Значения рн растворов гидролизующихся солей. Игровой автомат Sharky (игра Рыбак) играть онлайн бесплатно без регистрации Определение ph среды растворов солей

Чистая вода является очень слабым электролитом. Процесс диссоциации воды может быть выражен уравнением: HOH ⇆ H + + OH – . Вследствие диссоциации воды в любом водном растворе содержатся и ионы H + , и ионы OH – . Концентрации этих ионов можно рассчитать с помощью уравнения ионного произведения воды

C(H +)×C(OH –) = K w ,

где K w – константа ионного произведения воды ; при 25°C K w = 10 –14 .

Растворы, в которых концентрации ионов H + и OH – одинаковы, называются нейтральными растворами. В нейтральном растворе C(H +) = C(OH –) = 10 –7 моль/л.

В кислом растворе C(H +) > C(OH –) и, как следует из уравнения ионного произведения воды, C(H +) > 10 –7 моль/л, а C(OH –) < 10 –7 моль/л.

В щелочном растворе C(OH –) > C(H +); при этом в C(OH –) > 10 –7 моль/л, а C(H +) < 10 –7 моль/л.

pH – величина, с помощью которой характеризуют кислотность или щёлочность водных растворов; эта величина называется водородным показателем и рассчитывается по формуле:

pH = –lg C(H +)

В кислом растворе pH<7; в нейтральном растворе pH=7; в щелочном растворе pH>7.

По аналогии с понятием «водородный показатель» (pH) вводится понятие «гидроксильный» показатель (pOH):

pOH = –lg C(OH –)

Водородный и гидроксильный показатели связаны соотношением

Гидроксильный показатель используется для расчёта pH в щелочных растворах.

Серная кислота – сильный электролит, диссоциирующий в разбавленных растворах необратимо и полностью по схеме: H 2 SO 4 ® 2 H + + SO 4 2– . Из уравнения процесса диссоциации видно, что C(H +) = 2·C(H 2 SO 4) = 2 × 0,005 моль/л = 0,01 моль/л.

pH = –lg C(H +) = –lg 0,01 = 2.



Гидроксид натрия – сильный электролит, диссоциирующий необратимо и полностью по схеме: NaOH ® Na + +OH – . Из уравнения процесса диссоциации видно, что C(OH –) = C(NaOH) = 0,1 моль/л.

pOH = –lg C(H +) = –lg 0,1 = 1; pH = 14 – pOH = 14 – 1 = 13.

Диссоциация слабого электролита – это равновесный процесс. Константа равновесия, записанная для процесса диссоциации слабого электролита, называется константой диссоциации . Например, для процесса диссоциации уксусной кислоты

CH 3 COOH ⇆ CH 3 COO – + H + .

Каждая стадия диссоциации многоосновной кислоты характеризуется своей константой диссоциации. Константа диссоциации – справочная величина ; см. .

Расчёт концентраций ионов (и pH) в растворах слабых электролитов сводится к решению задачи на химическое равновесие для того случая, когда известна константа равновесия и необходимо найти равновесные концентрации веществ, участвующих в реакции (см. пример 6.2 – задача 2 типа).

В 0,35% растворе NH 4 OH молярная концентрация гидроксида аммония равна 0,1 моль/л (пример перевода процентной концентрации в молярную – см. пример 5.1). Эту величину часто обозначают C 0 . C 0 – это общая концентрация электролита в растворе (концентрация электролита до диссоциации).

NH 4 OH принято считать слабым электролитом, обратимо диссоциирующим в водном растворе: NH 4 OH ⇆ NH 4 + + OH – (см. также примечание 2 на стр. 5). Константа диссоциации К = 1,8·10 –5 (справочная величина). Поскольку слабый электролит диссоциирует неполностью, сделаем предположение, что продиссоциировало x моль/л NH 4 OH, тогда равновесная концентрация ионов аммония и гидроксид-ионов также будут равняться x моль/л: C(NH 4 +) = C(OH -) = x моль/л. Равновесная концентрация непродиссоциировавшего NH 4 OH равна: С(NH 4 OH) = (C 0 –x) = (0,1–x) моль/л.

Подставляем выраженные через x равновесные концентрации всех частиц в уравнение константы диссоциации:

.

Очень слабые электролиты диссоциируют незначительно (x ® 0) и иксом в знаменателе как слагаемым можно пренебречь:

.

Обычно в задачах общей химии иксом в знаменателе пренебрегают в том случае, если (в этом случае х – концентрация продиссоциировавшего электролита – в 10 и менее раз отличается от C 0 – общей концентрации электролита в растворе).


С(OH –) = x = 1,34∙10 -3 моль/л; pOH = –lg C(OH –) = –lg 1,34∙10 –3 = 2,87.

pH = 14 – pOH = 14 – 2,87 = 11,13.

Степень диссоциации электролита можно рассчитать как отношение концентрации продиссоциировавшего электролита (x) к общей концентрации электролита (C 0):

(1,34%).

Сначала следует перевести процентную концентрацию в молярную (см. пример 5.1). В данном случае C 0 (H 3 PO 4) = 3,6 моль/л.

Расчёт концентрации ионов водорода в растворах многоосновных слабых кислот, проводится только по первой стадии диссоциации. Строго говоря, общая концентрация ионов водорода в растворе слабой многоосновной кислоты равна сумме концентраций ионов H + , образовавшихся на каждой стадии диссоциации. Например, для фосфорной кислоты C(H +) общая = C(H +) по 1 стадии + C(H +) по 2 стадии + C(H +) по 3 стадии. Однако, диссоциация слабых электролитов протекает преимущественно по первой стадии, а по второй и последующим стадиям – в незначительной степени, поэтому

C(H +) по 2 стадии ≈ 0, C(H +) по 3 стадии ≈ 0 и C(H +) общая ≈ C(H +) по 1 стадии.

Пусть фосфорной кислоты продиссоциировало по первой стадии x моль/л, тогда из уравнения диссоциации H 3 PO 4 ⇆ H + + H 2 PO 4 – следует, что равновесные концентрации ионов H + и H 2 PO 4 – также будут равны x моль/л, а равновесная концентрация непродиссоциировавшей H 3 PO 4 будет равна (3,6–x) моль/л. Подставляем выраженные через x концентрации ионов H + и H 2 PO 4 – и молекул H 3 PO 4 в выражение константы диссоциации по первой стадии (K 1 = 7,5·10 –3 – справочная величина):

K 1 /C 0 = 7,5·10 –3 / 3,6 = 2,1·10 –3 < 10 –2 ; следовательно, иксом как слагаемым в знаменателе можно пренебречь (см. также пример 7.3) и упростить полученное выражение.

;

моль/л;

С(H +) = x = 0,217 моль/л; pH = –lg C(H +) = –lg 0,217 = 0,66.

(3,44%)

Задание №8

Рассчитайте а) pH растворов сильных кислот и оснований; б) раствора слабого электролита и степень диссоциации электролита в этом растворе (таблица 8). Плотность растворов принять равной 1 г/мл.


Таблица 8 – Условия задания №8

№ вари- анта а б № вари- анта а б
0,01М H 2 SO 4 ; 1% NaOH 0,35% NH 4 OH
0,01МCa(OH) 2 ; 2%HNO 3 1% CH 3 COOH 0,04М H 2 SO 4 ; 4% NaOH 1% NH 4 OH
0,5М HClO 4 ; 1% Ba(OH) 2 0,98% H 3 PO 4 0,7М HClO 4 ; 4%Ba(OH) 2 3% H 3 PO 4
0,02M LiOH; 0,3% HNO 3 0,34% H 2 S 0,06M LiOH; 0,1% HNO 3 1,36% H 2 S
0,1М HMnO 4 ; 0,1% KOH 0,031% H 2 CO 3 0,2М HMnO 4 ; 0,2%KOH 0,124%H 2 CO 3
0,4М HCl; 0,08%Ca(OH) 2 0,47% HNO 2 0,8МHCl; 0,03%Ca(OH) 2 1,4% HNO 2
0,05M NaOH; 0,81% HBr 0,4% H 2 SO 3 0,07M NaOH; 3,24% HBr 1,23% H 2 SO 3
0,02M Ba(OH) 2 ; 0,13%HI 0,2% HF 0,05M Ba(OH) 2 ; 2,5% HI 2% HF
0,02М H 2 SO 4 ; 2% NaOH 0,7% NH 4 OH 0,06МH 2 SO 4 ; 0,8%NaOH 5%CH 3 COOH
0,7М HClO 4 ; 2%Ba(OH) 2 1,96% H 3 PO 4 0,08М H 2 SO 4 ; 3% NaOH 4% H 3 PO 4
0,04MLiOH; 0,63%HNO 3 0,68% H 2 S 0,008M HI; 1,7%Ba(OH) 2 3,4% H 2 S
0,3МHMnO 4 ; 0,56%KOH 0,062% H 2 CO 3 0,08M LiOH; 1,3% HNO 3 0,2% H 2 CO 3
0,6М HCl; 0,05%Ca(OH) 2 0,94% HNO 2 0,01M HMnO 4 ; 1% KOH 2,35% HNO 2
0,03M NaOH; 1,62% HBr 0,82% H 2 SO 3 0,9МHCl; 0,01%Ca(OH) 2 2% H 2 SO 3
0,03M Ba(OH) 2 ; 1,26%HI 0,5% HF 0,09M NaOH; 6,5% HBr 5% HF
0,03М H 2 SO 4 ; 0,4%NaOH 3% CH 3 COOH 0,1M Ba(OH) 2 ; 6,4% HI 6%CH 3 COOH
0,002M HI; 3% Ba(OH) 2 1% HF 0,04МH 2 SO 4 ; 1,6%NaOH 3,5% NH 4 OH
0,005МHBr; 0,24% LiOH 1,64% H 2 SO 3 0,001М HI; 0,4%Ba(OH) 2 5% H 3 PO 4

Пример 7.5 Смешали 200 мл 0,2М раствора H 2 SO 4 и 300 мл 0,1М раствора NaOH. Рассчитайте pH образовавшегося раствора и концентрации ионов Na + и SO 4 2– в этом растворе.

