Процесс синтеза и рнк с молекулы днк. Биосинтез белков, мир рнк и происхождение жизни

Белки играют очень важную роль в жизнедеятельности организмов, выполняют защитные, структурные, гормональные, энергетические функции. Обеспечивают рост мышечной и костной ткани. Белки информируют о строении клетки, о её функциях и биохимических свойствах, входят в состав ценных, полезных организму продуктов питания (яиц, молочных продуктов, рыбы, орехов, бобовых, ржи и пшеницы). Усвояемость такой пищи объясняется биологической ценностью. При равном показателе количества белка легче будет усваиваться тот продукт, чья ценность выше. Дефектные полимеры должны удаляться из организма и заменяться новыми. Этот процесс протекает при синтезе белков в клетках.

Какими бывают белки

Вещества, состоящие только из остатков аминокислот, называются простыми белками (протеинами). В случае необходимости используется их энергетическое свойство, поэтому людям, ведущим здоровый образ жизни, зачастую дополнительно нужен прием протеина. Сложные же белки, протеиды, имеют в своем составе простой белок и небелковую часть. Десять аминокислот в белке являются незаменимыми, это означает, что организм не может синтезировать их самостоятельно, они поступают из пищи, другой же десяток - заменимый, то есть их можно создать из других аминокислот. Так начинается жизненно необходимый для всех организмов процесс.

Основные этапы биосинтеза: откуда берутся белки

Новые молекулы берутся в результате биосинтеза - химической реакции соединения. Существует два основных этапа синтеза белков в клетке. Это транскрипция и трансляция. Транскрипция происходит в ядре. Это считывание с ДНК (дезоксирибонуклеиновой кислоты), которая несет информацию о будущем белке, на РНК (рибонуклеиновую кислоту), которая переносит эту информацию с ДНК в цитоплазму. Происходит это по причине того, что ДНК непосредственно в биосинтезе участия не принимает, она только несет сведения, не имея способности выходить в цитоплазму, где синтезируется белок, и выполняя только функцию носителя генетической информации. Транскрипция же позволяет считать данные с матрицы ДНК на РНК по принципу комплементарности.

Роль РНК и ДНК в процессе

Итак, запускает синтез белков в клетках цепочка ДНК, которая несет информацию о каком-либо конкретном белке и называется геном. Цепочка ДНК в процессе транскрипции расплетается, то есть её спираль начинает распадаться в линейную молекулу. С ДНК информация должна преобразоваться на РНК. Напротив тимина в данном процессе должен становиться аденин. Цитозин же имеет в качестве пары гуанин, точно так же, как ДНК. Напротив аденина РНК становится урацил, потому как в РНК такого нуклеотида, как тимин, не существует, он заменяется просто урациловым нуклеотидом. С гуанином соседствует цитозин. Напротив аденина становится урацил, а в паре с тимином располагается аденин. Эти молекулы РНК, которые становятся напротив, называются информационными РНК (иРНК). Они способны через поры выходить из ядра в цитоплазму и рибосомы, которые, собственно, и выполняют функцию синтеза белков в клетках.

О сложном простыми словами

Теперь же совершается сборка из аминокислотных последовательностей полипептидной цепочки белка. Транскрипцией можно назвать считывание информации о будущем белке с матрицы ДНК на РНК. Это можно определить как первый этап. После того как РНК выходит из ядра, она должна попасть к рибосомам, где происходит второй этап, который называется трансляцией.

Трансляция - это уже переход РНК, то есть перенос информации с нуклеотидов на молекулу белка, когда РНК говорит о том, какая последовательность аминокислот должна быть в веществе. В таком порядке информационная РНК попадает в цитоплазму к рибосомам, которые осуществляют синтез белков в клетке: А (аденин) - Г (гуанин) - У (урацил) - Ц (цитозин) - У (урацил) - А (аденин).

