Зависимость силы упругости от деформации таблица. Сила упругости пружины

Любое тело, когда его деформируют и оказывают внешнее воздействие, сопротивляется и стремиться восстановить прежние форму и размеры. Это происходит по причине электромагнитного взаимодействия в теле на молекулярном уровне.

Деформация - изменение положения частиц тела друг относительно друга. Результат деформации - изменение межатомных расстояний и перегруппировка блоков атомов.

Определение. Что такое сила упругости?

Сила упругости - сила, возникающая при деформации в теле и стремящаяся вернуть тело в начальное состояние.

Рассмотрим простейшие деформации - растяжение и сжатие

На рисунке показано, как действует сила упругости, когда мы сжимаем или растягиваем стержень.

Для малых деформаций x ≪ l справедлив закон Гука.

Деформация, возникающая в упругом теле, пропорциональна приложенной к телу силе.

F у п р = - k x

Здесь k - коэффициент пропорциональности, называемый жесткостью. Единица измерения жесткости системе СИ Ньютон на метр. Жесткость зависит от материала тела, его формы и размеров.

Знак минус показывает, что сила упругости противодействует внешней силе и стремится вернуть тело в первоначальное состояние.

Существуют и другие формы записи закона Гука. Относительной деформацией тела называется отношение ε = x l . Напряжением в теле называется отношение σ = - F у п р S . Здесь S - площадь поперечного сечения деформированного тела. Вторая формулировка закона Гука: относительная деформация пропорциональна напряжению.

Здесь E - так называемый модуль Юнга, который не зависит от формы и размеров тела, а зависит только от свойств материала. Значение модуля Юнга для различных материалов широко варьируется. Например, для стали E ≈ 2 · 10 11 Н м 2 , а для резины E ≈ 2 · 10 6 Н м 2

Закон Гука можно обобщить для случая сложных деформаций. Рассмотрим деформацию изгиба стержня. При такой деформации изгиба сила упругости пропорциональна прогибу стержня.

Концы стержня лежат на двух опорах, которые действуют на тело с силой N → , называемой силой нормальной реакции опоры. Почему нормальной? Потому что эта сила направлена перпендикулярно (нормально) поверхности соприкосновения.

Если стержень лежит на столе, сила нормальной реакции опоры направлена вертикально вверх, противоположно силе тяжести, которую она уравновешивает.

Вес тела - это сила, с которой оно действует на опору.

Силу упругости часто рассматривают в контексте растяжения или сжатия пружины. Это распространенный пример, который часто встречается не только в теории, но и на практике. Пружины используются для измерения величины сил. Прибор, предназначенный для этого - динамаметр.

Динамометр - пружина, растяжение которой проградуированно в единицах силы. Характерное свойство пружин заключается в том, что закон Гука для них применим при достаточно большом изменении длины.

При сжатии и растяжении пружины действует закон Гука, возникают упругие силы, пропорциональные изменению длины пружины и ее жесткости (коэффициента k).

В отличие от пружин стержни и проволоки подчиняются закону Гука в очень узких пределах. Так, при относительной дефомации больше 1% в материале возникают необратимые именения - текучесть и разрушения.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Деформация (от лат. Deformatio – искажение) – изменение формы и размеров тела под действием внешних сил.

Деформации возникают потому, что различные части тела движутся по-разному. Если бы все части тела двигались одинаково, то тело всегда сохраняло бы свою первоначальную форму и размеры, т.е. оставалось бы недеформированным. Рассмотрим несколько примеров.

Виды деформации

Деформации растяжения и сжатия . Если к однородному, закрепленному с одного конца стержню приложить силу F вдоль его оси в направлении от стержня, то он подвергнется деформации растяжения . Деформацию растяжения испытывают тросы, канаты, цепи в подъемных устройствах, стяжки между вагонами и т.д. Если на закрепленный стержень подействовать силой вдоль его оси по направлению к стержню, то он подвергнется сжатию . Деформацию сжатия испытывают столбы, колонны, стены, фундаменты зданий и т.п. При растяжении или сжатии изменяется площадь поперечного сечения тела.