Приведём уравнение реакции H 2 SO 4 + 2 NaOH → Na 2 SO 4 + 2 H 2 O к сокращённому ионно-молекулярному виду: H + + OH - → H 2 O

Из ионно-молекулярного уравнения реакции следует, что в реакцию вступают только ионы H + и OH – и образуют молекулу воды. Ионы Na + и SO 4 2– в реакции не участвуют, поэтому их количество после реакции такое же как и до реакции.

Расчёт количеств веществ до реакции:

n(H 2 SO 4) = 0,2 моль/л × 0,1 л = 0,02 моль = n(SO 4 2-);

n(H +) = 2 × n(H 2 SO 4) = 2 × 0,02 моль = 0,04 моль;

n(NaOH) = 0,1 моль/л · 0,3 л = 0,03 моль = n(Na +) = n(OH –).

Ионы OH – – в недостатке; они прореагируют полностью. Вместе с ними прореагирует столько же (т.е. 0,03 моль) ионов H + .

Расчёт количеств ионов после реакции:

n(H +) = n(H +) до реакции – n(H +) прореагировавших = 0,04 моль – 0,03 моль = 0,01 моль;

n(Na +) = 0,03 моль; n(SO 4 2–) = 0,02 моль.

Т.к. смешиваются разбавленные растворы, то

V общ. » Vраствора H 2 SO 4 + V раствора NaOH » 200 мл + 300 мл = 500 мл = 0,5 л.

C(Na +) = n(Na +) / V общ. = 0,03 моль: 0,5 л = 0,06 моль/л;

C(SO 4 2-) = n(SO 4 2-) / V общ. = 0,02 моль: 0,5 л = 0,04 моль/л;

C(H +) = n(H +) / V общ. = 0,01 моль: 0,5 л = 0,02 моль/л;

pH = –lg C(H +) = –lg 2·10 –2 = 1,699.

Задание №9

Рассчитайте pH и молярные концентрации катионов металла и анионов кис­лотного остатка в растворе, образовавшемся в результате смешивания раствора сильной кислоты с раствором щёлочи (таблица 9).

Таблица 9 – Условия задания №9

№ вари- анта № вари- анта Объёмы и состав растворов кислоты и щёлочи
300 мл 0,1М NaOH и 200 мл 0,2М H 2 SO 4
2 л 0,05М Ca(OH) 2 и 300 мл 0,2М HNO 3 0,5 л 0,1М KOH и 200 мл 0,25М H 2 SO 4
700 мл 0,1М KOH и 300 мл 0,1М H 2 SO 4 1 л 0,05М Ba(OH) 2 и 200 мл 0,8М HCl
80 мл 0,15М KOH и 20 мл 0,2М H 2 SO 4 400мл 0,05М NaOH и 600мл 0,02М H 2 SO 4
100 мл 0,1М Ba(OH) 2 и 20 мл 0,5М HCl 250 мл 0,4М KOH и 250 мл 0,1М H 2 SO 4
700мл 0,05М NaOH и 300мл 0,1М H 2 SO 4 200мл 0,05М Ca(OH) 2 и 200мл 0,04М HCl
50 мл 0,2М Ba(OH) 2 и 150 мл 0,1М HCl 150мл 0,08М NaOH и 350мл 0,02М H 2 SO 4
900мл 0,01М KOH и 100мл 0,05М H 2 SO 4 600мл 0,01М Ca(OH) 2 и 150мл 0,12М HCl
250 мл 0,1М NaOH и 150 мл 0,1М H 2 SO 4 100 мл 0,2М Ba(OH) 2 и 50 мл 1М HCl
1 л 0,05М Ca(OH) 2 и 500 мл 0,1М HNO 3 100 мл 0,5М NaOH и 100 мл 0,4М H 2 SO 4
100 мл 1М NaOH и 1900 мл 0,1М H 2 SO 4 25 мл 0,1М KOH и 75 мл 0,01М H 2 SO 4
300 мл 0,1М Ba(OH) 2 и 200 мл 0,2М HCl 100мл 0,02М Ba(OH) 2 и 150мл 0,04 М HI
200 мл 0,05М KOH и 50 мл 0,2М H 2 SO 4 1 л 0,01М Ca(OH) 2 и 500 мл 0,05М HNO 3
500мл 0,05М Ba(OH) 2 и 500мл 0,15М HI 250мл 0,04М Ba(OH) 2 и 500мл 0,1М HCl
1 л 0,1М KOH и 2 л 0,05М H 2 SO 4 500 мл 1М NaOH и 1500 мл 0,1М H 2 SO 4
250мл 0,4М Ba(OH) 2 и 250мл 0,4М HNO 3 200 мл 0,1М Ba(OH) 2 и 300 мл 0,2М HCl
80 мл 0,05М KOH и 20 мл 0,2М H 2 SO 4 50 мл 0,2М KOH и 200 мл 0,05М H 2 SO 4
300 мл 0,25М Ba(OH) 2 и 200 мл 0,3М HCl 1 л 0,03М Ca(OH) 2 и 500 мл 0,1М HNO 3

ГИДРОЛИЗ СОЛЕЙ

При растворении в воде любой соли происходит диссоциация этой соли на катионы и анионы. Если соль образована катионом сильного основания и анионом слабой кислоты (например, нитрит калия KNO 2), то нитрит-ионы будут связываться с ионами H + , отщепляя их от молекул воды, в результате чего образуется слабая азотистая кислота. В результате этого взаимодействия в растворе установится равновесие:

NO 2 – + HOH ⇆ HNO 2 + OH –

KNO 2 + HOH ⇆ HNO 2 + KOH.

Таким образом, в растворе соли, гидролизующейся по аниону, появляется избыток ионов OH – (реакция среды – щелочная; pH > 7).


Если соль образована катионом слабого основания и анионом сильной кислоты (например, хлорид аммония NH 4 Cl), то катионы NH 4 + слабого основания будут отщеплять ионы OH – от молекул воды и образовывать слабодиссоциирующий электролит – гидроксид аммония 1 .

NH 4 + + HOH ⇆ NH 4 OH + H + .

NH 4 Cl + HOH ⇆ NH 4 OH + HCl.

В растворе соли гидролизующейся по катиону появляется избыток ионов H + (реакция среды – кислая pH < 7).

При гидролизе соли, образованной катионом слабого основания и анионом слабой кислоты (например, фторид аммония NH 4 F) катионы слабого основания NH 4 + связываются с ионами OH – , отщепляя их от молекул воды, а анионы слабой кислоты F – связываются с ионами H + , в результате чего образуется слабое основание NH 4 OH и слабая кислота HF: 2

NH 4 + + F – + HOH ⇆ NH 4 OH + HF

NH 4 F + HOH ⇆ NH 4 OH + HF.

Реакция среды в растворе соли, гидролизующейся и по катиону, и по аниону определяется тем, какой из образующихся в результате гидролиза малодиссоциирующих электролитов является более сильным (это можно выяснить, сравнив константы диссоциации). В случае гидролиза NH 4 F среда будет кислой (pH<7), поскольку HF – более сильный электролит, чем NH 4 OH: KNH 4 OH = 1,8·10 –5 < K H F = 6,6·10 –4 .

Таким образом, гидролизу (т.е. разложению водой) подвергаются соли, образованные:

– катионом сильного основания и анионом слабой кислоты (KNO 2 , Na 2 CO 3 , K 3 PO 4);

– катионом слабого основания и анионом сильной кислоты (NH 4 NO 3 , AlCl 3 , ZnSO 4);

– катионом слабого основания и анионом слабой кислоты (Mg(CH 3 COO) 2 , NH 4 F).

C молекулами воды взаимодействуют катионы слабых оснований или (и) анионы слабых кислот ; соли образованные катионами сильных оснований и анионами сильных кислот гидролизу не подвергаются.

Гидролиз солей, образованных многозарядными катионами и анионами, протекает ступенчато; ниже на конкретных примерах показана последовательность рассуждений, которой рекомендуется придерживаться при составлении уравнений гидролиза таких солей.


