Уравнения приводимые к однородным примеры. Однородные дифференциальные уравнения первого порядка и приводящиеся к ним

Основные понятия теории дифференциальных уравнений

Дифференциальное уравнение – уравнение, связывающее независимую переменную, искомую функцию и ее производные. Решение – функция, которая при подстановке в уравнение обращает его в тождество.

Если искомая функция зависит от одной переменной – ДУ называют обыкновенным, в противном случае – ДУ в частных производных. Наивысший порядок

Дифференциальные уравнения 1-го порядка. Задача Коши, теорема о существовании и единственности ее решения. Общее, частное решение (интеграл), особое решение.

F(x;y;y)=0 – ДУ 1-го порядка(1)

y=f(x;y) ДУ, разрешенное относительно производной(2)

P(x;y)dx+Q(x;y)dy=0 – дифференциальная форма(3)

Задача отыскания решения ДУ 1-го порядка, удовлетворяющего заданному начальному условию (y(x 0)=y 0), называется задачей Коши.

Т. Если в уравнении (2) функция f(x;y) и …
ее частная производная f y (x;y) непрерывны в некоторой области D, содержащей точку (x 0 ;y 0), то существует единственное решение y=φ(x) этого уравнения, удовлетворяющее начальному условию.

Общее решение — функция y=φ(x;с) содержащая произвольную постоянную.

Частное решение – функция y=φ(x;с 0) полученная из общего решения при значении постоянной с=с 0 .

Если общее решение найдено в неявном виде Ф(x;y;c)=0, то оно называется общим интегралом ДУ. А Ф(x;y;c 0)=0 частный интеграл уравнения.

Функция φ(x;c) называется особым решением дифференциального уравнения F(x,y,y’) = 0, если единственность решения нарушается в каждой точке этой функции в области определения дифференциального уравнения.

Геометрическая интерпретация ДУ 1-го порядка. Метод изоклин

Уравнение y=f(x;y) устанавливает связь между координатами точки и угловым коэффициентом y касательной к интегральной кривой. ДУ дает поле направлений на плоскости Оxy. Кривая, во всех точках которой направление поля одинаково называется изоклиной. Изоклинами можно пользоваться для приближенного построения интегральных кривых. Уравнение изоклины f(x;y)=с.

Уравнения с разделяющимися переменными

Уравнение с разделенными переменными: P(x)dx+Q(y)dy=0

Общий интеграл ДУ:

Уравнение с разделяющимися переменными: P 1 (x)Q 1 (y)dx+P 2 (x)Q 2 (y)dy=0

Однородные ДУ. Уравнения сводящиеся к однородным

Функция f(x;y) называется однородной функцией n-го порядка, если при умножении каждого ее аргумента на произвольный множитель λ вся функция умножится на λ n , т.е. f(λ x; λ y)= λ n f(x;y). ДУ y=f(x;y) называется однородным если функция f(x;y) есть однородная ф-я нулевого порядка

P(x;y)dx+Q(x;y)dy=0 дифференциальная форма однородного ДУ

Уравнение вида можно свести к однородному типу. Нужно составить систему вида:
Пусть решение этой системы:

Тогда, для приведения уравнения к однородному типу необходимо сделать подстановку вида
Если система не имеет решения следует сделать замену .

Функция f(x, y) называется однородной функцией n-го измерения относительно переменных х и у, если при любом справедливо тождество

Дифференциальное уравнение первого порядка называется однородным относительно х и у , если функция есть однородная функция нулевого измерения относительно х и у.

Решение однородного дифференциального уравнения.

Так как по условию . Положим , получим , т.е. однородная функция нулевого измерения зависит только от отношения аргументов. А само уравнение в этом случае примет вид .

Сделаем подстановку ; т.е. , тогда , подставим в исходное уравнение - это дифференциальное уравнение с разделяющимися переменными

Уравнение вида
(1)
можно свести к однородному типу.
Общий вид преобразований.
Для того, чтобы привести уравнение (1) к однородному типу дифференциальных уравнений надо составить систему вида:

Первый случай.
Эта система имеет решение.
Пусть решение этой системы:
.
Тогда, для приведения уравнения (1) к однородному типу необходимо сделать подстановку вида

Второй случай.
Напомним. Уравнение

Приводим к однородному типу, составили систему
,
а решений эта система не имеет.
В этом случае следует сделать замену .

6. Неоднородные линейные дифференциальные уравнения первого порядка. Решение неоднородного линейного дифференциального уравнения первого порядка методом Бернулли. Уравнения Бернулли .