Зачем нужны рибосомы

Для того чтобы произошла трансляция и в результате образовался белок, нужны такие компоненты, как сама информационная РНК, транспортная РНК, а также рибосомы в качестве "фабрики", на которой производится белок. В данном случае функционируют две разновидности РНК: информационная, которая образовалась в ядре с ДНК, и транспортная. Молекула второй кислоты имеет вид клевера. Этот "клевер" присоединяет к себе аминокислоту и несет её к рибосомам. То есть он выполняет транспортировку органических соединений непосредственно к "фабрике" по их образованию.

Как работает рРНК

Также существуют рибосомальные РНК, которые входят в состав самой рибосомы и выполняют синтез белка в клетке. Получается, что рибосомы являются немембранными структурами, они не имеют оболочек, как, например, ядро или эндоплазматическая сеть, а состоят просто из белков и рибосомальных РНК. Что же происходит, когда последовательность из нуклеотидов, то есть информационная РНК, попадает к рибосомам?

Транспортная РНК, которая находится в цитоплазме, подтягивает к себе аминокислоты. Откуда же взялись аминокислоты в клетке? А образуются они вследствие расщепления белков, которые поступают внутрь с пищей. Эти соединения переносятся током крови к клеткам, где происходит продуцирование необходимых для организма белков.

Конечный этап синтеза белков в клетках

Аминокислоты плавают в цитоплазме так же, как и транспортные РНК, и когда происходит непосредственно сборка полипептидной цепи, эти транспортные РНК начинают с ними соединяться. Однако не во всякой последовательности и далеко не любая транспортная РНК может соединиться со всеми видами аминокислот. Существует определенный участок, к которому присоединяется необходимая аминокислота. Второй же участок транспортной РНК называется антикодоном. Этот элемент состоит из трех нуклеотидов, которые комплементарны последовательности нуклеотидов в информационной РНК. Для одной аминокислоты необходимо три нуклеотида. Например, какой-либо условный белок состоит для упрощения из всего лишь двух аминокислот. Очевидно, что в основном белки имеют очень длинную структуру, состоят из многих аминокислот. Цепь А - Г - У называется триплетом, или кодоном, к нему будет присоединяться транспортная РНК в виде клевера, на конце которого будет находиться определенная аминокислота. К следующему триплету Ц - У - А будет присоединяться еще одна тРНК, которая будет содержать совершенно другую аминокислоту, комплементарную данной последовательности. В таком порядке будет происходить дальнейшая сборка полипептидной цепочки.

Биологическое значение синтеза

Между двумя аминокислотами, находящимися на концах "клеверов" каждого триплета, образуется пептидная связь. На этом этапе транспортная РНК уходит в цитоплазму. К триплетам присоединяется затем следующая транспортная РНК с другой аминокислотой, которая образует с предыдущими двумя полипептидную цепь. Этот процесс повторяется до момента, когда набирается необходимая последовательность аминокислот. Таким образом происходит синтез белка в клетке, и образуются ферменты, гормоны, кровяные вещества и т. д. Не во всякой клетке образуется любой белок. Каждая клетка может образовать определенный белок. Например, в эритроцитах будет образовываться гемоглобин, а клетками поджелудочной железы будут синтезироваться гормоны и разнообразные ферменты, расщепляющие пищу, которая попадает в организм.

В мышцах же будет образовываться белок актин и миозин. Как видно, процесс синтеза белка в клетках многоэтапен и сложен, что говорит о его значимости и необходимости для всего живого.

Вначале – несколько общих положений.

Вся программа химических процессов в организме записана в ДНК – молекулярном хранилище генетической информации. Обычно поток этой информации изоражают схемой: ДНК РНК БЕЛОК, на которой представлен процесс перевода генетического языка нуклеотидных последовательностей в аминокислотные последовательности. Схема ДНК РНК обозначает биосинтез молекул РНК, нуклеотидная последовательность которых комплиментарна какому-то участку (гену) молекулы ДНК. Этот процесс обычно называют транскрипцией. Таким образом синтезируется тРНК, рРНК, мРНК. Обозначение РНК БЕЛОК выражает биосинтез полипептидных цепей, аминокислотная последовательность которых задается нуклеотидной последовательностью мРНК при участии тРНК и рРНК. Этот процесс называется трансляцией. Оба процесса происходят при участии многочисленных белков, выполняющих каталитические и некаталитические функции.