Деформация сдвига . Деформацию сдвига можно наглядно продемонстрировать на модели твердого тела, представляющего собой ряд параллельных пластин, соединенных между собой пружинами (рис. 3). Горизонтальная сила F сдвигает пластины друг относительно друга без изменения объема тела. У реальных твердых тел при деформации сдвига объем также не изменяется. Деформации сдвига подвержены заклепки и болты, скрепляющие части мостовых ферм, балки в местах опор и др. Сдвиг на большие углы может привести к разрушению тела – срезу. Срез происходит при работе ножниц, долота, зубила, зубьев пилы и т.д.

Деформация изгиба . Легко согнуть стальную или деревянную линейку руками или с помощью какой-либо другой силы. Балки и стержни, расположенные горизонтально, под действием силы тяжести или нагрузок прогибаются – подвергаются деформации изгиба. Деформацию изгиба можно свести к деформации неравномерного растяжения и сжатия. Действительно, на выпуклой стороне (рис. 4) материал подвергается растяжению, а на вогнутой – сжатию. Причем чем ближе рассматриваемый слой к среднему слою KN , тем растяжение и сжатие становятся меньше. Слой KN , не испытывающий растяжения или сжатия, называется нейтральным. Так как слои АВ и CD подвержены наибольшей информации растяжения и сжатия, то в них возникают наибольшие силы упругости (на рисунке 4 силы упругости показаны стрелками). От внешнего слоя к нейтральному эти силы уменьшаются. Внутренний слой не испытывает заметных деформаций и не противодействует внешним силам, а поэтому является лишним в конструкции. Его обычно удаляют, заменяя стержни трубами, а бруски – тавровыми балками (рис. 5). Сама природа в процессе эволюции наделила человека и животных трубчатыми костями конечностей и сделала стебли злаков трубчатыми, сочетая экономию материала с прочностью и меткостью «конструкций».

Деформация кручения . Если на стержень, один из концов которого закреплен (рис. 6), подействовать парой сил, лежащей в плоскости поперечного сечения стержня, то он закручивается. Возникает, как говорят, деформация кручения.

Каждое поперечное сечение поворачивается относительно другого вокруг оси стержня на некоторый угол. Расстояние между сечениями не меняется. Таким образом, опыт показывает, что при кручении стержень можно представить как систему жестких кружков, насаженных центрами на общую ось. Кружки эти (точнее, сечения) поворачиваются на различные углы в зависимости от их расстояния до закрепленного конца. Слои поворачиваются, но на различные углы. Однако при этом соседние слои поворачиваются друг относительно друга одинаково вдоль всего стержня. Деформацию кручения можно рассматривать как неоднородный сдвиг. Неоднородность сдвига выражается в том, что деформация сдвига изменяется вдоль радиуса стержня. На оси деформация отсутствует, а на периферии она максимальна. На самом удаленном от закрепленного конца торце стержня угол поворота наибольший. Его называют углом кручения. Кручение испытывают валы всех машин, винты, отвертки и т.п.

Основными деформациями являются деформации растяжения (сжатия) и сдвига. При деформации изгиба происходит неоднородное растяжение и сжатие, а при деформации кручения – неоднородный сдвиг.

Силы упругости.

При деформациях твердого тела его частицы (атомы, молекулы, ионы), находящиеся в узлах кристаллической решетки, смещаются из своих положений равновесия. Этому смещению противодействуют силы взаимодействия между частицами твердого тела, удерживающие эти частицы на определенном расстоянии друг от друга. Поэтому при любом виде упругой деформации в теле возникают внутренние силы, препятствующие его деформации.

Силы, возникающие в теле при его упругой деформации и направленные против направления смещения частиц тела, вызываемого деформацией, называют силами упругости .

Силы упругости препятствуют изменению размеров и формы тела. Силы упругости действуют в любом сечении деформированного тела, а также в месте его контакта с телом, вызывающим деформации. Например, со стороны упруго деформированной доски D на брусок С , лежащий на ней, действует сила упругости F упр (рис. 7).

Важная особенность силы упругости состоит в том, что она направлена перпендикулярно поверхности соприкосновения тел, а если идет речь о таких телах, как деформированные пружины, сжатые или растянутые стержни, шнуры, нити, то сила упругости направлена вдоль их осей. В случае одностороннего растяжения или сжатия сила упругости направлена вдоль прямой, по которой действует внешняя сила, вызывающая деформацию тела, противоположно направлению этой силы и перпендикулярно поверхности тела.