Неоднородное дифференциальное уравнение - дифференциальное уравнение (обыкновенное или в частных производных), которое содержит тождественно не равный нулю свободный член - слагаемое, не зависящее от неизвестных функций.

Линейное уравнение первого порядка в стандартной записи имеет вид

Обыкновенное дифференциальное уравнение вида:

называется уравнением Бернулли (при или получаем неоднородное или однородное линейное уравнение).

Подберем так, чтобы было

для этого достаточно решить уравнение с разделяющимися переменными 1-го порядка. После этого для определения получаем уравнение - уравнение с разделяющимися переменными.

7. Однородные и неоднородные линейные дифференциальные уравнения первого порядка методом вариации произвольной постоянной .

Дифференциальное уравнение является однородным, если оно не содержит свободного члена - слагаемого, не зависящего от неизвестной функции. Так, можно говорить, что уравнение - однородно, если .

В случае, если , говорят о неоднородном дифференциальном уравнении

Уравнение вида

называется линейным неоднородным уравнением.
Уравнение вида

называется линейным однородным уравнением.

Стоп! Давай всетаки попытаемся разобраться в этой громоздкой формуле.

На первом месте должна идти первая переменная в степени с некоторым коэффициентом. В нашем случае это

В нашем случае это. Как мы выяснили, значит здесь степень при первой переменной - сходится. И вторая переменная в первой степени - на месте. Коэффициент.

У нас это.

Первая переменная в степени, и вторая переменная в квадрате, с коэффициентом. Это последний член уравнения.

Как видишь, наше уравнение подходит под определение в виде формулы.

Давай рассмотрим вторую (словесную) часть определения.

У нас две неизвестные и. Здесь сходится.

Рассмотрим все слагаемые. В них сумма степеней неизвестных должна быть одинакова.

Сумма степеней равна.

Сумма степеней равна (при и при).

Сумма степеней равна.

Как видишь, все сходится!!!

Теперь давай потренируемся в определении однородных уравнений.

Определи, какие из уравнений - однородные:

Однородные уравнения - уравнения под номерами:

Рассмотрим отдельно уравнение.

Если мы разделим каждое слагаемое на разложим каждое слагаемое, то получим

А это уравнение полностью попадает под определение однородных уравнений.

Как решать однородные уравнения?

Пример 2.

Разделим уравнение на.

У нас по условию y не может быть равен. Поэтому мы можем смело делить на

Произведя замену, мы получим простое квадратное уравнение:

Так как это приведенное квадратное уравнение, воспользуемся теоремой Виета:

Произведя обратную замену, получаем ответ

Ответ:

Пример 3.

Разделим уравнение на (по условию).

Ответ:

Пример 4.

Найдите, если.

Здесь нужно не делить, а умножать. Умножим все уравнение на:

Произведем замену и решим квадратное уравнение:

Произведя обратную замену, получим ответ:

Ответ:

Решение однородных тригонометрических уравнений.

Решение однородных тригонометрических уравнений ничем не отличается от способов решения, описанных выше. Только здесь, помимо прочего, нужно немного знать тригонометрию. И уметь решать тригонометрические уравнения (для этого можешь прочитать раздел ).

Рассмотрим такие уравнения на примерах.

Пример 5.

Решите уравнение.

Мы видим типичное однородное уравнение: и - это неизвестные, а сумма их степеней в каждом слагаемом равна.

Подобные однородные уравнения решаются не сложно, но перед тем, как разделить уравнения на, рассмотрим случай, когда

В этом случае уравнение примет вид: , значит. Но синус и косинус не могут одновременно быть равны, ведь по основному тригонометрическому тождеству. Поэтому, и на него можно смело делить:

Так как уравнение приведенное, то по теореме Виета:

Ответ:

Пример 6.

Решите уравнение.

Как и в примере, нужно разделить уравнение на. Рассмотрим случай, когда:

Но синус и косинус не могут одновременно быть равны, ведь по основному тригонометрическому тождеству. Поэтому.

Сделаем замену и решим квадратное уравнение:

Сделаем обратную замену и найдем и:

Ответ:

Решение однородных показательных уравнений.

Однородные уравнения решаются так же, как рассмотренных выше. Если ты забыл, как решать показательные уравнения - посмотри соответствующий раздел ()!

Рассмотрим несколько примеров.

Пример 7.

