Формула сложения вероятностей для независимых событий. Теорема умножения вероятностей

Начнем с задачи.

Предположим, что вероятность получения вами пятерки за контрольную равна 0,5, а четверки - 0,3. Какова вероятность того, что за контрольную вы получите 4 или 5?

Некоторые сразу выпалят: «0,8», но почему именно так? Почему, например, не 0,15 (перемножили, а не сложили)? Разберемся.

Предположим, есть некоторый опыт, у которого есть исходов. Из них наступлению события благоприятны , а событию - . Нетрудно по формуле найти вероятности наступления каждого из событий - это соответственно и . Но какова вероятность того, что наступит либо первое событие, либо второе? Иначе говоря, мы ищем вероятность объединения этих событий. Для этого надо выяснить, сколько у нас благоприятных исходов. ? Не совсем. Ведь может случиться так, что эти события выполнятся одновременно.

Тогда предположим, что события непересекающиеся, то есть не могут выполняться одновременно. Вот тогда получаем, что благоприятных исходов для объединения - . Значит, вероятность объединения будет равна:

Вероятность объединения несовместных событий равна сумме их вероятностей.

Обратим внимание: здесь речь идет об ОДНОМ эксперименте, в результате которого может наступить либо первое событие, либо второе, но не оба сразу.

В частности, в примере с контрольной мы понимаем, что ученик не может одновременно получить за контрольную и 5, и 4 (речь идет об одной оценке за одну и ту же контрольную), значит, вероятность того, что он получит 4 или 5, равна сумме вероятностей, то есть, все-таки, 0,8.

Ответ: 0,8.

А что делать, если события пересекаются, то есть существуют исходы, благоприятные для них обоих? Такая ситуация будет рассмотрена в конце урока.

2. Математический форум Math Help Planet ()

3. Интернет-сайт "Математика, которая мне нравится" ()

Домашнее задание

1. Два стрелка стреляют по мишени. Первый стрелок поражает мишень с вероятностью 0,9. Второй стрелок поражает мишень с вероятностью 0,8. Найти вероятность того, что мишень будет поражена.

2. Случайный эксперимент состоит в подбрасывании двух игральных костей. Одна из игральных костей окрашена в синий цвет, другая - в красный. Найти вероятность того, что на синей игральной кости выпадет число 3, а на красной игральной кости выпадет число 4.

  • Теорема. Вероятность суммы несовместных событий иравна сумме вероятностей этих событий:

  • Следствие 1. С помощью метода математической индукции формулу (3.10) можно обобщить на любое число попарно несовместных событий:

  • Следствие 2. Поскольку противоположные события являются несовместными, а их сумма – достоверным событием, то, используя (3.10), имеем:

  • Часто при решении задач формулу (3.12) используют в виде:

    (3.13)

    Пример 3.29. В опыте с бросанием игральной кости найти вероятности выпадения на верхней грани числа очков более 3 и менее 6.

    Обозначим события, связанные с выпадением на верхней грани игральной кости одного очка, через U 1 , двух очков через U 2 ,…, шести очков через U 6 .

    Пусть событие U – выпадение на верхней грани кости числа очков более 3 и менее 6. Это событие произойдет, если произойдет хотя бы одно из событий U 4 или U 5 , следовательно, его можно представить в виде суммы этих событий: . Т. к. событияU 4 и U 5 являются несовместными, то для нахождения вероятности их суммы используем формулу (3.11). Учитывая, что вероятности событий U 1 , U 2 ,…,U 6 равны , получим:

  • Замечание. Ранее задачи такого типа решали с помощью подсчета числа благоприятствующих исходов. Действительно, событию U благоприятствуют два исхода, а всего шесть элементарных исходов, следовательно, используя классический подход к понятию вероятности, получим:

    Однако классический поход к понятию вероятности, в отличие от теоремы о вероятности суммы несовместных событий, применим только для равновозможных исходов.