Силу, действующую на тело со стороны опоры или подвеса, называют силой реакции опоры или силой натяжения подвеса . На рисунке 8 приведены примеры приложения к телам сил реакции опоры (силы N 1 , N 2 , N 3 , N 4 и N 5) и сил натяжения подвесов (силы T 1 , T 2 , T 3 и T 4).

Абсолютное и относительное удлинения

Линейная деформация (деформация растяжения) – деформация, при которой происходит изменение только одного линейного размера тела.

Количественно она характеризуется абсолютным Δl и относительным ε удлинением.

\(~\Delta l = |l - l_0|\) ,

где Δl – абсолютное удлинение (м); l и l 0 – конечная и начальная длина тела (м).

  • Если тело растягивают, то l > l 0 и Δl = l l 0 ;
  • если тело сжимают, то l < l 0 и Δl = –(l l 0) = l 0 – l (рис. 9).

\(~\varepsilon = \frac{\Delta l}{l_0}\) или \(~\varepsilon = \frac{\Delta l}{l_0} \cdot 100%\) ,

где ε – относительное удлинение тела (%); Δl – абсолютное удлинение тела (м); l 0 –начальная длина тела (м).

Закон Гука

Связь между силой упругости и упругой деформацией тела (при малых деформациях) была экспериментально установлена современником Ньютона английским физиком Гуком. Математическое выражение закона Гука для деформации одностороннего растяжения (сжатия) имеет вид

\(~F_{ynp} = k \cdot \Delta l\) , (1)

где F упр – модуль силы упругости, возникающей в теле при деформации (Н); Δl – абсолютное удлинение тела (м).

Коэффициент k называется жесткостью тела – коэффициент пропорциональности между деформирующей силой и деформацией в законе Гука.

Жесткость пружины численно равна силе, которую надо приложить к упруго деформируемому образцу, чтобы вызвать его единичную деформацию.

В системе СИ жесткость измеряется в ньютонах на метр (Н/м):

\(~[k] = \frac{}{[\Delta l]}\) .

Коэффициент жесткости зависит от формы и размеров тела, а также от материала.

Закон Гука для одностороннего растяжения (сжатия) формулируют так:

сила упругости, возникающая при деформации тела, пропорциональна удлинению этого тела.

Механическое напряжение.

Состояние упруго деформированного тела характеризуют величиной σ , называемой механическим напряжением .

Механическое напряжение σ равно отношению модуля силы упругости F упр к площади поперечного сечения тела S :

\(~\sigma = \frac{F_{ynp}}{S}\) .

Измеряется механическое напряжение в Па: [σ ] = Н/м 2 = Па.

Наблюдения показывают, что при небольших деформациях механическое напряжение σ пропорционально относительному удлинению ε :

\(~\sigma = E \cdot |\varepsilon|\) . (2)

Эта формула является одним из видов записи закона Гука для одностороннего растяжения (сжатия). В этой формуле относительное удлинение взято по модулю, так как оно может быть и положительным и отрицательным.

Коэффициент пропорциональности Е в законе Гука называется модулем упругости (модулем Юнга) . Экспериментально установлено, что

модуль Юнга численно равен такому механическому напряжению, которое должно было бы возникнуть в теле при увеличении его длины в 2 раза.

Докажем это: Из закона Гука получаем, что \(~E = \frac{\sigma}{\varepsilon}\) . Если модуль Юнга E численно равен механическому напряжению σ , то \(~\varepsilon = \frac{\Delta l}{l_0} = 1\) . Тогда \(~\Delta l = l - l_0 = l_0 ; l = 2 l_0\) .

Измеряется модуль Юнга в Па: [E ] = Па/1 = Па.

Практически любое тело (кроме резины) при упругой деформации не может удвоить свою длину: значительно раньше оно разорвется. Чем больше модуль упругости Е , тем меньше деформируется стержень при прочих равных условиях (l 0 , S , F ). Таким образом, модуль Юнга характеризует сопротивляемость материала упругой деформации растяжения или сжатия .

