликовая галактика и ближайший спутник Млечного Пути: расстояние, созвездие Золотой Рыбы, обнаружение, рождение звезд, вращение.

Большое Магелланово Облако (БМО) – карликовая галактика, выступающая спутником для Млечного Пути (одна из ближайших к нашей планете). Удалена на 163000 световых лет (между созвездиями и ) и напоминает слабую туманность в южной сфере.

Вместе с наименованы в честь Фердинанда Магеллана. Однако, астрономы из южного полушария обнаружили эти явления еще до кругосветного путешествия в 1519 году. Сам Магеллан умер во время поездки, но команда оставила записи после возвращения.

Местоположение Большого Магелланова Облака

Облака заметны невооруженным глазом, поэтому их обнаружение опередило изобретение телескопа. Но понадобилось еще много веков, чтобы точно вычислить удаленность. До 1994 года считался ближайшим галактическим объектом, пока не проявилась карликовая эллиптическая галактика в . Но и она продержалась на пьедестале лишь до 2003 года, когда нашли Карликовую галактику в Большом Псе.

Большое Магелланово Облако состоит в . Наиболее известный член – (в северном полушарии), наблюдаемая без использования техники. Она удалена на 2.5 миллионов световых лет и приближается к нам для финального столкновения.

Звездообразование в Большом Магеллановом Облаке

Здесь также заметно рождение новых звезд. Удалось запечатлеть в некоторых участках огромные газовые скопления, которые подготавливают условия для «рождения».

В туманности Тарантула были замечены признаки активности и радиации. Это показало, что в центральной части сосредоточены тысячи массивных звезд, которые сдувают материал и создают интенсивное излучение с мощными ветрами. Можете полюбоваться на звезды галактики Большое Магелланово Облако на фото.

На снимке отображена молодая звездная группа в Большом Магеллановом Облаке.

Небольшая зона формирования звезд находится на участке LHA 120-N 11. Расположен далеко от плоскости , но этой дистанции хватает, чтобы изучать «новорожденных». Тем более, что область повернута «лицом», что только упрощает наблюдение.

Вращения Большого Магелланова Облака

Небольшая удаленность от Земли также помогла изучить Большое Магелланово Облако детальнее, чтобы осознать модель поведения других галактик. Стоит обратить внимание на вращение, которое способствует пониманию внутренней структуры дисковых галактик. Если у нас есть скорость вращения, то можно вычислить массу.

На вращение БМО уходит 250 миллионов лет. Это выяснили благодаря отслеживанию звездного передвижения относительно небесной плоскости (впервые этот метод применили на галактике). Если провести подобный эксперимент на Малом, то можно выяснить, как они движутся, а потом применить эту схему и к другим объектам в Местной Группе.