    Пример 3.30. Вероятность попадания в цель стрелком равна 0,7. Какова вероятность того, что стрелок не попадет в цель?

    Пусть событие − попадание стрелком в цель, тогда событие, состоящее в том, что стрелок не попадет в цель, является противоположным событиемсобытию, т. к. в результате каждого испытания всегда происходит одно и только одно из этих событий. Используя формулу (3.13), получим:

  • 3.2.10. Вероятность произведения событий

  • Определение. Событие называетсязависимым от события если вероятность события зависит от того, произошло событиеили нет.

    Определение. Вероятность события вычисленная при условии, что событиепроизошло, называетсяусловной вероятностью события и обозначается

    Теорема. Вероятность произведения событий иравна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое имело место:

  • Условие независимости события от события можно записать в виде Из этого утверждения следует, что для независимых событий выполняется соотношение:

  • т. е. вероятность произведения независимых событий и, равна произведению их вероятностей.

    Замечание. Вероятность произведения нескольких событий равна произведению вероятностей этих событий, причем вероятность каждого следующего по порядку события вычисляется при условии, что все предыдущие имели место:

  • Если события независимые, то имеем:

  • Пример 3.31. В ящике 5 белых и 3 черных шара. Из него наугад последовательно без возвращения вытаскивают два шара. Найти вероятность того, что оба шара белые.

    Пусть событие − появление белого шара при первом вынимании,− появление белого шара при втором вынимании. Учитывая, что,(вероятность появления второго белого шара при условии, что первый вынутый шар был белым и его не возвратили в ящик). Так как событияизависимые, то вероятность их произведения найдем по формуле (3.15):

  • Пример 3.32. Вероятность попадания в цель первым стрелком 0,8; вторым – 0,7. Каждый стрелок выстрелил по мишени. Какова вероятность того, что хотя бы один стрелок попадет в цель? Какова вероятность того, что один стрелок попадет в цель?

    Пусть событие – попадание в цель первым стрелком,– вторым. Все возможные варианты можно представить в видетаблицы 3.5 , где «+» обозначает, что событие произошло, а «−» − не произошло.

    Таблица 3.5

  • Пусть событие – попадание хотя бы одним стрелком в цель, Тогда событиеявляется суммой независимых событийиследовательно, применить теорему о вероятности суммы несовместных событий в данной ситуации нельзя.

    Рассмотрим событие противоположное событиюкоторое произойдет тогда, когда ни один стрелок не попадет в цель, т. е. является произведением независимых событийИспользуя формулы (3.13) и (3.15), получим:

  • Пусть событие – попадание одним стрелком в цель. Это событие можно представить следующим образом:

    События и– независимые, событияитакже являются независимыми. События, являющиеся произведениями событийи– несовместными. Используя формулы (3.10) и (3.15) получим:

  • Свойства операций сложения и умножения событий:

  • 3.2.11. Формула полной вероятности. Формула Байеса

  • Пусть событие может произойти только вместе с одним из попарно несовместных событий (гипотез),,…,, образующих полную группу, т. е.

    Вероятность события находится по формулеполной вероятности:

  • Если событие уже произошло, то вероятности гипотез могут быть переоценены по формулеБайеса :

    (3.17)

    Пример 3.33. Имеются две одинаковых урны с шарами. В первой урне 5 белых и 10 черных шаров, во второй − 3 белых и 7 черных шаров. Выбирают наугад одну урну и вытаскивают из нее один шар.

      Найти вероятность того, что этот шар белый.

      Из наугад выбранной урны вытащили белый шар. Найти вероятность того, что шар вытащили из первой урны.

    Событие A называется независимым от события B, если вероятность события A не зависит от того, произошло событие B или нет. Событие A называется зависимым от события B, если вероятность события A меняется в зависимости от того, произошло событие B или нет.

    Вероятность события A, вычисленная при условии, что событие B уже произошло, называется условной вероятностью события A и обозначается .