Закон Гука, записанный в форме (2), легко привести к виду (1). Действительно, подставив в (2) \(~\sigma = \frac{F_{ynp}}{S}\) и \(~\varepsilon = \frac{\Delta l}{l_0}\) , получим:

\(~\frac{F_{ynp}}{S} = E \cdot \frac{\Delta l}{l_0}\) или \(~F_{ynp} = \frac{E \cdot S}{l_0} \cdot \Delta l\) ,

где \(~\frac{E \cdot S}{l_0} = k\) .

Диаграмма растяжения

Для исследования деформации растяжения стержень из исследуемого материала при помощи специальных устройств (например, с помощью гидравлического пресса) подвергают растяжению и измеряют удлинение образца и возникающее в нем напряжение. По результатам опытов вычерчивают график зависимости напряжения σ от относительного удлинения ε . Этот график называют диаграммой растяжения (рис. 10).

Многочисленные опыты показывают, что при малых деформациях напряжение σ прямо пропорционально относительному удлинению ε (участок ОА диаграммы) – выполняется закон Гука.

Эксперимент показывает, что малые деформации полностью исчезают после снятия нагрузки (наблюдается упругая деформация). При малых деформациях выполняется закон Гука. Максимальное напряжение, при котором еще выполняется закон Гука, называется пределом пропорциональности σ п . Он соответствует точки А диаграммы.

Если продолжать увеличивать нагрузку при растяжении и превзойти предел пропорциональности, то деформация становится нелинейной (линия ABCDEK ). Тем не менее при небольших нелинейных деформациях после снятия нагрузки форма и размеры тела практически восстанавливаются (участок АВ графика). Максимальное напряжение, при котором еще не возникают заметные остаточные деформации, называется пределом упругости σ уп . Он соответствует точке В диаграммы. Предел упругости превышает предел пропорциональности не более чем на 0,33%. В большинстве случаев их можно считать равными.

Если внешняя нагрузка такова, что в теле возникают напряжения, превышающие предел упругости, то характер деформации меняется (участок BCDEK ). После снятия нагрузки образец не принимает прежние размеры, а остается деформированным, хотя и с меньшим удлинением, чем при нагрузке (пластическая деформация).

За пределом упругости при некотором значении напряжения, соответствующем точке С диаграммы, удлинение возрастает практически без увеличения нагрузки (участок CD диаграммы почти горизонтален). Это явление называется текучестью материала .

При дальнейшем увеличении нагрузки напряжение повышается (от точки D ), после чего в наименее прочной части образца появляется сужение («шейка»). Из-за уменьшения площади сечения (точка Е ) для дальнейшего удлинения нужно меньшее напряжение, но, в конце концов, наступает разрушение образца (точка К ). Наибольшее напряжение, которое выдерживает образец без разрушения, называется пределом прочности . Обозначим его σ пч (оно соответствует точке Е диаграммы). Его значение сильно зависит от природы материала и его обработки.

Чтобы свести к минимуму возможность разрушения сооружения, инженер должен при расчетах допускать в его элементах такие напряжения, которые будут составлять лишь часть предела прочности материала. Их называют допустимыми напряжениями. Число, показывающее, во сколько раз предел прочности больше допустимого напряжения, называют коэффициентом запаса прочности . Обозначив запас прочности через n, получим:

\(~n = \frac{\sigma_{np}}{\sigma}\) .

Запас прочности выбирается в зависимости от многих причин: качества материала, характера нагрузки (статическая или изменяющаяся со временем), степени опасности, возникающей при разрушении, и т.д. На практике запас прочности колеблется от 1,7 до 10. Выбрав правильно запас прочности, инженер может определить допустимое в конструкции напряжение.

Пластичность и хрупкость

Тело из любого материала при малых деформациях ведет себя как упругое. В то же время почти все тела в той или иной мере могут испытывать пластические деформации. Существуют хрупкие тела.

Механические свойства материалов разнообразны. Такие материалы, как резина или сталь, обнаруживают упругие свойства до сравнительно больших напряжений и деформаций. Для стали, например, закон Гука выполняется вплоть до ε = 1%, а для резины – до значительно больших ε , порядка десятков процентов. Поэтому такие материалы называют упругими .