Примечания

1. Как уже отмечалось ранее (см. примечание 2 на стр. 5) существует альтернативная точка зрения, согласно которой гидроксид аммония является сильным основанием. Кислая реакция среды в растворах солей аммония, образованных сильными кислотами, например, NH 4 Cl, NH 4 NO 3 , (NH 4) 2 SO 4 , объясняется при таком подходе обратимо протекающим процессом диссоциации иона аммония NH 4 + ⇄ NH 3 + H + или, более точно NH 4 + + H 2 O ⇄ NH 3 + H 3 O + .

2. Если гидроксид аммония считать сильным основанием, то в растворах солей аммония, образованных слабыми кислотами, например, NH 4 F следует рассматривать равновесие NH 4 + + F – ⇆ NH 3 + HF, в котором происходит конкуренция за ион H + между молекулами аммиака и анионами слабой кислоты.


Пример 8.1 Запишите в молекулярном и ионно-молекулярном виде уравнения реакций гидролиза карбоната натрия. Укажите pH раствора (pH>7, pH<7 или pH=7).

1. Уравнение диссоциации соли: Na 2 CO 3 ® 2Na + + CO 3 2–

2. Соль образована катионами (Na +) сильного основания NaOH и анионом (CO 3 2–) слабой кислоты H 2 CO 3 . Следовательно, соль гидролизуется по аниону:

CO 3 2– + HOH ⇆ … .

Гидролиз в большинстве случаев протекает обратимо (знак ⇄); на 1 ион, участвующий в процессе гидролиза, записывается 1 молекула HOH .

3. Отрицательно заряженные карбонат ионы CO 3 2– связываются с положительно заряженными ионами H + , отщепляя их от молекул HOH, и образуют гидрокарбонат ионы HCO 3 – ; раствор обогащается ионами OH – (щелочная среда; pH>7):

CO 3 2– + HOH ⇆ HCO 3 – + OH – .

Это ионно-молекулярное уравнение первой стадии гидролиза Na 2 CO 3 .

4. Уравнение первой стадии гидролиза в молекулярном виде, можно получить, соединив все имеющиеся в уравнении CO 3 2– + HOH ⇆ HCO 3 – + OH – анионы (CO 3 2– , HCO 3 – и OH –) с катионами Na + , образовав соли Na 2 CO 3 , NaHCO 3 и основание NaOH:

Na 2 CO 3 + HOH ⇆ NaHCO 3 + NaOH.

5. В результате гидролиза по первой стадии образовались гидрокарбонат ионы, которые участвуют во второй стадии гидролиза:

HCO 3 – + HOH ⇆ H 2 CO 3 + OH –

(отрицательно заряженные гидрокарбонат ионы HCO 3 – связываются с положительно заряженными ионами H + , отщепляя их от молекул HOH).

6. Уравнение второй стадии гидролиза в молекулярном виде, можно получить, связав имеющиеся в уравнении HCO 3 – + HOH ⇆ H 2 CO 3 + OH – анионы (HCO 3 – и OH –) с катионами Na + , образовав соль NaHCO 3 и основание NaOH:

NaHCO 3 + HOH ⇆ H 2 CO 3 + NaOH

CO 3 2– + HOH ⇆ HCO 3 – + OH – Na 2 CO 3 + HOH ⇆ NaHCO 3 + NaOH

HCO 3 – + HOH ⇆ H 2 CO 3 + OH – NaHCO 3 + HOH ⇆ H 2 CO 3 + NaOH.

Пример 8.2 Запишите в молекулярном и ионно-молекулярном виде уравнения реакций гидролиза сульфата алюминия. Укажите pH раствора (pH>7, pH<7 или pH=7).

1. Уравнение диссоциации соли: Al 2 (SO 4) 3 ® 2Al 3+ + 3SO 4 2–

2. Соль образована катионами (Al 3+) слабого основания Al(OH) 3 и анионами (SO 4 2–) сильной кислоты H 2 SO 4 . Следовательно, соль гидролизуется по катиону; на 1 ион Al 3+ записывается 1 молекула HOH: Al 3+ + HOH ⇆ … .

3. Положительно заряженные ионы Al 3+ связываются с отрицательно заряженными ионами OH – , отщепляя их от молекул HOH, и образуют ионы гидроксоалюминия AlOH 2+ ; раствор обогащается ионами H + (кислая среда; pH<7):

Al 3+ + HOH ⇆ AlOH 2+ + H + .

Это ионно-молекулярное уравнение первой стадии гидролиза Al 2 (SO 4) 3 .

4. Уравнение первой стадии гидролиза в молекулярном виде, можно получить, связав все имеющиеся в уравнении Al 3+ + HOH ⇆ AlOH 2+ + H + катионы (Al 3+ , AlOH 2+ и H +) с анионами SO 4 2– , образовав соли Al 2 (SO 4) 3 , AlOHSO 4 и кислоту H 2 SO 4:

Al 2 (SO 4) 3 + 2HOH ⇆ 2AlOHSO 4 + H 2 SO 4 .

5. В результате гидролиза по первой стадии образовались катионы гидроксо­алюминия AlOH 2+ , которые участвуют во второй стадии гидролиза:

AlOH 2+ + HOH ⇆ Al(OH) 2 + + H +

(положительно заряженные ионы AlOH 2+ связываются с отрицательно заряженными ионами OH – , отщепляя их от молекул HOH).

6. Уравнение второй стадии гидролиза в молекулярном виде, можно получить, связав все имеющиеся в уравнении AlOH 2+ + HOH ⇆ Al(OH) 2 + + H + катионы (AlOH 2+ , Al(OH) 2 + , и H +) с анионами SO 4 2– , образовав соли AlOHSO 4 , (Al(OH) 2) 2 SO 4 и кислоту H 2 SO 4:

2AlOHSO 4 + 2HOH ⇆ (Al(OH) 2) 2 SO 4 + H 2 SO 4 .

7. В результате второй стадии гидролиза образовались катионы дигидроксоалюминия Al(OH) 2 + , которые участвуют в третьей стадии гидролиза:

Al(OH) 2 + + HOH ⇆ Al(OH) 3 + H +

(положительно заряженные ионы Al(OH) 2 + связываются с отрицательно заряженными ионами OH – , отщепляя их от молекул HOH).

8. Уравнение третьей стадии гидролиза в молекулярном виде, можно получить, связав имеющиеся в уравнении Al(OH) 2 + + HOH ⇆ Al(OH) 3 + H + катионы (Al(OH) 2 + и H +) с анионами SO 4 2– , образовав соль (Al(OH) 2) 2 SO 4 и кислоту H 2 SO 4:

(Al(OH) 2) 2 SO 4 + 2HOH ⇆ 2Al(OH) 3 + H 2 SO 4

В результате этих рассуждений получаем следующие уравнения гидролиза:

Al 3+ + HOH ⇆ AlOH 2+ + H + Al 2 (SO 4) 3 + 2HOH ⇆ 2AlOHSO 4 + H 2 SO 4

AlOH 2+ + HOH ⇆ Al(OH) 2 + + H + 2AlOHSO 4 + 2HOH ⇆ (Al(OH) 2) 2 SO 4 + H 2 SO 4

Al(OH) 2 + + HOH ⇆ Al(OH) 3 + H + (Al(OH) 2) 2 SO 4 + 2HOH ⇆ 2Al(OH) 3 + H 2 SO 4 .

Пример 8.3 Запишите в молекулярном и ионно-молекулярном виде уравнения реакций гидролиза ортофосфата аммония. Укажите pH раствора (pH>7, pH<7 или pH=7).

1. Уравнение диссоциации соли: (NH 4) 3 PO 4 ® 3NH 4 + + PO 4 3–

2. Соль образована катионами (NH 4 +) слабого основания NH 4 OH и анионами

(PO 4 3–) слабой кислоты H 3 PO 4 . Следовательно, соль гидролизуется и по катиону, и по аниону : NH 4 + + PO 4 3– +HOH ⇆ … ; (на одну пару ионов NH 4 + и PO 4 3– в данном случае записывается 1 молекула HOH ). Положительно заряженные ионы NH 4 + связываются с отрицательно заряженными ионами OH – , отщепляя их от молекул HOH, образуя слабое основание NH 4 OH, а отрицательно заряженные ионы PO 4 3– связываются с ионами H + , образуя гидрофосфат ионы HPO 4 2– :

NH 4 + + PO 4 3– + HOH ⇆ NH 4 OH + HPO 4 2– .

Это ионно-молекулярное уравнение первой стадии гидролиза (NH 4) 3 PO 4 .

4. Уравнение первой стадии гидролиза в молекулярном виде, можно получить, связав имеющиеся в уравнении NH 4 + + PO 4 3– + HOH ⇆ NH 4 OH + HPO 4 2– анионы (PO 4 3– , HPO 4 2–) с катионами NH 4 + , образовав соли (NH 4) 3 PO 4 , (NH 4) 2 HPO 4:

(NH 4) 3 PO 4 +HOH ⇆ NH 4 OH + (NH 4) 2 HPO 4 .