    Условие независимости события A от события B можно записать в виде
    .

    Теорема умножения вероятностей. Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое имело место:

    Если событие A не зависит от события B, то событие B не зависит от события A. При этом вероятность произведения событий равна произведению их вероятностей:

    .

    Пример 14. Имеется 3 ящика, содержащих по 10 деталей. В первом ящике 8, во втором - 7 и в третьем 9 стандартных деталей. Из каждого ящика наудачу вынимают по одной детали. Найти вероятность того, что все три вынутые детали окажутся стандартными.

    Вероятность того, что из первого ящика вынута стандартная деталь (событие A) равна
    . Вероятность того, что из второго ящика вынута стандартная деталь (событиеB) равна
    . Вероятность того, что из третьего ящика вынута стандартная деталь (событиеC) равна
    .

    Так как события A, B и C независимые в совокупности, то по теореме умножения искомая вероятность равна

    Приведем пример совместного использования теорем сложения и умножения.

    Пример 15. Вероятности появления независимых событий A 1 и A 2 равны соответственно p 1 и p 2 . Найти вероятность появления только одного из этих событий (событие A). Найти вероятность появления хотя бы одного из этих событий (событие B).

    Обозначим вероятности противоположных событий ичерезq 1 =1-p 1 и q 2 =1-p 2 соответственно.

    Событие A произойдет, если произойдет событие A 1 и не произойдет событие A 2 , или если произойдет событие A 2 и не произойдет событие A 1 . Следовательно,

    Событие B произойдет, если произойдет событие A, или произойдут события A 1 и A 2 одновременно. Следовательно,

    Вероятность события B можно определить иначе. Событие , противоположное событиюB состоит в том, что оба события A 1 и A 2 не произойдут. Поэтому по теореме умножения вероятностей для независимых событий получим

    что совпадает с выражением, полученным ранее, так как имеет место тождество

    7. Формула полной вероятности. Формула Байеса.

    Теорема 1 . Предположим, что события
    образуют полную группу попарно несовместных событий (такие события называются гипотезами). ПустьA - произвольное событие. Тогда вероятность события A может быть вычислена по формуле

    Доказательство. Так как гипотезы образуют полную группу, то , и, следовательно,.

    В силу того, что гипотезы являются попарно несовместными событиями, то события также попарно несовместны. По теореме сложения вероятностей

    Применяя теперь теорему умножения вероятностей, получим

    Формула (1) называется формулой полной вероятности. В сокращенном виде ее можно записать следующим образом

    .

    Формула полезна, если условные вероятности события A вычисляются легче, чем безусловная вероятность.

    Пример 16 . Имеется 3 колоды по 36 карт и 2 колоды по 52 карты. Наудачу выбираем одну колоду и из нее наудачу одну карту. Найти вероятность того, что вынутая карта - туз.

    Пусть A - событие, состоящее в том, что вынутая карта - туз. Введем в рассмотрение две гипотезы:

    - карта вынута из колоды в 36 карт,

    - карта вынута из колоды в 52 карты.

    Для вычисления вероятности события A воспользуемся формулой полной вероятности:

    Теорема 2 . Предположим, что события
    образуют полную группу попарно несовместных событий. ПустьA - произвольное событие. Условная вероятность гипотезы в предположении, что произошло событиеA, может быть вычислена по формуле Байеса:

    Доказательство. Из теоремы умножения вероятностей для зависимых событий следует, что .

    .

    Применяя формулу полной вероятности, получим (2).

    Вероятности гипотез
    называются априорными, а вероятности гипотез
    при условии, что событие A имело место, называются апостериорными. Сами формулы Байеса называются еще формулами вероятностей гипотез.