У мокрой глины, пластилина или свинца область упругих деформаций мала. Материалы, у которых незначительные нагрузки вызывают пластические деформации, называют пластичными .

Деление материалов на упругие и пластичные в значительной мере условно. В зависимости от возникающих напряжений один и тот же материал будет вести себя или как упругий, или как пластичный. Так, при очень больших напряжениях сталь обнаруживает пластичные свойства. Это широко используют при штамповке стальных изделий с помощью прессов, создающих огромную нагрузку.

Холодная сталь или железо с трудом поддаются ковке молотом. Но после сильного нагрева им легко придать посредством ковки любую форму. Пластичный при комнатной температуре свинец приобретает ярко выраженные упругие свойства, если его охладить до температуры ниже –100 °С.

Большое значение на практике имеет свойство твердых тел, называемое хрупкостью . Тело называют хрупким , если оно разрушается при небольших деформациях . Изделия из стекла и фарфора хрупкие: они разбиваются на куски при падении на пол даже с небольшой высоты. Чугун, мрамор, янтарь также обладают повышенной хрупкостью. Наоборот, сталь, медь, свинец не являются хрупкими.

Отличительные особенности хрупких тел легче всего уяснить с помощью зависимости σ от ε при растяжении. На рисунке 11, а, б изображены диаграммы растяжений чугуна и стали. На них видно, что при растяжении чугуна всего лишь на 0,1% в нем возникает напряжение около 80 МПа, тогда как в стали оно при такой же деформации равно лишь 20 МПа.

Рис. 11

Чугун разрушается сразу при удлинении на 0,45%, почти не испытывая предварительно пластических деформаций. Предел прочности его равен 1,2∙108 Па. У стали же при ε = 0,45% деформация все еще остается упругой и разрушение происходит при ε ≈ 15%. Предел прочности стали равен 700 МПа.

У всех хрупких материалов напряжение очень быстро растет с удлинением, и они разрушаются при весьма малых деформациях. Пластичные свойства у хрупких материй лов практически не проявляются.

Литература

  1. Кабардин О.Ф. Физика: Справ. материалы: Учеб. пособие для учащих-ся. – М.: Просвещение, 1991. – 367 с.
  2. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. шк. – М.: Про-свещение, 1992. – 191 с.
  3. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – 496 с.
  4. Элементарный учебник физики: Учеб. пособие. В 3 т. / Под ред. Г.С. Ландсберга: т. 1. Механика. Теплота. Молекулярная физика. – М.: Физ-матлит, 2004. – 608 с.
  5. Яворский Б.М., Селезнев Ю.А. Справочное руководство по физике для поступающих в вузы и самообразования. – М.: Наука, 1983. – 383 с.

Составители

Ванкович Е. (11 «А» МГОЛ № 1), Шкрабов А. (11 «В» МГОЛ № 1).

Что такое сила упругости?

Силой упругости называют такую силу, которая возникает через деформации тела и направленная в сторону, противоположную перемещениям частиц тела при деформации.

Для более наглядного примера, чтобы лучше понять, что такое сила упругости, возьмем яркий пример из повседневной жизни. Представьте, что перед вами обычная бельевая веревка, на которую вы повесили мокрое белье. Если на хорошо натянутую горизонтально веревку мы повесим мокрое белье, то увидим, как под весом вещей эта веревка начинает прогибаться и растягиваться.

Вначале мы с вами вешаем на веревку одну мокрую вещь и видим, как она вместе с веревкой прогибается к земле, а потом останавливается. Затем мы вешаем следующую вещь и видим, что повторяется такое же действие и веревка прогибается еще больше.

В этом случае напрашивается вывод, что при увеличении силы, которая воздействует на веревку, будет происходить деформация, пока силы противодействия этой деформации не будут равны весу всех вещей. И только после этого движение вниз прекратится.

Следует отметить, что работа силы упругости заключается в сохранении целостности предметов, на которые мы воздействуем другими предметами. Если силы упругости не способны с этим справиться, то тогда тело деформируется безвозвратно, то есть веревка может просто порваться.