5. В результате гидролиза по первой стадии образовались гидрофосфат анионы HPO 4 2– , которые вместе с катионами NH 4 + участвуют во второй стадии гидролиза:

NH 4 + + HPO 4 2– + HOH ⇆ NH 4 OH + H 2 PO 4 –

(ионы NH 4 + связываются с ионами OH – , ионы HPO 4 2– – с ионами H + , отщепляя их от молекул HOH, образуя слабое основание NH 4 OH и дигидрофосфат ионы H 2 PO 4 –).

6. Уравнение второй стадии гидролиза в молекулярном виде, можно получить, связав имеющиеся в уравнении NH 4 + + HPO 4 2– + HOH ⇆ NH 4 OH + H 2 PO 4 – анионы (HPO 4 2– и H 2 PO 4 –) с катионами NH 4 + , образовав соли (NH 4) 2 HPO 4 и NH 4 H 2 PO 4:

(NH 4) 2 HPO 4 +HOH ⇆ NH 4 OH + NH 4 H 2 PO 4 .

7. В результате второй стадии гидролиза образовались дигидрофосфат анионы H 2 PO 4 – , которые вместе с катионами NH 4 + участвуют в третьей стадии гидролиза:

NH 4 + + H 2 PO 4 – + HOH ⇆ NH 4 OH + H 3 PO 4

(ионы NH 4 + связываются с ионами OH – , ионы H 2 PO 4 – – с ионами H + , отщепляя их от молекул HOH и образуют слабые электролиты NH 4 OH и H 3 PO 4).

8. Уравнение третьей стадии гидролиза в молекулярном виде, можно получить, связав присутствующие в уравнении NH 4 + + H 2 PO 4 – + HOH ⇆ NH 4 OH + H 3 PO 4 анионы H 2 PO 4 – и катионами NH 4 + и образовав соль NH 4 H 2 PO 4:

NH 4 H 2 PO 4 +HOH ⇆ NH 4 OH + H 3 PO 4 .

В результате этих рассуждений получаем следующие уравнения гидролиза:

NH 4 + +PO 4 3– +HOH ⇆ NH 4 OH+HPO 4 2– (NH 4) 3 PO 4 +HOH ⇆ NH 4 OH+(NH 4) 2 HPO 4

NH 4 + +HPO 4 2– +HOH ⇆ NH 4 OH+H 2 PO 4 – (NH 4) 2 HPO 4 +HOH ⇆ NH 4 OH+NH 4 H 2 PO 4

NH 4 + +H 2 PO 4 – +HOH ⇆ NH 4 OH+H 3 PO 4 NH 4 H 2 PO 4 +HOH ⇆ NH 4 OH+H 3 PO 4 .

Процесс гидролиза протекает преимущественно по первой стадии, поэтому реакция среды в растворе соли, гидролизующейся и по катиону, и по аниону определяется тем, какой из малодиссоциирующих электролитов, образующихся на первой стадии гидролиза, является более сильным. В рассматриваемом случае

NH 4 + + PO 4 3– + HOH ⇆ NH 4 OH + HPO 4 2–

реакция среды будет щелочной (pH>7), поскольку ион HPO 4 2– – более слабый электролит, чем NH 4 OH: KNH 4 OH = 1,8·10 –5 > KHPO 4 2– = K III H 3 PO 4 = 1,3×10 –12 (диссоциация иона HPO 4 2– – это диссоциация H 3 PO 4 по третьей стадии, поэтому KHPO 4 2– = K III H 3 PO 4).

Задание №10

Запишите в молекулярном и ионно-молекулярном виде уравнения реакций гидролиза солей (таблица 10). Укажите pH раствора (pH>7, pH<7 или pH=7).

Таблица 10 – Условия задания №10

№ варианта Список солей № варианта Список солей
а) Na 2 CO 3 , б) Al 2 (SO 4) 3 , в) (NH 4) 3 PO 4 а) Al(NO 3) 3 , б) Na 2 SeO 3 , в) (NH 4) 2 Te
а) Na 3 PO 4 , б) CuCl 2 , в) Al(CH 3 COO) 3 а) MgSO 4 , б) Na 3 PO 4 , в) (NH 4) 2 CO 3
а) ZnSO 4 , б) K 2 CO 3 , в) (NH 4) 2 S а) CrCl 3 , б) Na 2 SiO 3 , в) Ni(CH 3 COO) 2
а) Cr(NO 3) 3 , б) Na 2 S, в) (NH 4) 2 Se а) Fe 2 (SO 4) 3 , б) K 2 S, в) (NH 4) 2 SO 3

Продолжение таблицы 10

№ варианта Список солей № варианта Список солей
а) Fe(NO 3) 3 , б) Na 2 SO 3 , в) Mg(NO 2) 2
а) K 2 CO 3 , б) Cr 2 (SO 4) 3 , в) Be(NO 2) 2 а) MgSO 4 , б) K 3 PO 4 , в) Cr(CH 3 COO) 3
а) K 3 PO 4 , б) MgCl 2 , в) Fe(CH 3 COO) 3 а) CrCl 3 , б) Na 2 SO 3 , в) Fe(CH 3 COO) 3
а) ZnCl 2 , б) K 2 SiO 3 , в) Cr(CH 3 COO) 3 а) Fe 2 (SO 4) 3 , б) K 2 S, в) Mg(CH 3 COO) 2
а) AlCl 3 , б) Na 2 Se, в) Mg(CH 3 COO) 2 а) Fe(NO 3) 3 , б) Na 2 SiO 3 , (NH 4) 2 CO 3
а) FeCl 3 , б) K 2 SO 3 , в) Zn(NO 2) 2 а) K 2 CO 3 , б) Al(NO 3) 3 , в) Ni(NO 2) 2
а) CuSO 4 , б) Na 3 AsO 4 , в) (NH 4) 2 SeO 3 а) K 3 PO 4 , б) Mg(NO 3) 2 , в) (NH 4) 2 SeO 3
а) BeSO 4 , б) K 3 PO 4 , в) Ni(NO 2) 2 а) ZnCl 2 , Na 3 PO 4 , в) Ni(CH 3 COO) 2
а) Bi(NO 3) 3 , б) K 2 CO 3 в) (NH 4) 2 S а) AlCl 3 , б) K 2 CO 3 , в) (NH 4) 2 SO 3
а) Na 2 CO 3 , б) AlCl 3 , в) (NH 4) 3 PO 4 а) FeCl 3 , б) Na 2 S, в) (NH 4) 2 Te
а) K 3 PO 4 , б) MgCl 2 , в) Al(CH 3 COO) 3 а) CuSO 4 , б) Na 3 PO 4 , в) (NH 4) 2 Se
а) ZnSO 4 , б) Na 3 AsO 4 , в) Mg(NO 2) 2 а) BeSO 4 , б) б) Na 2 SeO 3 , в) (NH 4) 3 PO 4
а) Cr(NO 3) 3 , б) K 2 SO 3 , в) (NH 4) 2 SO 3 a) BiCl 3 , б) K 2 SO 3 , в) Al(CH 3 COO) 3
а) Al(NO 3) 3 , б) Na 2 Se, в) (NH 4) 2 CO 3 a) Fe(NO 3) 2 , б) Na 3 AsO 4 , в) (NH 4) 2 S

Список литературы

1. Лурье, Ю.Ю. Справочник по аналитической химии / Ю.Ю. Лурье. – М. : Химия, 1989. – 448 с.

2. Рабинович, В.А. Краткий химический справочник / В.А. Рабинович, З.Я. Хавин – Л. : Химия, 1991. – 432 с.

3. Глинка, Н.Л. Общая химия / Н.Л. Глинка; под ред. В.А. Рабиновича. – 26-е изд. – Л.: Химия, 1987. – 704 с.

4. Глинка, Н.Л. Задачи и упражнения по общей химии: учебное пособие для вузов / Н.Л. Глинка; под ред. В. А. Рабиновича и Х.М. Рубиной – 22-е изд. – Л.: Химия, 1984. – 264 с.

5. Общая и неорганическая химия: конспект лекций для студентов технологических специальностей: в 2 ч. / Могилёвский государственный университет продовольствия; авт.-сост. В.А. Огородников. – Могилёв, 2002. – Ч. 1: Общие вопросы химии. – 96 с.


Учебное издание

ОБЩАЯ ХИМИЯ

Методические указания и контрольные задания

для студентов технологических специальностей заочной формы обучения

Составитель: Огородников Валерий Анатольевич

Редактор Т.Л Матеуш

Технический редактор А.А. Щербакова

Подписано в печать. Формат 60´84 1/16

Печать офсетная. Гарнитура Таймс. Печать трафаретная

Усл. печ. л.. Уч. изд. л. 3.

Тираж экз. Заказ.