    Пример 17 . Имеются 2 урны. Первая урна содержит 2 белых и 4 черных шара, а вторая урна содержит 7 белых и 5 черных шаров. Наудачу выбираем урну и из нее наудачу извлекаем один шар. Он оказался черным (событие A произошло). Найти вероятность того, что шар был извлечен из первой урны (гипотеза
    ). Найти вероятность того, что шар был извлечен из второй урны (гипотеза
    ).

    Применим формулы Байеса:

    ,

    .

    Пример 18 . На заводе болты выпускаются тремя машинами, которые выпускают соответственно 25%, 35% и 40% всех болтов. Брак продукции этих машин составляет соответственно 5%, 4%, 2%. Из продукции всех трех машин был выбран один болт. Он оказался дефектным (событие A). Найти вероятность того, что болт был выпущен первой, второй, третьей машиной.

    Пусть
    - событие, состоящее в том, что болт был выпущен первой машиной,
    - второй машиной,
    - третьей машиной. Эти события попарно несовместны и образуют полную группу. Воспользуемся формулами Байеса

    В результате получим

    ,

    ,

    .

    Сумма всех вероятностей событий выборочного пространства равняется 1. Например, если экспериментом является подбрасывание монеты при Событии А = «орел» и Событии В = «решка», то А и В представляют собой все выборочное пространство. Значит, Р(А) +Р(В) = 0.5 + 0.5 = 1 .

    Пример. В ранее предложенном примере вычисления вероятности извлечения из кармана халата красной ручки (это событие А), в котором лежат две синих и одна красная ручка, Р(А) = 1/3 ≈ 0.33, вероятность противоположного события – извлечения синей ручки – составит

    Прежде чем перейти к основным теоремам, введем еще два более сложных понятия - сумма и произведение событий. Эти понятия отличны от привычных понятий суммы и произведения в арифметике. Сложение и умножение в теории вероятностей - символические операции, подчиненные определенным правилам и облегчающие логическое построение научных выводов.

    Суммой нескольких событий является событие, заключающееся в появлении хотя бы одного из них. То есть, суммой двух событий А и В называется событие С, состоящее в появлении или события А, или события В, или событий А и В вместе.

    Например, если пассажир ждет на остановке трамваев какой-либо из двух маршрутов, то нужное ему событие заключается в появлении трамвая первого маршрута (событие А), или трамвая второго маршрута (событие В), или в совместном появлении трамваев первого и второго маршрутов (событие С). На языке теории вероятностей это значит, что нужное пассажиру событие D заключается в появлении или события А, или события В, или события С, что символически запишется в виде:

    D = A + B + C

    Произведением двух событий А и В является событие, заключающееся в совместном появлении событий А и В . Произведением нескольких событий называется совместное появление всех этих событий.

    В приведенном примере с пассажиром событие С (совместное появление трамваев двух маршрутов) представляет собой произведение двух событий А и В , что символически записывается следующим образом:

    Допустим, что два врача порознь осматривают пациента с целью выявления конкретного заболевания. В процессе осмотров возможно появление следующих событий:

    Обнаружение заболеваний первым врачом (А );

    Необнаружение заболевания первым врачом ();

    Обнаружение заболевания вторым врачом (В );

    Необнаружение заболевания вторым врачом ().

    Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров ровно один раз. Это событие может реализоваться двумя способами:

    Заболевание обнаружит первый врач (А ) и не обнаружит второй ();

    Заболеваний не обнаружит первый врач () и обнаружит второй (B ).

    Обозначим рассматриваемое событие через и запишем символически:

    Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров дважды (и первым, и вторым врачом). Обозначим это событие через и запишем: .

    Событие, заключающееся в том, что ни первый, ни второй врач заболевания не обнаружит, обозначим через и запишем: .

    Основные теоремы теории вероятности

    Вероятность суммы двух несовместных событий равняется сумме вероятностей этих событий.

    Запишем теорему сложения символически:

    Р(А + В) = Р(А)+Р(В) ,

    где Р - вероятность соответствующего события (событие указывается в скобках).