И здесь напрашивается риторический вопрос. В какой момент возникла сила упругости? А возникает она тогда, когда мы только начинаем вешать белье, то есть в момент первоначального воздействия на тело. И когда белье высохло, и мы его снимаем, то сила упругости исчезает.

Разновидности деформаций

Теперь нам уже известно, что сила упругости появляется в результате деформации.

Давайте вспомним, что такое деформация? Деформацией называют изменение объема или формы тела под действием внешних сил.

А причиной возникновения деформации является то, что разчные части тела движутся не одинаково, а по-разному. При одинаковом движении тело постоянно имело бы свою первоначальную форму и размеры, то есть оно бы не деформировалось.

Давайте рассмотрим вопрос о там, какие разновидности деформации мы можем наблюдать.

Виды деформации можно разделить по характеру изменения их формы.

К тому же, деформация делится на два типа. В этом случае деформация может быть упругой или пластической деформацию.

Если, к примеру, взять и растянуть пружину, а потом ее отпустить, то после такой деформации пружина восстановит свои прежние размеры и форму. Это и будет примером упругой деформации.

То есть, если мы видим, что после прекращения действия на тело деформация полностью исчезает, то такая деформация является упругой.

А теперь наведем другой пример. Давайте возьмем кусочек пластилина и сожмем его или слепим какую-нибудь фигурку. Мы с вами видим, что даже после прекращения действия пластилин не изменил форму, то есть остался деформированным. Такая неупругая деформация и является пластической.

При пластической деформации она сохраняется даже тогда, когда на нее перестают действовать внешние силы.

Такой вид деформации используют помимо лепки из глины или пластилина и при технических процессах ковки и штамповки.

Задание: Опишите, какие виды деформации вы видите на изображении?



Сила упругости и закон Гука

От величины деформации, которой подвергается какое-либо тело, зависит и величина силы упругости. Следовательно, деформация и сила упругости находятся в тесной взаимосвязи. Если подверглась изменениям одна величина, то значит, появились изменения и в другой.

Поэтому, если нам известна деформация тела, то мы можем просчитать силу упругости, которая возникла в этом теле. И наоборот, если мы знаем силу упругости, то можем легко определить степень деформации тела.

Когда, например, взять пружину и к ней подвесить одинаковой массы гирьки, то можно увидеть, что с каждым последующим подвешенным грузом, все сильнее растягивается пружина. И замете, что чем больше эта пружина деформируется, тем больше становится сила упругости.

А если учесть то, что гирьки имеют одинаковую массу, то подвешивая их поочередно, можно заметить, что с каждым новым подвешиванием увеличивается длина пружины ровно на такую же величину.

Чтобы найти соотношение между силой упругости и деформацией упругого тела, нужно воспользоваться формулой, которая была открыта известным английским ученым Робертом Гуком.

Ученый установил простую связь между увеличением длины тела и силой упругости, которая была вызвана этим удлинением.



В этой формуле дельта обозначает изменения, которые происходят с величиной.

Закон Гука утверждает, что при малых деформациях сила упругости прямо пропорциональна удлинению тела.

То есть, чем больше появляется деформация, тем большую силу упругости мы можем наблюдать.

Но необходимо также отметить, что закон Гука справедлив лишь там, где присутствует упругая деформация.



Сила упругости в природе

Сила упругости довольно значимую роль играет и в природе. Ведь только благодаря этой силе, ткани растений, животных и человека способны выдерживать огромные нагрузки и при этом не сломаться и не разрушиться.

Вы, наверное, не раз наблюдали такую картину, как под порывом ветра сгибаются растения или под тяжестью снега прогибаются ветки деревьев, а в результате действия силы упругости возвращаются в свою предыдущую форму.

Также, каждый из вас мог наблюдать, как под натиском сильного ураганного ветра, ломались ветки деревьев. А такой итог мы можем наблюдать тогда, когда действие силы ветра превышает силы упругости самого дерева.

Все находящиеся на Земле тела способны выдерживать силу атмосферного давления только благодаря силе упругости. Обитатели глубоких водоемов способны выдерживать еще большую нагрузку. Поэтому можно прийти к закономерному выводу, что только благодаря силе упругости, все живые организмы в природе имеют возможность не только переносить механические нагрузки, но и сохранить свою форму в целостности.