Биосинтез РНК.

Для синтеза всех видов РНК (р, т, м) используется только один тип ферментов: ДНК – зависимые РНК – полимеразы, в состав которых входит прочно связанный ион цинка. В зависимости от того, какой вид РНК синтезируется, выделяют РНК – полимеразу 1 (катализирует синтез рРНК), РНК – полимеразу 2 (мРНК) и РНК – полимеразу 3 (тРНК). В митохондриях обнаружен еще один тип – РНК – полимераза 4. Молекулярные массы всех видов РНК – полимераз лежат в пределах 500000 – 600000. весь синтез проходит в соответствии с информацией, содержащейся в соответствующих генах ДНК. Из какого бы источника не был бы выделен выделен фермент РНК – полимераза (из животных, растений, бактерий), для него характерны следующие особенности функционирования in vivo:1) Используются трифосфонуклеозиды, а не ди- и не монофосфонуклеозиды. 2) Для оптимальной активности необходим ко-фактор – ион магния. 3) Фермент использует только одну цепь ДНК в качестве матрицы для синтеза комплиментарной копии РНК (почему и синтез - матричный). Последовательное присоединение нуклеотидов происходит так, что цепь наращивается от 5` к 3` концу (5` - 3` иолимеризация):

Ф – Ф – Ф – 5` Ф – Ф – Ф – 5` Ф – Ф – Ф –5`

5) Для начала синтеза может использоваться затравочная порция РНК:

Нуклеозидтрифосфат

(РНК)n остатков (РНК)n + 1 + ПФ

РНК – полимераза

В то же время может идти (чаще так и бывает) полимеризация без затравки, с использованием вместо затравочной порции только одного нуклеозидтрифосфата (как правило, это АТФ или ГТФ).

6) В ходе этой полимеризации фермент копирует только одну цепь ДНК и передвигается по матрице в направлении 3` - 5`. Выбор копируемой цепи не случаен.

7) Цепь матричной ДНК содержит сигналы инициации синтеза РНК для фермента, расположенные в определенных положениях перед началом гена, и сигналы терминации синтеза, расположенные вслед за концом гена или группы генов.

8) Для описанных выше процессов может потребоваться суперскрученная ДНК, что помогает узнавать сигналы инициации и терминации синтеза и облегчает связывание РНК – полимеразы с матрицей.

РНК – полимераза представляет собой олигомерный фермент, ссостоящий из 5 субъединиц: альфа, альфа`, бета, бета`, гамма. Определенным субъединицам соответствуют определенные функции: например, бета – субъединица участвует в образовании фосфодиэфирной связи, гамма – субъединица участвует в распознавании стартового сигнала.

Участок ДНК, отвечающий за первоначальное связывание РНК – полимеразы, называется промотором, содержит 30 – 60 пар азотистых оснований.

Синтез РНК под действием ДНК – зависимой РНК – полимеразы происходит в 3 этапа: инициация, элонгация, терминация.

1)Инициация – гамма-субъединица, находясь в составе РНК – полимеразы, способствует не только «узнаванию» промоторных участков ДНК, но и непосредственно связывается в районе ТАТА – последовательности. Помимо того, что ТАТА – участок является сигналом для узнавания, он, возможно, обладает и наименьшей прочностью водородных связей, что облегчает «расплетание» нитей ДНК. Есть сведения, что в стимуляции этого процесса принимает участие и цАМФ. В раскрывании двойной спирали ДНК принимает участие и гамма-субъединица РНК – полимеразы. При этом одна из цепей ДНК служит матрицей для синтеза новой цепи РНК. И как только начинается этот синтез, гамма-субъединица отделяется от фермента, и, в дальнейшем, присоединяется к другой молекуле фермента, чтобы участвовать в новом цикле транскрипции. «Расплетение» ДНК происходит по мере продвижения РНК – полимеразы по кодирующей цепи. Оно необходимо для правильного образования комплиментарных пар со встраиваемыми в цепь РНК нуклеотидами. Размер расплетенного участка ДНК постоянен в течении всего процесса и составляет около 17 пар нуклеотидов на молекулу РНК – полимеразы. Одну и ту же кодирующую цепь могут одновременно считывать несколько молекул РНК – полимеразы, но процесс отрегулирован таким образом, что в каждый данный момент каждая молекула РНК – полимеразы транскрибирует различные участки ДНК. В то же время, для ДНК – зависимой РНК – полимеразы 3, синтезирующей тРНК, характерно «узнавание» внутреннего промотора.