    Пример . У больного наблюдается желудочное кровотечение. Этот симптом регистрируется при язвенной эрозии сосуда (событие А), разрыве варикозно-расширенных вен пищевода (событие В), раке желудка (событие С), полипе желудка (событие D), геморрагическом диатезе (событие F), механической желтухе (событие Е) и конечном гастрите (событие G ).

    Врач, основываясь на анализе статистических данных, присваивает каждому событию значение вероятности:

    Всего врач имел 80 больных с желудочным кровотечением (n = 80), из них у 12 была язвенная эрозия сосуда (), у 6 - разрыв варикозно-расширенных вен пищевода (), у 36 - рак желудка () и т. д.

    Для назначения обследования врач хочет определить вероятность того, что желудочное кровотечение связано с заболеванием желудка (событие I):

    Вероятность того, что желудочное кровотечение связано с заболеванием желудка, достаточно высока, и врач может определить тактику обследования, исходя из предположения о заболевании желудка, обоснованном на количественном уровне с помощью теории вероятностей.

    Если рассматриваются совместные события, вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности совместного их наступления.

    Символически это записывается следующей формулой:

    Если представить себе, что событие А заключается в попадании при стрельбе в мишень, заштрихованную горизонтальными полосами, а событие В - в попадании в мишень, заштрихованную вертикальными полосами, то в случае несовместных событий по теореме сложения вероятность суммы равна сумме вероятностей отдельных событий. Если же эти события совместны, то есть некоторая вероятность, соответствующая совместному наступлению событий А и В . Если не ввести поправку на вычитаемое Р(АВ) , т.е. на вероятность совместного наступления событий, то эта вероятность будет учтена дважды, так как площадь, заштрихованная и горизонтальными, и вертикальными линиями, является составной частью обеих мишеней и будет учитываться как в первом, так и во втором слагаемом.

    На рис. 1 дана геометрическая интерпретация, наглядно иллюстрирующая данное обстоятельство. В верхней части рисунка помещены непересекающиеся мишени, являющиеся аналогом несовместных событий, в нижней части - пересекающиеся мишени, являющиеся аналогом совместных событий (одним выстрелом можно попасть сразу и в мишень А, и в мишень В).

    Прежде чем перейти к теореме умножения, необходимо рассмотреть понятия независимых и зависимых событий и условной и безусловной вероятностей.

    Независимым от события В называется такое событие А, вероятность появления которого не зависит от появления или непоявления события В.

    Зависимым от события В называется такое событие А, вероятность появления которого зависит от появления или непоявления события В.

    Пример . В урне находятся 3 шара, 2 белых и 1 черный. При выборе шара наугад вероятность выбрать белый шар (событие А) равна: Р(А) = 2/3, а черный (событие В)Р(В) = 1/3. Мы имеем дело со схемой случаев, и вероятности событий рассчитываются строго по формуле. При повторении опыта вероятности появления событий А и В остаются неизменными, если после каждого выбора шар возвращается в урну. В этом случае события А и В являются независимыми. Если же выбранный в первом опыте шар в урну не возвращается, то вероятность события (А) во втором опыте зависит от появления или непоявления события (В) в первом опыте. Так, если в первом опыте появилось событие В (выбран черный шар), то второй опыт проводится при наличии в урне 2 белых шаров и вероятность появления события А во втором опыте равна: Р(А) = 2/2= 1.

    Если же в первом опыте не появилось событие В(выбран белый шар), то второй опыт проводится при наличии в урне одного белого и одного черного шаров и вероятность появления события А во втором опыте равна: Р(А)=1/2. Очевидно, в этом случае события А и В тесно связаны и вероятности их появления являются зависимыми.

    Условной вероятностью события А называется вероятность его появления при условии, что появилось событие В. Условная вероятность символически обозначается Р(А/В).