Решите уравнение

Представим как:

Мы видим типичное однородное уравнение, с двумя переменными и суммой степеней. Разделим уравнение на:

Как можно заметить, произведя замену, мы получим приведенное квадратное уравнение (при этом не нужно опасаться деления на ноль - всегда строго больше нуля):

По теореме Виета:

Ответ: .

Пример 8.

Решите уравнение

Представим как:

Разделим уравнение на:

Произведем замену и решим квадратное уравнение:

Корень не удовлетворяет условию. Произведем обратную замену и найдем:

Ответ:

ОДНОРОДНЫЕ УРАВНЕНИЯ. СРЕДНИЙ УРОВЕНЬ

Сначала на примере одной задачки напомню что такое однородные уравнения и что из себя представляет решение однородных уравнений.

Решите задачу:

Найдите, если.

Здесь можно заметить любопытную вещь: если поделить каждое слагаемое на, получим:

То есть, теперь нет отдельных и, - теперь переменной в уравнении является искомая величина. И это обычное квадратное уравнение, которое легко решить с помощью теоремы Виета: произведение корней равно, а сумма - это числа и.

Ответ:

Уравнения вида

называется однородным. То есть, это уравнение с двумя неизвестными, в каждом слагаемом которого одинаковая сумма степеней этих неизвестных. Например, в примере выше эта сумма равна. Решение однородных уравнений осуществляется делением на одну из неизвестных в этой степени:

И последующей заменой переменных: . Таким образом получаем уравнение степени с одной неизвестной:

Чаще всего нам будут встречаться уравнения второй степени (то есть квадратные), а их решать мы умеем:

Отметим, что делить (и умножать) все уравнение на переменную можно только если мы убеждены, что эта переменная не может быть равна нулю! Например, если нас просят найти, сразу понимаем, что, поскольку на делить нельзя. В случаях, когда это не так очевидно, необходимо отдельно проверять случай когда эта переменная равна нулю. Например:

Решите уравнение.

Решение:

Видим здесь типичное однородное уравнение: и - это неизвестные, а сумма их степеней в каждом слагаемом равна.

Но, прежде чем разделить на и получить квадратное уравнение относительно, мы должны рассмотреть случай, когда. В этом случае уравнение примет вид: , значит, . Но синус и косинус не могут быть одновременно равны нулю, ведь по основному тригонометрическому тождеству: . Поэтому, и на него можно смело делить:

Надеюсь, это решение полностью понятно? Если нет, прочитай раздел . Если же непонятно, откуда взялось, тебе нужно вернуться еще раньше - к разделу .

Реши сам:

  1. Найдите, если.
  2. Найдите, если.
  3. Решите уравнение.

Здесь я кратко напишу непосредственно решение однородных уравнений:

Решения:

    Ответ: .

    А здесь надо не делить, а умножать:

    Ответ:

    Если ты еще не проходил, этот пример можно пропустить.

    Так как здесь нам нужно делить на, убедимся сперва, сто он не равен нулю:

    А это невозможно.

    Ответ: .

ОДНОРОДНЫЕ УРАВНЕНИЯ. КОРОТКО О ГЛАВНОМ

Решение всех однородных уравнений сводится к делению на одну из неизвестных в степени и дальнейшей заменой переменных.

Алгоритм:

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 899 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Следующие уравнения, которые мы рассмотрим называют дифференциальными уравнениями, сводимыми к однородным . Для студентов они достаточно болезненны, поскольку трудно идентифицировать такого рода ДУ с первого взгляда. Другая проблема - не все могут изучить и знать, когда и какую схему следует применять.
Однако схема вычислений достаточно хорошо описана в книгах и дает возможность найти решение ДУ первого порядка, хоть при этом приходится выполнять массу вычислений. Чтобы не пугать Вас теорией сразу перейдем к анализу готовых ответов из которых все станет ясно.

Пример 1
Решение: Перед нами совсем другой тип дифференциальных уравнений первого порядка чем те, что были рассмотрены ранее. Схема вычислений тоже отличается, сначала необходимо определить стационарную точку - для этого необходимо найти нули числителя и знаменателя.
Составим и решим систему уравнений:

Стационарной точкой является М(-1;1) .
Далее выполняем замену переменных (смещение координат)

отсюда исходное ДУ превратим до однородного дифференциального уравнения
или
Выполним замену переменных и найдем дифференциал через новую переменную

Подставляя в уравнение, получим простую для вычислений зависимость

которую легко сводим к

Далее интегрируем обе части

и находим

Возвращаясь к самой первой замене получим

где - произвольная константа.
Вот в таком виде получили решение дифференциального уравнения. Хорошо разберите приведенную схему вычислений, она для студентов на цену золота.