Отпечатано на ризографе редакционно-издательского отдела

учреждения образования

«Могилёвский государственный университет продовольствия»

Растворы гидролизующихся солей находят применение в медицинской практике. Так, при попадании на кожу растворов кислот пораженные участки обрабатывают сначала водой, а затем раствором карбоната натрия Na 2 CO 3 . Такой способ позволяет нейтрализовать остатки кислоты, так как водный раствор Na 2 CO 3 имеет щелочную реакцию. Однако растворы Na 2 CO 3 вряд ли следует применять для снижения повышенной кислотности желудочного сока ввиду достаточно высокой щелочности. Для этих целей применяют растворы гидрокарбоната натрия NaHCO 3 , которые характеризуются более низким значением pH. В этой связи, для точного использования препарата, действие которого основано на гидролизе, врачу необходимо уметь оценивать величины pH растворов гидролизующихся солей.

1. В растворах солей типаNH 4 Cl:

где , pC, - отрицательные десятичные логарифмы соответствующих величин.

Так как при t 0 = 20-25 0 C = 14, то , следовательно:

2. В растворах солей типаCH 3 COONa:

3. В растворах солей типаNH 4 CN:

В случае равенства = дробная часть формулы обратится в ноль и рН = 7.

Если соль гидролизуется в несколько ступеней, то можно считать, что значение рН раствора этой соли будет определяться только первой ступенью гидролиза.


Эталоны решения задач

1. Вычислить константу и степень гидролиза соли NH 4 Cl в растворе с С(NH 4 Cl) = 0,1 моль/л, если (NH 3 ×Н 2 О) = 1,8×10 - 5 .

NH 4 Cl + H-OH ⇄ NH 3 ∙H 2 O + HCl

2. Вычислить константу и степень гидролиза Na 2 CO 3 по первой ступени в растворе с С(Na 2 CO 3) = 0,01 моль/л, если для H 2 CO 3 = 4×10 - 7 ; = 5×10 - 11 .



Гидролиз Na 2 CO 3 протекает ступенчато:

Na 2 CO 3 + H-OH ⇄ NaHCO 3 + NaОН (1 ступень)

В сокращенном виде уравнение выглядит так:

CO 3 2 - + H-OH ⇄ HCO 3 - + ОН -

NaHCO 3 + H-OH ⇄ H 2 CO 3 + NaОН (2 ступень)

HCO 3 - + H-OH ⇄ H 2 CO 3 + ОН -

Гидролиз Na 2 CO 3 по первой ступени приводит к образованию гидрокарбонат-иона HCO 3 - , который является слабым электролитом:

HCO 3 - ⇄ H + + СО 3 2 -

Данное уравнение соответствует диссоциации H 2 CO 3 по второй ступени и характеризуется константой (H 2 CO 3) = 5×10 - 11 .

3. Сравнить степень гидролиза NaNO 2 в растворах соли с концентрациями 0,1 и 0,001 моль/л, если (HNO 2) = 4×10 - 4 .

Введем обозначения: С 1 = 0,1 моль/л; С 2 = 0,001 моль/л.

Тогда: ; .

Разделим одно выражение на другое и получим:

NaCN + H-OH ⇄ HCN + NaOH

NH 4 CN + H-OH ⇄ HCN + NH 3 ×H 2 O

pH > 7 среда слабощелочная.

6. Найти разность значений рН растворов Na 2 S и NaHS с одинако-выми концентрациями солей, если (Н 2 S) = 7, (Н 2 S) = 13.

Вычтем из первого уравнения второе и получим:

Вопросы для самоконтроля

1. Какой процесс называется гидролизом соли?

2. Какова причина изменения рН раствора за счет гидролиза?

2. Какие типы солей подвергаются гидролизу в растворе? Приведите примеры.

3. Почему соли типа NaCl, KI, СаС1 2 не подвергаются гидролизу?

4. В каких случаях при гидролизе солей образуются кислые (основные) соли? Приведите примеры.

5. В каких случаях происходит необратимый гидролиз соли? Приведите примеры.

6. Какие продукты образуются при взаимодействии хлорида хрома (III) и сульфида аммония (NH 4) 2 S в водном растворе?

7. Что называется константой гидролиза? От каких факторов зависит и от каких не зависит константа гидролиза?

8. Что называется степенью гидролиза? Как она связана с константой гидролиза различных типов солей?

9. Какие факторы влияют на величину степени гидролиза соли?

10. Почему степень гидролиза увеличивается при повышении температуры?

11. Для, каких солей разбавление раствора практически не влияет на степень гидролиза?

12. Каким способом можно гидролизовать FeCl 3 до образования Fe(OH) 3 ?

13. При гидролизе каких солей рН раствора близок к 7?

14. Почему раствор NaHCO 3 имеет слабощелочную реакцию, а раствор NaHSO 3 - слабокислую? (H 2 CO 3) = 4×10 - 7 , (H 2 SO 3) = 1,7×10 - 2 .

15. Необходимо приготовить раствор соли FeSO 4 , при гидролизе которой образуется малорастворимое соединение (раствор мутнеет). В какой среде (кислой или щелочной) следует готовить раствор, чтобы избежать его помутнения? Почему?


Варианты задач для самостоятельного решения

Вариант №1

1. Написать уравнения гидролиза (в молекулярном и ионном виде) и определить реакцию среды водных растворов перечисленных солей: Na 2 SO 4 , FeCl 2 , Na 2 S.

3. Вычислить значение pH раствора СН 3 СООК с C(СН 3 СООК) = 0,005 моль/л, если (СН 3 СООН) = 1,8×10 - 5 .

Вариант №2

1. Написать уравнения гидролиза (в молекулярном и ионном виде) и определить реакцию среды водных растворов перечисленных солей: MnSO 4 , KI, Na 2 SiO 3 .

3. Вычислить значение рН раствора NaNO 2 с C(NaNO 2) = 0,01 моль/л, если (HNO 2) = 4×10 - 4 .

4. Сравнить величины констант гидролиза Pb(NO 3) 2 по первой и по второй ступени, если для Pb(OH) 2 = 9,6×10 - 4 ; = 3×10 - 8 .

Вариант №3

1. Написать уравнения гидролиза (в молекулярном и ионном виде) и определить реакцию среды водных растворов перечисленных солей: Ca(NO 3) 2 , Na 2 SO 3 , Cu(NO 3) 2 .

2. Вычислить константу и степень гидролиза КClO в растворе с C(КClO) = 0,1 моль/л, если (НClO) = 5,6×10 - 8 .

3. Вычислить значение рН раствора соли KCN с C(KCN) = 0,05 моль/л, если (HCN) = 8×10 - 10 .

Вариант №4

1. Написать уравнения гидролиза (в молекулярном и ионном виде) и определить реакцию среды водных растворов перечисленных солей: K 3 PO 4 , CaCl 2 , ZnCl 2 .

2. Сравнить степень гидролиза NaCN в растворах с молярной концентрацией эквивалента соли 0,1 и 0,001 моль/л если (HCN) = 8×10 - 10 .

3. Вычислить значение рН раствора NH 4 NO 3 с C(NH 4 NO 3) = 0,1 моль/л, если (NH 3 ×Н 2 О) = 1,8×10 - 5 .

Вариант №5

1. Написать уравнения гидролиза (в молекулярном и ионном виде) и определить реакцию среды водных растворов перечисленных солей: CuSO 4 , Li 2 S, NaBr.

3. Вычислить значение рН раствора NH 4 I с концентрацией соли 0,02 моль/л, если (NH 3 ×Н 2 О) = 1,8×10 - 5 .

4. Сравнить величины констант гидролиза Na 2 SiO 3 по первой и по второй ступени, если для H 2 SiO 3 = 1,3×10 - 10 ; = 2×10 - 12 .

Вариант №6

1. Написать уравнения гидролиза (в молекулярном и ионном виде) и определить реакцию среды водных растворов перечисленных солей: SrCl 2 , Fe(NO 3) 3 , K 2 S.

2. Сравнить величины степени гидролиза NaF в растворах с молярной концентрацией эквивалента соли 0,2 и 0,002 моль/л. (HF) = 6,6×10 - 4 .

3. Вычислить значение pH раствора НСООNa с молярной концентрацией соли 0,05 моль/л, если (НСООН) = 2,2×10 - 4 .

Вариант №7

1. Написать уравнения гидролиза (в молекулярном и ионном виде) и определить реакцию среды водных растворов перечисленных солей: NaNO 3 , ZnSO 4 , Ca(OCl) 2 .

3. Вычислить значение рН раствора C 6 H 5 COONa с концентрацией соли 0,01 моль/л, если (C 6 H 5 COOH) = 6,3×10 - 5 .

Вариант №8

1. Написать уравнения гидролиза (в молекулярном и ионном виде) и определить реакцию среды водных растворов перечисленных солей: Pb(NO 3) 2 , CaS, KC1.

2. Сравнить величины констант и степеней гидролиза солей NaF и NaCN в растворах с одинаковыми концентрациями, если (HF) = 6,6×10 - 4 ; (HCN) = 8×10 - 10 .

3. Вычислить значение рН раствора CH 3 COONH 4 с молярной концентрацией соли 0,05 моль/л, если (CH 3 COOH) = 1,8×10 - 5 ; (NH 3 ×H 2 O) = 1,8×10 - 5 .