    Если вероятность появления события А не зависит от появления события В , то условная вероятность события А равна безусловной вероятности:

    Если вероятность появления события А зависит от появления события В, то условная вероятность никогда не может быть равна безусловной вероятности:

    Выявление зависимости различных событий между собой имеет большое значение в решении практических задач. Так, например, ошибочное предположение о независимости появления некоторых симптомов при диагностике пороков сердца по вероятностной методике, разработанной в Институте сердечно-сосудистой хирургии им. А. Н. Бакулева, обусловило около 50% ошибочных диагнозов.

    Произведением, или пересечением, событий Л и В называют событие, состоящее в одновременном наступлении событий и Л, и В. Обозначение произведения АВ или Л и В.

    Например, двукратное попадание в цель есть произведение двух событий, ответ на оба вопроса билета на экзамене есть произведение двух событий.

    События Л и В называют несовместными, если их произведение - событие невозможное, т.е. ЛВ = V.

    Например, события Л - выпадение герба и В - выпадение цифры при однократном бросании монеты наступить одновременно не могут, их произведение - событие невозможное, события Л и В несовместные.

    Понятия суммы и произведения событий имеют наглядную геометрическую интерпретацию (рис. 6.4).

    Рис. 6.4. Геометрическая интерпретация произведения (а) и суммы (б) двух совместных событий

    Пусть событие Л - множество точек области Л, событие В - множество точек области В. Заштрихованная область соответствует событию ЛВ на рис. 6Ла и событию Л + В на рис. 6.46.

    Для несовместных событий Л и В имеем ЛВ = V (рис. 6.5а). Событию Л + В соответствует заштрихованная область на рис. 6.56.


    Рис. 6.5. Геометрическая интерпретация произведения (а ) и суммы (б) двух несовместных событий

    События А и А называют противоположными, если они несовместны и в сумме составляют достоверное событие, т.е.

    A A = V; A + A = U.

    Например, произведем один выстрел по цели: событие А - стрелок попал в цель, А - не попал; подброшена монета:

    событие А - выпадение орла, А - выпадение цифры; школьники пишут контрольную работу: событие А - ни одной

    ошибки в контрольной работе, А - есть ошибки в контрольной работе; студент пришел сдавать зачет: событие А - сдал

    зачет, А - не сдал зачет.

    В классе есть мальчики и девочки, отличники, хорошисты и троечники, изучающие английский и немецкий язык. Пусть событие М - мальчик, О - отличник, А - изучающий английский язык. Может ли случайно вышедший из класса ученик быть и мальчиком, и отличником, и изучающим английский язык? Это и будет произведение или пересечение событий МОА.

    Пример 6.15. Бросают игральный кубик - куб, сделанный из однородного материала, грани которого занумерованы. Наблюдают за числом (числом очков), выпадающим на верхней грани. Пусть событие А - появление нечетного числа, событие В - появление числа, кратного трем. Найти исходы, составляющие каждое из событий (?/, А, А + В У АВ) и указать их смысл.

    Решение. Исход - появление на верхней грани любого из чисел 1, 2, 3, 4, 5, 6. Множество всех исходов составляет пространство элементарных событий U = {1, 2, 3, 4, 5, 6}. Ясно, что событие А = {1, 3, 5}, событие В = {3, 6}.

    Событие А + В = {1, 3, 5, 6} - появление либо нечетного числа, либо числа, кратного трем. При перечислении исходов учтено, что каждый исход в множестве может содержаться только один раз.

    Событие АВ = {3} - появление и нечетного числа, и числа, кратного трем.

    Пример 6.16. Проверено домашнее задание у трех студентов. Пусть событие А { - выполнение задания i-м студентом, г = 1, 2, 3.

    Каков смысл событий: А = A t + А 2 + Л 3 , А и В = A t A 2 A 3 ?

    Решение. Событие А = А х + А 2 + А 3 - выполнение задания хотя бы одним студентом, т.е. или любым одним студентом (или первым, или вторым, или третьим), или любыми двумя, или всеми тремя.