2)Элонгация, или продолжение синтеза осуществляется РНК – полимеразой, но уже в виде тетрамера, т.к. гамма-субъединица уже отщепилась. Новая цепь растет путем последовательного добавления рибонуклеотидов к свободной 3` - оксигруппе. Скорость синтеза, например, иРНК сывороточного альбумина составляет до 100 нуклеотидов в секунду. В отличие от ДНК – полимеразы (о которой мы будем говорить ниже), РНК – полимераза не проверяет правильность новообразованной полинуклеотидной цепи. Частота ошибок при синтезе РНК составляет 1: 1000000.

3)Терминация – здесь принимает участие белковый фактор r (ро). Он не входит в состав РНК – полимеразы. Вероятно, он узнает терминаторную последовательность нуклеотидов на матрице по одному из механизмов взаимодействия гамма-субъединици и промотора. Терминатор также содержит около 30 – 60 пар нуклеотидов и заканчивается серией АТ – пар, хотя для некоторых РНК отмечено, что сигналы терминации отстоют от кодирующего гена на 1000 – 2000 оснований. Возможно, что и одна из частиц полимеразы участвует в узнавании терминаторной последовательности. При этом синтез РНК прекращается и молекула насинтезированного РНК сходит с фермента. Большая часть таким образом синтезируемых молекул РНК не является биологически активными. Скорее, они представляют собой предшественники, которые должны превратиться в зрелые формы в ходе различных реакций. Это называется процессинг. Такими реакциями являются: (1)Фрагментация длинноцепочечных предшественников (причем из одного транскрипта может образоваться от 1 до 3 тРНК). (2) Присоединение нуклеотидов к концам. (3) Специфическая модификация нуклеотидов (метилирование, сульфирование, дезаминирование и т.д.).

Процессинг мРНК имеет еще одну особенность. Оказалось, что иногда информация, кодирующая АК – последовательность в генах, прерывается некодирующими последовательностями, т.е. «гены разорван». Но при транскрипции копируется весь «разорванный» ген. В этом случае при процессинге эндонуклеазы, или их называют рестриктазой, вырезают некодирующие участки (интроны). Их выделено в настоящее время более 200. Рестриктазы расщепляют связи (в зависимости от вида фермента) между строго определенными нуклеотидаами (например Г – А, Т – А и т.д.). Затем лигазы сшивают кодирующие участки (экзоны). Большинство последовательностей, транскрипты которых представлены в зрелых мРНК разорваны в геноме от одного до 50 раз некодирующими участками (интронами). Как правило интроны значительно длиннее чем экзоны. Функции интронов точно не установлены. Возможно, они служат для физического разделения экзонов с целью оптимизации генетических перестроек (рекомбинаций). Существует и безматричный синтез РНК. Этот процесс катализирует фермент полинуклеотидфосфорилаза: нуклДФ + (нуклМФ)n (нуклМФ)n+1 + Фк. Этот фермент не требует матрицы и не синтезирует полимер со специфической полинуклеотидной последовательностью. Цепь РНК ему необходима лишь в качестве затравки. На процесс синтеза РНК ингибирующие влияние оказывает ряд антибиотиков (около 30). Здесь два механизма: (1) связывание с РНК-полимеразой, что приводит к инактивированию фермента (например рифамицин связывается с b- единицей). (2) Антибиотики могут связываться с матричной ДНК и блокировать либо соединение фермента с матрицей, либо перемещение РНК-полимеразы по ДНК (это, например, актиномицин Д).