Сидящие на ветках деревьев стайки птиц, весящие на кустах грозди винограда, огромные шапки снега на еловых лапах – это наглядная демонстрация сил упругости в природе.

Знаменитый закон Гука применяется практически во всех сферах нашей жизни. Без него никак нельзя обойтись ни в повседневном быту, ни в архитектуре. Этот закон используют при строительстве домов и автомобилей. Эго даже применяют в торговле.

Но, наверное, не каждый из вас мог себе представить, что сила упругости может быть применена и на арене цирка. Еще в позапрошлом веке в знаменитом цирке Франкони был продемонстрирован номер под названием «Человек- бомба».

Для этого, на арене цирка установили огромных размеров пушку, из которой произвели выстрел человеком. Зрители были шокированы этим номером, так как не подозревали, что выстрел был произведен не пороховыми газами, а с помощью пружины. В стволе пушки поместили мощную упругую пружину и после команды «пли!» из дула пружина выбрасывала на арену артистку. Ну, а грохот, дым и огонь только усиливали эффект этого номера и наводили ужас на зрителей.

Предмети > Физика > Физика 7 класс

Сила упругости — это та сила, которая возникает при деформации тела и которая стремится восстановить прежние форму и размеры тела.

Сила упругости возникает в результате электромагнитного взаимодействия между молекулами и атомами вещества.

Самый простой вариант деформации можно рассмотреть на примере сжатия и растяжения пружины.

На данном рисунке (x > 0) — деформация растяжения; (x < 0) — деформация сжатия. (Fx) — внешняя сила.

В том случае, когда деформация самая незначительная, т.е малая, сила упругости направлена в сторону, которая является противоположной по направлению перемещающихся частиц тела и пропорциональна деформации тела:

Fx = Fупр = - kx

С помощью данного соотношения выражен закон Гука, который был установлен экспериментальным методом. Коэффициент k принято называть жесткостью тела. Жесткость тела измеряется в ньютонах на метр (Н/м) и зависит от размеров и формы тела, а также от того, из каких материалов состоит данное тело.

Закон Гука в физике для определения деформации сжатия или растяжения тела записывают совершенно в другой форме. В данном случае относительной деформацией называется


Роберт Гук

(18.07.1635 - 03.03.1703)

Английский естествоиспытатель, учёный-энциклопедист

отношение ε = x / l . В то же время напряжением называется площадь поперечного сечения тела после относительной деформации:

σ = F / S = -Fупр / S

В данном случае закон Гука формулируют так: напряжению σ пропорциональна относительная деформация ε . В данной формуле коэффициент Е называют модулем Юнга. Данный модуль не зависит от формы тела и его размеров, но в то же время, напрямую зависит от свойств материалов, из которого состоит данное тело. Для различных материалов модуль Юнга колеблется в достаточно широком диапазоне. Например, для резины E ≈ 2·106 Н/м2, а для стали E ≈ 2·1011 Н/м2 (т.е. на пять порядков больше).

Вполне допустимо обобщить закон Гука и в тех случаях, когда совершаются более сложные деформации. Например, рассмотрим деформацию изгиба. Рассмотрим стержень, который лежит на двух опорах и имеет существенный прогиб.

Со стороны опоры (или подвеса) на данное тело действует упругая сила, это сила реакции опоры. Сила реакции опоры при соприкосновении тел будет направлена к поверхности соприкосновения строго перпендикулярно. Такую силу принято называть силой нормального давления.

Рассмотрим второй вариант. Путь тело лежит на неподвижном горизонтальном столе. Тогда реакции опоры уравновешивает силу тяжести и направлена она вертикально вверх. Причем весом тела считают силу, с которой тело воздействует на стол.

И сидеть дома. Но если не знаешь закон Гука – лучше тоже не выходить. Особенно, если идешь на экзамен по физике.

Здесь устраняем пробелы в знаниях и разбираемся, как решать задачи на силу упругости и применение закона Гука. А за полезной рассылкой для студентов добро пожаловать на наш телеграм-канал .

Сила упругости и закон Гука: определения

Сила упругости – сила, препятствующая деформациям и стремящаяся восстановить первоначальные форму и размеры тела.