Вариант №9

1. Написать уравнения гидролиза (в молекулярном и ионном виде) и определить реакцию среды водных растворов перечисленных солей: Ba(NO 3) 2 , NiCl 2 , K 2 SO 3 .

3. Вычислить значение рН раствора соли KF с концентрацией 0,001 моль/л, если (HF) = 6,6×10 - 4 .

Вариант №10

1. Написать уравнения гидролиза (в молекулярном и ионном виде) и определить реакцию среды водных растворов перечисленных солей: CoSO 4 , Na 2 C 2 O 4 , Sr(NO 3) 2 .

2. Сравнить величины констант и степеней гидролиза NH 4 F в растворах с концентрациями 0,02 моль/л и 0,002 моль/л, если (HF) = 6,6×10 - 4 , (NH 3 ×H 2 O) = 1,8×10 - 5 .

3. Вычислить значение рН раствора NH 4 CN с концентрацией 0,01 моль/л, если (HCN) = 8×10 - 10 , (NH 3 ×Н 2 О) = 1,8×10 - 5 .

4. Сравнить величины констант гидролиза Na 2 S по первой и по второй ступени, если (H 2 S) = 1×10 - 7 ; (H 2 S) = 1×10 - 13 .

Вариант №11

1. Написать уравнения гидролиза (в молекулярном и ионном виде) и определить реакцию среды водных растворов перечисленных солей: BaS, K 2 SO 4 , CrCl 3 .

2. Вычислить константу и степень гидролиза HCOONa в растворе с молярной концентрацией соли 0,001 моль/л, если (HCOOH) = 2,2×10 - 4 .

3. Вычислить значение рН раствора NH 4 F с концентрацией 0,02 моль/л, если (NH 3 ×Н 2 О) = 1,8×10 - 5 , (HF) = 6,6×10 - 4 .

Вариант №12

1. Написать уравнения гидролиза (в молекулярном и ионном виде) и определить реакцию среды водных растворов перечисленных солей: Ni(NO 3) 2 , K 2 CO 3 , ВаС1 2 .

2. Сравнить величины констант и степеней гидролиза NH 4 NO 3 в растворах с концентрациями соли 0,02 и 0,002 моль/л, если (NH 3 ×H 2 O) = 1,8×10 - 5 .

3. Вычислить значение рН раствора KClO с концентрацией соли 0,04 моль/л, если (HClO) = 5,6×10 - 8 .

Вариант №13

1. Написать уравнения гидролиза (в молекулярном и ионном виде) и определить реакцию среды водных растворов перечисленных солей: NaI, K 2 SiO 3 , Fe 2 (SO 4) 3 .

2. Вычислить константу и степень гидролиза C 2 H 5 COONa в растворе с С(C 2 H 5 COONa) = 0,l моль/л, если (C 2 H 5 COOH) = 1,3×10 - 5 .

3. Вычислить значение рН раствора NaHCO 3 с концентрацией 0,1 моль/л, если (Н 2 СО 3) = 4×10 - 7 , (H 2 CO 3) = 5×10 - 11 .

Вариант №14

1. Написать уравнения гидролиза (в молекулярном и ионном виде) и определить реакцию среды водных растворов перечисленных солей: Na 2 HPO 4 , KNO 3 , Bi(NO 3) 3 .

2. Вычислить степень гидролиза NH 4 F в растворе с С(NH 4 F) = 0,02 моль/л, если (HF) = 6,6×10 - 4 , (NH 3 ×H 2 O) = 1,8×10 - 5 .

Лекция № 12. Электролитическая диссоциация воды.

Несмотря на то, что вода считается неэлектролитом, она частично диссоциирует с образованием катиона гидроксония и гидроксид-аниона:

H 2 O + H 2 O H 3 O + + OH -

Часто используют упрощенную форму записи данного процесса:

H 2 O H + + OH -

Это равновесие характеризуется соответствующей константой:

Поскольку в чистой воде и разбавленных водных растворах = const, данное выражение можно преобразовать к следующему виду:

K W =

Полученная константа называется ионным произведением воды. При 25 °С K W = 10 -14 . Отсюда следует, что в чистой воде и нейтральных растворах = = Ö10 -14 = 10 -7 . Очевидно, что в кислых растворах > 10 -7 , а в щелочных < 10 -7 . На практике часто пользуются показателем концентрации катионов водорода - отрицательным десятичным логарифмом (pH = -lg). В кислых растворах рН < 7, в щелочных pH > 7, в нейтральной среде pH = 7. Аналогично можно ввести гидроксильный показатель pOH = -lg. Водородный и гидроксильный показатели связаны простым соотношением: pH + pOH = 14.

Рассмотрим примеры расчета рН водных растворов сильных и слабых кислот.

Пример № 1. Сантимолярный раствор (0,01 моль/л) соляной кислоты (сильная одноосновная кислота).

HCl = H + + Cl -

C HCl = 0,01; pH = -lg 0,01 = 2

Пример № 2. Сантимолярный раствор (0,01 моль/л) гидроксида натрия (сильное однокислотное основание).

NaOH = Na + + OH -

C NaOH = 0,01; pOH = -lg 0,01 = 2;

pH = 14 - pOH = 12

Пример № 3. Сантимолярный раствор (0,01 моль/л) уксусной кислоты (слабая одноосновная кислота).

CH 3 COO - + H + CH 3 COOH

Из уравнения реакции следует, что = . Для слабого электролита » C. Подставим эти формулы в константу кислотной диссоциации уксусной кислоты и преобразуем полученное выражение:

= 1,75×10 -5 ; ; »

рН = - lg= -1/2(lgK a + lgC) = 1/2(pK a - lgC) = 1/2(4,75 + 2) = 3,38

Пример № 4. Сантимолярный раствор (0,01 моль/л) аммиака (гидроксид аммония, слабое однокислотное основание).

NH 3 + H 2 O NH 4 + + OH -

Из уравнения реакции следует, что = . Так как гидроксид аммония слабый электролит, то » C. Подставив эти формулы в константу ионизации аммиака как основания, получим:

= 1,8×10 -5 ; ; =

рOН = -lg= 1/2(pK b - lgC);

pH = 14 - pOH = 14 + 1/2(lgC - pK b) = 14 + 1/2(-2 - 4,76) = 10,62

Гидролиз солей . Отличие кислотности водных растворов солей от кислотности чистой воды определяется их гидролизом. Гидролиз - это обменное взаимодействие растворенного вещества с водой . По склонности к гидролизу соли делятся на четыре типа:



1. Соли, образованные сильной кислотой и сильным основанием (например, NaCl, Na 2 SO 4), гидролизу не подвергаются. Водные растворы таких солей имеют нейтральную реакцию (рН = 7).

2. Соли, образованные слабым основанием и слабой кислотой, гидролизуются в значительной степени и часто необратимо, например,

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 ¯ + 3H 2 S

Кислотность их растворов определяется более растворимым веществом, и обычно близка к нейтральной (рН » 7).

3. Соли, образованные слабым основанием и сильной кислотой, гидролизуются обратимо, связывая гидроксид-анионы, и обуславливая кислую реакцию растворов (рН < 7). Например, гидролиз хлорида аммония можно описать следующими уравнениями:

NH 4 Cl + H 2 O NH 3 ×H 2 O + HCl

Из приведенных уравнений видно, что гидролизу подвергается не вся соль, а только ее катион. Катионы солей, образованных многокислотными слабыми основаниями, гидролизуются ступенчато, последовательно отщепляя от воды гидроксид-анионы:

Al 3+ + H 2 O Al(OH) 2+ + H +

Al(OH) 2+ + H 2 O Al(OH) 2 + + H +

Al(OH) 2 + + H 2 O Al(OH) 3 + H +

Суммарное уравнение гидролиза катиона алюминия имеет следующий вид:

Al 3+ + 3H 2 O Al(OH) 3 + 3H +

4. Соли, образованные сильным основанием и слабой кислотой, гидролизуются по аниону, который отрывает от воды катион водорода. Освобождающиеся гидроксид-анионы придают раствору щелочную реакцию (pH > 7). Например, гидролиз ацетата натрия протекает следующим образом:

CH 3 COONa + H 2 O CH 3 COOH + NaOH

Очевидно, что гидролиз анионов солей слабых многоосновных кислот протекает ступенчато, например,

PO 4 3- + H 2 O HPO 4 2- + OH -

HPO 4 2- + H 2 O H 2 PO 4 - + OH -

H 2 PO 4 - + H 2 O H 3 PO 4 + OH -

Суммарное уравнение гидролиза фосфат-аниона имеет следующий вид

PO 4 3- + 3H 2 O H 3 PO 4 + 3OH -

Гидролизу подвергаются не только соли, но и ковалентные неорганические и органические соединения. Например:

PCl 3 + 3H 2 O = H 3 PO 3 + 3HCl

Важную роль в жизнедеятельности живых организмов играет гидролиз некоторых биомолекул - белков и полипептидов, жиров, а также полисахаридов.