Пример 2 Найти общий интеграл уравнения
Решение: Данное дифференциальное уравнение первого порядка имеет достаточно простое решение, однако не каждый студент без шпаргалки или методички может найти ответ самостоятельно.
Методика сведения уравнения к однородному ДУ заключается в следующих действиях: находим особую точку (нули числителя и знаменателя дроби).
Для этого решаем систему линейных уравнений

Далее вводим замену переменных

Единицы справа являются решениями системы уравнений.
Наше первоначальное дифференциальное уравнение в новых переменных будет иметь запись

Именно для упрощения и решали систему уравнений.
Далее необходимо выполнить замену переменных
тогда
После замены полученное ДУ можем свести к уравнению с разделенными переменными

Проинтегрировав обе части формулы

сначала придем к логарифмам

Далее экспонированием обеих частей получим зависимость вида

Возвращаясь к начальной замене переменных, получим решение ДУ в новых переменных

а дальше окончательный

Здесь С=const - произвольная действительная константа, которая может бить определена из условия Коши.
Вот так сложно бывает иногда получить общее решение дифференциального уравнения.

Пример 3 Решить дифференциальное уравнение
Решение: Имеем ДУ первого порядка оторое можем свести к однородному дифференциальному уравнению. Для этого составим систему уравнений из условия равенства нулю числителя и знаменателя дроби

Зная координаты точки, выполняем перенос системы координат

Исходное дифференциальное уравнение при этом преобразуется к виду
или
Далее следует сделать замену переменных z=Y/X, Y=z*X, при этом производная равна

Подставим ее в уравнение и разделим переменные, так получим ДУ с разделенными переменными

Интегрируя дифференциальное уравнение приходим к логарифмическому

Далее экспонируем полученную зависимость, предварительно сведя логарифмы в правой части по формуле произведения

Возвращаясь к замене переменных (z) получим решение

которое после повторной замены приобретет понятный вид

Перенеся единицу вправо

получим
Здесь разобраны только 3 примеры, однако схему вычислений они описывают в полной мере. Теперь Вы знаете, что делать с уравнениями сводными к однородным и после самостоятельной работы с подобными примерами не будете иметь трудностей на контрольных и экзаменах. В следующем уроке Вас ждет еще масса готовых ответов для изучения других дифференциальных уравнений первого порядка и схем решения.

Если уравнение удается преобразовать к виду , то это уравнение называется однородным. Нетрудно показать, что уравнение в дифференциальной форме M (x , y ) dx + N (x , y ) dy = 0 является однородным тогда и только тогда, когда функции M (x , y ) и N (x , y ) однородные функции одной и той же степени. Напомним, что функция F(x 1 ,x 2 ,..,x n) называется однородной степени k, если для неё выполнено соотношение F(tx 1 ,tx 2 ,..,tx n)=t k F(x 1 ,x 2 ,..,x n).

Однородное дифференциальное уравнение сводится к уравнению с разделяющимися переменными заменой y = xu, или, что тоже самое, , где u новая искомая функция. Действительно, тогда y" = u + u"x и исходное уравнение может быть переписано в виде u + u"x = f (u ), или u"x = f (u )u . Из последнего при f (u )u можем записать .

Пример . Решить уравнение (y 2 - 2xy)dx + x 2 dy = 0. Это однородное уравнение, так как y 2 - 2xy и x 2 однородные функции второй степени. Делаем замену y = xu, dy = udx + xdu. Подставляя в уравнение, имеем

(x 2 u 2 - 2x 2 u)dx + x 2 (udx + xdu) = 0.

Раскрывая скобки, приводя подобные и сокращая на x 2 , получаем уравнение с разделяющимися переменными

(u 2 - u)dx + xdu = 0

Разделяя переменные, получаем или, что то же самое, Интегрируя последнее соотношение, имеем lnu - ln(u-1) = lnx + lnC. Потенцируя (переходя от логарифмической функции к e x), можем записать или, делая обратную замену , получаем общий интеграл уравнения

Уравнения вида приводятся к однородным переносом начала координат в точку пересечения прямых a 1 x + b 1 y +c 1 = 0, a 2 x + b 2 y +c 2 = 0, если определитель отличен от нуля, и заменой a 1 x + b 1 y = z, если этот определитель равен нулю.

Решить однородные уравнения онлайн можно с помощью специального сервиса