Примеры действия силы упругости:

  • пружины сжимаются и разжимаются в матрасе;
  • мокрое белье колышется на натянутой веревке;
  • лучник натягивает тетиву, чтобы выпустить стрелу.
Простейшие деформации – деформации растяжения и сжатия.

Закон Гука:

Деформация, возникающая в упругом теле под действием внешней силы, пропорциональна величине этой силы.

Коэффициент k – жесткость материала.

Есть и другая формулировка закона Гука. Введем понятие относительной деформации «эпсилон» и напряжения материала «сигма»:

S – площадь поперечного сечения деформируемого тела. Тогда закон Гука запишется так: относительная деформация пропорциональна напряжению.

Здесь Е – модуль Юнга, зависящий от свойств материала.

Закон Гука был экспериментально открыт в 1660 году англичанином Робертом Гуком.

Вопросы на силу упругости и закон Гука

Вопрос 1. Какие бывают деформации?

Ответ. Помимо простейших деформаций растяжения и сжатия, бывают сложные деформации кручения и изгиба. Также разделяют обратимые и необратимые деформации.

Вопрос 2. В каких случаях закон Гука справедлив для упругих стержней?

Ответ. Для упругих стержней (в отличие от эластичных тел) закон Гука можно применять при малых деформациях, когда величина эпсилон не превышает 1%. При больших деформациях возникают явления текучести и необратимого разрушения материала.

Вопрос 3. Как направлена сила упругости?

Ответ. Сила упругости направлена в сторону, противоположную направлению перемещения частиц тела при деформации.

Вопрос 4. Какую природу имеет сила упругости?

Ответ. Сила упругости, как и сила трения – электромагнитная сила. Она возникает вследствие взаимодействия между частицами деформируемого тела.

Вопрос 5. От чего зависит коэффициент жесткости k? Модуль Юнга E?

Ответ. Коэффициент жесткости зависит от материала тела, а также его формы и размеров. Модуль Юнга зависит только от свойств материала тела.

Задачи на силу упругости и закон Гука с решениями

Кстати! Для наших читателей действует скидка 10% на любой вид работы .

Задача №1. Расчет силы упругости

Условие

Один конец проволоки жестко закреплен. С какой силой нужно тянуть за второй конец, чтобы растянуть проволоку на 5 мм? Жесткость проволоки известна и равна 2*10^6 Н/м2.

Решение

Запишем закон Гука:

По третьему закону Ньютона:

Ответ: 10 кН.

Задача №2. Нахождение жесткости пружины

Условие

Пружину, жесткость которой 100 Н/м, разрезали на две части. Чему равна жесткость каждой пружины?

Решение

По определению, жесткость обратно-пропорциональна длине. При одинаковой силе F неразрезанная пружина растянется на х, а разрезанная – на x1=x/2.

Ответ: 200 Н/м

При растяжении пружины в ее витках возникают сложные деформации кручения и изгиба, однако мы не учитываем их при решении задач.

Задача №3. Нахождение ускорения тела

Условие

Тело массой 2 кг тянут по гладкой горизонтальной поверхности с помощью пружины, которая при движении растянулась на 2 см. Жесткость пружины 200 Н/м. Определить ускорение, с которым движется тело.

Решение

За силу, которая приложена к телу и заставляет его двигаться, можно принять силу упругости. По второму закону Ньютона и по закону Гука:

Ответ: 2 м/с^2.

Задача №4. Нахождение жесткости пружины по графику

Условие

На графике изображена зависимость модуля силы упругости от удлинения пружины. Найти жесткость пружины.

Решение

Вспоминаем, что жесткость равна отношению силы и удлинения. Представленная зависимость – линейная. В любой точке прямой отношение ординаты F и абсциссы х дает результат 10 Н/м.

Ответ: k=10 Н/м.

Задача №5. Определение энергии деформации

Условие

Для сжатия пружины на х1=2 см надо приложить силу 10 Н. Определить энергию упругой деформации пружины при сжатии на х2=4 см из недеформированного состояния.

Решение

Энергия сжатой пружины равна:

Ответ: 0,4 Дж.

Нужна помощь в решении задач? Обращайтесь за ней в