Глубина протекания гидролиза характеризуется степенью гидролиза (h) - отношением количества вещества, подвергшегося гидролизу, к общему количеству вещества в растворе . Обратимый гидролиз может быть охарактеризован также константой. Например, для процесса гидролиза ацетат-аниона константа гидролиза записывается следующим образом:

Равновесная концентрация воды в выражение константы гидролиза не входит, поскольку она постоянна и автоматически переносится в левую часть равенства.

Расчет константы и степени гидролиза, а также рНводных растворов солей рассмотрим на конкретных примерах.

Пример № 5. Сантимолярный раствор (0,01 моль/л) хлорида аммония (соль, образованная слабым основанием и сильной кислотой). Запишем уравнение гидролиза в ионной форме и составим выражение для константы гидролиза.

NH 4 + + H 2 O NH 3 ×H 2 O + H +

Умножив числитель и знаменатель правой части равенства на концентрацию гидроксид-ионов, константу гидролиза можно преобразовать следующим образом:

5,56×10 -10

Из уравнения гидролиза следует, что = = Ch, а = C - Ch = C(1-h). Соответственно,

Так как h << 1, а (1-h) ® 1, полученное выражение можно упростить:

; отсюда h »

» 2,36×10 -4 или 0,0236%

Из полученных уравнений видно, что константа и степень гидролиза соли увеличиваются с уменьшением константы диссоциации основания, т.е. с уменьшением его силы. Кроме этого, степень гидролиза и глубина его протекания увеличивается с уменьшением концентрации (увеличением разбавления) соли. Константа гидролиза, как и константа любого равновесия, от концентрации не зависит. Увеличение температуры приводит к увеличению степени и константы гидролиза, поскольку гидролиз - процесс эндотермический.

При расчете величины рН раствора соли учтем, что = , а в первом приближении » C.

; отсюда »

pH = - lg = -1/2(lgK w + lgC + pK b) = 7 - 1/2(pK b + lgC) = 7 - 1/2(4,76 - 2) = 5,62

Пример № 6. Сантимолярный раствор (0,01 моль/л) ацетата натрия (соль, образованная сильным основанием и слабой кислотой). Запишем уравнение гидролиза в ионной форме и составим выражение для константы гидролиза.

CH 3 COO - + H 2 O CH 3 COOH + OH -

Умножив числитель и знаменатель правой части равенства на концентрацию катиона водорода, его можно преобразовать к следующему виду:

1×10 -14 /1,75×10 -5 = 5,71×10 -10

Из уравнения гидролиза следует, что = = Ch, а = C - Ch = C(1-h).

Соответственно,

; ; отсюда h =

» 2,39×10 -4 или 0,0239%

При расчете величины рН учтем, что = , а » C.

; отсюда » ;

pOH = -lg = -1/2(lgK w + lgC + pK a) = 7 - 1/2(pK a + lgC)

pH = 14 - pOH = 7 + 1/2(pK a + lgC) = 7 + 1/2(4,75 - 2) = 9,75

Пример № 7. Сантимолярный раствор (0,01 моль/л) ацетата аммония (соль, образованная слабым основанием и слабой кислотой). Запишем уравнение гидролиза в ионной форме и составим выражение для константы гидролиза.

NH 4 + + CH 3 COO - + H 2 O NH 3 ×H 2 O + CH 3 COOH

Умножив числитель и знаменатель правой части равенства на произведение концентрации катиона водорода и гидроксид-аниона (ионное произведение воды), его можно преобразовать следующим образом:

= = 0,32×10 -4

Из уравнения гидролиза следует, что = = Ch, тогда

C - Ch = C(1-h), соответственно,

0,0056 или 0,56%

Образующаяся в результате гидролиза гидратированная молекула аммиака диссоциирует, отщепляя гидроксид-анион:

NH 3 ×H 2 O NH 4 + + OH -

; отсюда

Аналогично, диссоциация уксусной кислоты обеспечивает образование катионов водорода:

CH 3 COO - + H + CH 3 COOH

Найдем отношение концентраций данных ионов:

Согласно уравнению гидролиза = , а = , тогда

Так как = K w /, то 2 = ; отсюда =

pH = - lg = 1/2(pK w + pK a - pK b) = 7 + 1/2(pK a - pK b) = 7 + 1/2(4,75 - 4,76) = 6,995

Литература: с. 243 - 255; с. 296 - 302



УДК 543

Дубова Н.М. Аналитическая химия. Методические указания и варианты контрольных заданий к самостоятельной работе студентов ХТФ направления 240100 . – Томск: Изд-во ТПУ, 2006. – 20 с.

Составитель доц., к.х.н. H.M.Дубова

Рецензент

доц., к.х.н. кафедры ФАХ Е.И.Короткова

Зав. кафедрой ФАХ______________ _____ А. А. Бакибаев

Одобрено учебно-методической комиссией ХТФ

Председатель учебно-методической комиссии

Н.В.Ушева

Расчет рН в растворах различных электролитов

В данном методическом указании приводятся формулы и примеры упрощенного расчета рН в растворах сильных и слабых кислот и оснований, гидролизующихся солей, буферных системах без учета влияния ионной силы раствора.. Приведены некоторые примеры расчета рН в различных смесях кислот и оснований, скачка на кривых титрования и обоснования выбора индикатора.

1.Расчет рН в растворах сильных кислот и оснований.

Расчет рН в растворах сильных одноосновных кислот и оснований проводят по формулам (1-2):

рН = - lg C к (1)

рН =14 + lg С о (2)

Где C к, С о –молярная концентрация кислоты или основания, моль/л

Пример 1. Вычислить рН, рОН, [Н + ] , [ОН - ] в 0.01М HCl.

Решение . Соляная кислота относится к сильным кислотам, поэтому можно принять концентрацию ионов водорода равной концентрации кислоты [Н + ] =0.01моль/л. Значение рН вычисляется по формуле (1) и равно рН= -lg 0.01 =2. Концентрацию гидроксид-ионов можно найти, зная величину ионного произведения воды:



[ОН - ] =10 -14 /[Н + ] = 10 -14 /0.01 = 10 -12

Значение рOH = -lg 10 -12 =12

Кроме того величину рОН можно найти из известного равенства (3)

рН + рОН = 14 (3)

Расчет рН в растворах слабых кислот и оснований

Расчет рН в растворах слабых одноосновных кислот и оснований проводят по формулам (4-5)

рН = 1/2 (рК к – lgC к) (4)

рОН = 14 - 1/2(рК О - lg C О) (5)

Пример2.1. Вычислить рН 0.03 М раствора NH 4 OH после смешивания его с водой в соотношении 1:2.

Решение . После смешивания 0.03М раствора аммиака с водой, его концентрация уменьшится в три раза. Подставляя в формулу (5) значение рК(NH 4 OH)= 4.76 и концентрацию раствора после разбавления,получим:

рН = 14 – 1/2 (4.76- lg 0.01) = 10.62

Пример 2.2 ВычислитьрН при сливании 100мл соляной кислоты с Т=0.07300г/мл со 100мл раствора соляной кислоты с Т (HCl/NaOH) =0.004000г/мл.

Решение. Значение рН после сливания двух растворов будет определяться суммарной концентраций ионов водорода, которая находится по формуле (6) :

(С м V) 1 + (С м V) 2 = (С м V) 3 (6),

где V 3 =V 1 + V 2

Молярная концентрация ионов водорода в первом растворе находится по формуле С М (HCl)= Т(HCl)×1000/М(HCl)=0.07300×1000/36.5 = 2.0 моль/л×; во втором растворе по формуле: С М (HCl)=f× С Н (HCl); f=1;

С Н (HCl)= Т(HCl/NaOH)×1000/М Э (NaOH) =0.004000×1000/40 =0.01моль/л. Молярная концентрация ионов водорода в растворе, полученном после сливания и вычисленная по формуле (6) равна. С м = 0.105 моль/л, рН = -lg0.105 =0.98

Пример 2.3 . Как изменится рОН 200мл 0.01М NH 4 OH при добавлении к нему 100 мл 0.03М раствора NaOH ?

Решение. Вычислим значение рН раствора аммиака в первоначальном растворе по формуле (5): рН =14 –1/2 (4.76 – lg0.01) =10.62. Значение рОН в таком растворе рОН=3.38, а концентрация гидроксид ионов равна [ОН - ] =10 -3.38 =0.00046 моль/л, т.е. на два порядка меньше,чем концентрация гидроксид-ионов в растворе NaOH. Поэтому значение рОН раствора, полученного при сливании будет в основном определяться концентрацией сильного электролита NaOH с учетом разбавления за счет добавления раствора аммиака.