    Событие А = А х -А 2 -А 3 - задание не выполнено ни одним студентом - ни первым, ни вторым, ни третьим. Событие В = А { А 2 А 3 - выполнение задания тремя студентами - и первым, и вторым, и третьим.

    При рассмотрении совместного наступления нескольких событий возможны случаи, когда появление одного из них сказывается на возможности появления другого. Например, если осенью день солнечный, то менее вероятно, что погода испортится (начнется дождь). Если же солнца не видно, то больше шансов, что пойдет дождь.

    Событие Л называется независимым от события В, если вероятность события А не меняется в зависимости от того, произошло или нет событие В. Иначе событие А называется зависимым от события В. Два события А и В называются независимыми, если вероятность одного из них не зависит от появления или непоявления другого, зависимыми - в противном случае. События называют попарно независимыми, если каждые два из них независимы друг от друга.

    Теорема умножения вероятностей формулируется следующим образом. Вероятность произведения двух независимых событий равна произведению вероятностей этих событий:

    Эта теорема справедлива для любого конечного числа событий, если только они независимы в совокупности, т.е. вероятность любого из них не зависит от того, произошли или нет другие из этих событий.

    Пример 6.17. Студент сдает три экзамена. Вероятность успешной сдачи первого экзамена 0,9, второго - 0,65, третьего - 0,35. Найти вероятность того, что он не сдаст хотя бы один экзамен.

    Решение. Обозначим А событие - студент не сдал хотя бы один экзамен. Тогда Р(А ) = 1 - /-’(1/1), где А - противоположное событие - студент сдал все экзамены. Поскольку сдача каждого экзамена не зависит от других экзаменов, то Р{А) = 1 - Р(1/1) = = 1 - 0,9 0,65 0,35 = 0,7953.

    Вероятность события А, вычисленная при условии, что имеет место событие В, называется условной вероятностью события А при условии появления В и обозначается Р В (А) или Р(А/В).

    Теорема. Вероятность появления произведения двух событий равна произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло :

    Пример 6.18. Ученик дважды извлекает по одному билету из 34. Какова вероятность того, что он сдаст экзамен, если им подготовлено 30 билетов и в первый раз вынут неудачный билет?

    Решение. Пусть событие А состоит в том, что в первый раз достался неудачный билет, событие В - во второй раз вынут удачный билет. Тогда А? В - ученик сдаст экзамен (при указанных обстоятельствах). События А и В зависимы, так как вероятность выбора удачного билета со второй попытки зависит от исхода первого выбора. Поэтому используем формулу (6.6):

    Заметим, что полученная в решении вероятность «0,107. Почему так мала вероятность сдачи экзамена, если выучено 30 билетов из 34 и дается две попытки?!

    Расширенная теорема сложения формулируется следующим образом. Вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности их совместного появления (произведения):

    Пример 6.19. Два студента решают задачу. Вероятность того, что первый студент решит задачу (событие А), равна 0,9; вероятность того, что второй студент решит задачу (событие В), равна 0,8. Какова вероятность того, что задача будет решена?

    Решение. Нас интересует событие С, которое состоит в том, что задача будет решена, т.е. первым, или вторым студентом, или двумя студентами одновременно. Таким образом, интересующее пас событие С = А + В. События А и В совместны, значит применима теорема сложения вероятностей для случая совместных событий: Р(А + В) = Р(А) + Р(В) - Р(АВ). Для нашего случая Р(А + В) = = 0,9 + 0,8 + 0,9 0,8 = 0,98 (события А и В совместны, но независимы).

    Пример 6.20. Студент знает 20 вопросов из 25. Какова вероятность ответить на три вопроса из 25?

    Решение. Введем событие Л, - студент знает ответ на i -й предложенный вопрос, i = 1,2,3. События Л, Л 2 , Л 3 - зависимые. Поэтому

    При отыскании вероятностей событий использовалось классическое определение вероятности.