Биосинтез ДНК.

Генетическая информация, заключенная в ДНК хромосомы может быть передана либо путем точной репликации, либо с помощью рекомбинации, транспозиции и конверсии:

1) Рекомбинация две гомологические хромосомы обмениваются генетическим материалом.


2) Транспозиция – способность перемещения генов по хромосоме или между хромосомами. Возможно, это играет важную роль в клеточной дифференцировке.

3) Конверсия - одинаковые последовательности хромосом могут формировать случайные пары, а несовпадающие участки удаляются.

4) Репликация (это основной вид синтеза ДНК), то есть воспроизведение «себе подобных».

Главное функциональное значение репликации – снабжение потомства генетической информацией. Основной фермент, катализирующий синтез ДНК – это ДНК-полимераза. Выделено несколько видов ДНК-полимеразы: 1) альфа – (выделена из ядра) – это основной фермент, связанный с репликацией хромосом. 2) бета – (так же локализована в ядре) – по-видимому, участвуют в репарации и процессах рекомбинации. 3) гамма – (локализованы в митохондриях) – вероятно, участвует в репликации митохондриальных ДНК. Для работы ДНК-полимеразы необходимы следующие условия: 1) в среде должны присутствовать все 4 дезоксирибонуклеотида (дАТФ, дГТФ, дЦТФ и ТТФ); 2) для оптимальной активности необходим ко-фактор: ионы марганца; 3) необходимо присутствие копируемой двухцепочечной ДНК; 4) нуклеотиды присоединяются в направлении 5` - 3` (5` - 3` - полимеризация); 5) репликация начинается в строго определенном участке и идет одновременно в обоих направлениях с примерно одинаковой скорость; 6) для начала синтеза может использоваться как затравочная порция либо фрагмент ДНК, либо фрагмент РНК, в отличие от синтеза РНК, где возможен синтез из отдельных нуклеотидов; 7) для репликации необходима суперспирализованная молекула ДНК. Но, если, как мы говорили выше, для транскрипции (то есть для синтеза РНК) необходимы РНК-полимераза (с гамма-субъединицей для узнавания и связывания с промотором) и белок узнования сигнала терминации (фактор r), при репликации ДНК действие ДНК полимеразы дополняют несколько (около 10) белков, часть которых представляют собой ферменты. Эти дополнительные белки способствуют:

1)узнавания точки начала репликации ДНК-полимеразой.

2) Локальному расплетанию дуплекса ДНК, что освобождает одиночные цепи для копирования матрицы.

3) Стабилизации расплавленной структуры (расплетенной).

4) Образование затравочных цепей для инициации действия ДНК-полимеразы.

5) Участвует в формировании и продвижении репликационной вилки.

6) Способствует узнаванию участков терминации.

7) Способствует суперспирализации ДНК.

Мы оговорили все необходимые условия репликации ДНК. И так, как уже упоминалось, репликация ДНК начинается в строго определенном месте. Для расплетания родительской ДНК требуется энергия, высвобождающаяся при гидролизе АТФ. На разделение каждой пары АО затрачивается две молекулы АТФ. Синтез новой ДНК сопряжен с одновременным раскручиванием родительской ДНК. Участок, где происходит одновременно расплетание и синтез, называется «репликационной вилкой»:


Родительская ДНК

Вновь синтезируемые ДНК

Репликация ДНК происходит таким образом, что каждая цепь родительской 2-цепочечной ДНК является матрицей для синтеза новой комплиментарной цепи и две цепи (исходная и вновь синтезируемая), соединяясь образуют следующие поколения ДНК. Этот механизм называют полуконсервативная репликация. Репликация ДНК проходит одновременно на 2 цепях, и идет, как уже упоминалось в направлении 5` - 3`. Но ведь цепи родительской ДНК разнонаправлены. Однако, фермента, ведущего синтез ДНК в направлении 3` - 5` нет. Поэтому, одна цепь, копирующая материнскую с направленностью 5` - 3`, будет синтезироваться непрерывно (ее называют «лидирующая»), вторая цепь будет синтезироваться тоже в направлении 5` - 3`, но фрагментами по 150 – 200 нуклеотидов, которые впоследствии сшиваются. Эту цепь называют «отстающая».