Значение рОН = -lg100×0.03/300 =2

Расчет рН в растворах гидролизующихся солей

Различают 3 случая гидролиза солей:

а) гидролиз соли по аниону (соль образована слабой кислотой и сильным основанием, например CH 3 COO Na). Значение рН рассчитывают по формуле (7):

рН = 7 + 1/2 рК к + 1/2 lg С с (7)

б) гидролиз соли по катиону (соль образована слабым основанием и сильной кислотой, например NH 4 Cl).Расчет рН в таком растворе ведут по формуле (8):

рН = 7 - 1/2 рК о - 1/2 lg С с (8)

в) гидролиз соли по катиону и аниону (соль образована слабой кислотой и слабым основанием, например CH 3 COO NH 4). В этом случае расчет рН ведут по формуле (9) :

рН = 7 + 1/2 рК к - 1/2 рК о (9)

Если соль образована слабой многоосновной кислотой или слабым многопротонным основанием, то в перечисленные выше формулы (7-9) расчета рН подставляются значения рК к и рК о по последней ступени диссоциации

Пример 3.1. Вычислить массу (г) Na 2 CO 3 в 100 мл раствора с рН =11.16

Решение. Воспользуемся формулой (7).Подставим значение константы диссоциации угольной кислоты по второй ступени и вычислим значение молярной концентрации соли в растворе:

11.16 = 7 + 1/2 ×10.32 + 1/2 lg С с

С с =0.01моль/л. Зная С с в растворе, рассчитаем массу соли в растворе по известной формуле m = C×М×V/1000= 0.01×106×100/1000 =0.1060г

Буферные системы

К буферным системам относятся смеси:

а)слабой кислоты и ее соли, напримерCH 3 COO H + CH 3 COO Na

б) слабого основания и его соли, например NH 4 OH + NH 4 Cl

в) смесь кислых солей разной кислотности, например

NaH 2 PO 4 + Na 2 HPO 4

г) смесь кислой и средней солей, например NaНCO 3 + Na 2 CO 3

д) смесь основных солей разной основности, например

Al(OH) 2 Cl + Al(OH)Cl 2 и т.д.

Расчет рН в буферных системах ведут по формулам (10-11)

рН = рК к – lg C к /С с (10)

рН = 14 – рК о + lg C о /С с (11)

Пример 4.1. Сколько граммNH 4 Cl надо растворить в 200 мл 0.1МNH 4 OH, чтобы получить растворс рН= 9.24 ?

Решение. При растворении NH 4 Cl в растворе NH 4 OH образуется буферная система. Расчет ведут по формуле (11).Подставляя численные значения рН, рК о, вычисляют концентрацию соли: С с =0.1моль/л. Рассчитывают массу соли: m = C×М×V/1000= 0.1×53.5×200/1000=1.0700г.

В общем случае, гидролиз солей – это процесс обменного разложения воды и растворенной в ней соли – электролита, приводящий к образованию малодиссоциирующего вещества.
Гидролиз является частным случаем сольволиза – обменного разложения растворенного вещества и растворителя.

Характеризовать гидролиз количественно позволяют такие величины, как Степень гидролиза и константа гидролиза .

Степень гидролиза

— это соотношение количества подвергающейся гидролизу соли n гидр и общего количества растворенной соли n общ. Обычно, ее обозначают через h гидр (или α ):

h гидр = (n г идр /n общ)·100 %

Величина h гидр увеличивается с уменьшением силы образующих соль кислоты или основания.

Константа гидролиза

Представим в общем виде процесс гидролиза соли, в котором в роли соли выступает – МА, а НА и МОН - соответственно, кислота и основание, которые образуют данную соль:

K г = ·/

Концентрация образовавшейся кислоты равна концентрации гидроксид ионов, тогда

K г = 2 /

Используя это выражение можно вычислить pH раствора

= (K г ·) 1/2 моль/л

10 -14 / моль/л

Гидролиз солей можно представить, как поляризационное взаимодействие ионов и их гидратной оболочки. Гидролиз протекает тем полнее, сильнее поляризующее действие ионов. Возможны 4 случая протекания гидролиза:

  1. Соли, образованные сильным основанием и сильной кислотой

    Соли, образованные сильным основанием и сильной кислотой не подвергаются гидролизу. В этом случае, гидролиз практически не происходит, т.к. катионы и анионы, образующиеся в растворе при , слабо поляризуют гидратную оболочку. pH среды не изменяется (рН ≈ 7 ):

NaCl ↔ Na + + Cl —

Na + + HOH ↔ реакция практически не протекает

Cl — + HOH ↔ реакция практически не протекает

  1. Соли, образованные слабым основанием и сильной кислотой

    Такое соединение, при ионизации, образует катионы, способные к поляризации гидратной оболочки и анионы, которые их поляризуют слабо. Тогда гидроли з проходит по катиону, при этом среда носит кислый характер, т.е. рН ˂ 7 :

NH 4 Cl ↔ NH 4 + + Cl —

NH 4 + + HOH ↔ NH 4 OH + H +

Cl — + HOH ↔ реакция практически не идет

NH 4 Cl+ HOH ↔ NH 4 OH + HCl

Для солей, образованных слабым основанием и сильной кислотой, константа гидролиза и константа диссоциации основания связаны соотношением:

K г = K H 2 O /K осн

Понятно, что чем меньше сила основания, тем в большей степени протекает гидролиз.

Если соль образованна слабым основанием многовалентного металла и сильной кислотой , то ее гидролиз будет протекать ступенчато:

FeCl 2 ↔ Fe 2+ + 2Cl —

I ступень Fe 2+ + HOH ↔ (FeOH) + + H + FeCl 2 + HOH ↔ (FeOH)Cl + HCl
II ступень (FeOH) + + HOH ↔ Fe(OH) 2 + H + (FeOH)Cl + HOH↔ Fe(OH) 2 + HCl

Константа гидролиза по первой ступени связана с константой диссоциации основания по второй ступени, а константа гидролиза по второй ступени - с константой диссоциации основания по первой ступени:

K г1 = K H 2 O /K осн2

K г2 = K H 2 O /K осн1

Поскольку первая константа диссоциации кислоты всегда больше второй, то первая константа гидролиза всегда больше, чем константа вторая гидролиза, так как первая константа диссоциации основания всегда больше второй

K г1 > K г2

Отсюда следует, что по первой ступени, гидролиз всегда будет протекать в большей степени, чем по второй. Этому также способствуют ионы, которые образуются при гидролизе по первой ступени, они приводят подавлению гидролиза по второй ступени, смещая равновесие влево.

Сравнивая величины K г и K осн можно качественно определить pH среды . Так, если K г намного больше K осн, то среда сильнокислая , при K г намного меньшей K осн — среда слабокислая среднекислая.

  1. Соль, образованная сильным основанием и слабой кислотой

    Такое соединение в растворе образует слабополяризующие катионы и среднеполяризующие анионы. Гидролиз протекает по аниону , и в его результате создается щелочная среда, pH > 7 :

NaCN ↔ Na + + CN —

CN — + HOH ↔ HCN + OH —

Na + + HOH ↔ реакция практически не идет

NaCN + HOH ↔ HCN + NaOH

Константа гидролиза и константа диссоциации кислоты связаны зависимостью:

K г = K H 2 O /K к-ты

Т.е. гидролиз соли протекает тем полнее, чем слабее образующая эту соль, кислота.

Возможен гидролиз соли , образованной слабой многоосновной кислотой и сильным основанием. В этом случае гидролиз протекает по ступеням:

Na 2 SO 3 ↔ 2Na + + SO 3 2-

I ступень SO 3 2- + HOH ↔ HSO 3 — + OH — Na 2 SO 3 + HOH ↔ NaHSO 3 + NaOH
II ступень HSO 3 — + HOH ↔ H 2 SO 3 + OH — NaHSO 3 + HOH ↔ H 2 SO 3 + NaOH

В этом случае, константа гидролиза по первой и второй ступеням определяется соотношениями:

K г1 = K H 2 O /K к-ты2

K г2 = K H 2 O /K к-ты1

Следует помнить, что гидролиз по второй ступени протекает в ничтожно малой степени.

Сравнивая величины K г и K к-ты, можно качественно определить pH среды . Так, если K г намного больше K к-ты, то среда сильнощелочная , при K г намного меньшей K к-ты — среда слабощелочная , а если K г и K осн сопоставимы, то — среднещелочная.

  1. Соли, образованные слабым основанием и слабой кислотой

    Такие соли, при ионизации образуют среднеполяризующие катионы и анионы, поэтому гидролиз возможен как по катиону, так и по аниону . При этом относительная сила образовавшихся кислоты и основания, будут влиять на характер среды (слабокислая или слабощелочная, pH ≈ 7). Такого типа гидролиз протекает особо полно, обычно с образованием малорастворимого вещества:

Al 2 S 3 + 6HOH ↔ 2Al(OH) 3 ↓+ 3H 2 S

K г = K H 2 O /(K к-ты ·K осн)

Влияние различных факторов на протекание гидролиза

  • Природа соли . Это видно из выражения для константы гидролиза.
  • Концентрация соли и продуктов реакции . В соответствии с , равновесие должно смещаться вправо, при этом увеличивается концентрация ионов водорода (или гидроксид-ионов), что приводит к уменьшению степени гидролиза.
  • Температура . Известно, что гидролиз притекает с поглощением теплоты (), поэтому согласно принципу Ле Шателье, при увеличении температуры сдвигается вправо, что ведет к росту степени гидролиза .
Категории ,