Для того, чтобы начался синтез новой ДНК необходима затравка. Мы уже говорили, что затравкой может быть фрагмент ДНК или РНК. Если затравкой служит РНК, то это очень короткая цепь, она содержит около 10 нуклеотидов и называется праймером. Синтезирует праймер, комплементарный одной из цепей ДНК, особый фермент – праймаза. Сигналом для активации праймазы служит образование предзатравочного промежуточного комплекса, состоящего из 5 белков. 3`-концевая группа (гидроксильная группа концевого рибонуклеотида праймера) и служит затравкой для синтеза ДНК под действием ДНК-полимеразы. После синтеза ДНК, РНК-компанент (праймер) гидролизуется под действием ДНК-полимеразы.

Работа ДНК-полимераз направляется матрицей, то есть нуклеотидный состав новосинтезированной ДНК зависит от характера матрицы. В свою очередь, ДНК-полимераза всегда удаляет некомплементарные остатки на конце затравки, прежде чем продолжать полимеризацию. Таким образом, репликация ДНК идет с большой точностью, так как спаривание оснований проверяется дважды. ДНК-полимеразы способны наращивать цепи вновь синтезируемых ДНК, но не способны катализировать соединение 2 цепей ДНК или замыкать одну цепь (при образовании кольцевой ДНК). Эти функции выполняет ДНК-лигаза, который катализирует образование фосфодиэфирной связи между 2 цепями ДНК. Фермент этот активен при наличии свободной – ОН-группы на 3` конце одной цепи ДНК и фосфатной группы на 5` конце другой цепи ДНК. Сшивание цепей происходит за счет энергии АТФ. Поскольку множество химических и физических агентов (ионизирующая радиация, УФЛ, различные химические вещества) вызывают в ДНК повреждение (изменяются или теряются АО, разрываются фосфодиэфирные связи и.д.), во всех клетках имеются механизмы для исправления этих повреждений. ДНК-рестриктаза находит эти повреждения и вырезает поврежденный участок, ДНК-полимераза проводит репарационный (восстановительный) синтез поврежденных участков в направлении 5` - 3`. Восстановленный участок сшивается с остатком цепи ДНК-лигазой. Этот метод исправления измененных или поврежденных участков называется репарацией. Список ингибиторов репликации ДНК многообразен и велик. Одни связываются с ДНК полимеразой, инактивируя ее, другие связываются и инактивируют определенный вспомогательный блок, третьи внедряются в матричную ДНК, нарушая ее спосоьность к копированию, четвертые выступают в роли конкурентных ингибиторов, представляя собой аналог нормальных нуклеотидтрифосфатов. Такими ингибиторами являются некоторые антибиотики, мутагены, химические яды, антивирусные агенты и т.д.

Биосинтез белка (трансляция генов).

Сборка полипептидной цепи из составляющих ее АК представляет собой удивительный и очень сложный процесс, который можно представить происходящим в 4 стадии, а именно:

1) активация и отбор АК (АТФ-зависимая стадия);

2) инициация синтеза полипептидной цепи (ГТФ-зависимая стадия);

3) элонгация полипептидной цепи (ГТФ-зависимая стадия);

4) терминация синтеза полипептидной цепи.

(1)– активация и отбор АК. Во всех типах клеток первой стадией трансляции является АТФ-зависимое превращение каждой АК в комплекс: аминоацил-тРНК. Этим достигается две цели:

1) повышается реакционная способность АК в плане образования пептидной связи.

2) АК соединяется со специфической тРНК (то есть происходит отбор). Реакция идет в 2 стадии + Mg++

1) АК + АТФ аминоацил – АМФ + ПФ

аминоацил-тРНК-синтетаза

2) аминоацил-АМФ + тРНК аминоацил-тРНК

аминоацил-тРНК-синтетаза

Аминоацил-тРНК-синтетаза катализирует присоединение аминоацила (аминокислотного остатка) к 3` гидроксильной группе концевого аденозина. Вспомним строение тРНК:

Это плечо необходимо это плечо участвует в связывании аминоацил-

Для узнования тРНК тРНК с рибосомой в месте синтеза белка.

Аминоацил-тРНК-

Петидазой


антикодон

Помимо каталитической активности, аминоацил-тРНК-синтетаза обладает очень высокой специфичностью, «узнавая» как аминокислоты, так и соответствующие им тРНК. Предполагается, что клетки содержат 20 синтетаз – по одной на каждую АК, в то время тРНК гораздо больше (не менее 31 -32), так как многие АК могут соединятся с двумя и даже с тремя различными молекулами тРНК.

(2)Инициация – вторая стадия синтеза белков.

Для начала трансляции необходимо точное узнавание первого кодона, расположенного сразу же за не транслируемой последовательностью мРНК. Инициаторным кодоном является АУГ, а инициатором выступает метионин-тРНК

МРНК не транслируемая транслируемая не транслируемая

последовательность последовательность последовательность


1-ый кодон.

Узнавание идет с помощью антикодона тРНК. Считывание происходит в направлении 5` - 3`. Это узнавание требует упорядоченного, идущего с затратой энергии (ГТФ) взаимодействия с диссоциированными рибосомами. Этот процесс происходит с участием дополнительных белков, которые называют факторы инициации (ФИ), их 8. В процессе участвуют 40S и 60S субъединиц рибосом. Рассмотрим подробный механизм инициации.

1) 40S – субъединица рРНК связывается с областью мРНК, предшествующей первому кодону. В этом принимает участие ФИ-3.

2) Первая аминоацил-тРНК, участвующая в трансляции первого кодона, взаимодействует с ГМФ и ФИ-2. Этот образовавшийся комплекс в присутствии ФИ-1 присоединяет тРНК к первому кодону матрицы и образует инициаторный комплекс с 40S субъединицей рибосомы.

3) После высвобождения всех факторов инициации (ФИ-1,2,3) к ГТФ присоединяется 60S субъединица рибосомы, при этом происходит гидролиз ГТФ. Так завершается образование полной 80S-частицы рибосомы. таким образом образуется полный инициаторный комплекс: рибосома – мРНК – тРНК.

Полностью собранная рибосома содержит 2 функциональных участка для взаимодействия с молекулами тРНК. Пептидильный участок (Р-участок) – содержит растущую полипептидную цепь в составе пептидил-тРНК в комплексе с последним протранслированным кодоном мРНК. Аминоацильный участок (А-участок) содержит аминоацил-тРНК, соединенную с соответствующим кодоном, аминоацил-тРНК попадает в формирующийся Р-участок, оставляя А-участок свободным для следующей Аминоацил-тРНК.

Схематично весь этот процесс мы можем представить так:

1)40S-субъединица рибосомы при участии ФИ-3 присоединяется к нетранслирующей последовательности мРНК непосредственно перед первым кодоном.

2)аминоацил-тРНК, соединяется с ГТФ и ФИ-2 и при участии ФИ-1 присоединяеся к первому кодону, при этом образует с 40S-субъединицей инициаторный комплекс.

3)происходит освобождение ФИ-1,2,3.

4) 60S-субъединица взаимодействует с ГТФ и затем присоединяется к инициаторному комплексу. Образуется полная 80S-рибосома, имеющая Р-участок и А-участок.

5)после образования инициаторного комплекса с первым кодоном, аминоацил-тРНК попадает в формирующийся Р-участок, оставляя А-участок свободным.

(3)Элонгация – продолжение синтеза. На этом этапе происходит удлинение пептидной цепи. В полностью сформированной на стадии инициации 80S-рибосома, А-участок свободен. По сути, в процессе элонгации постоянно повторяется цикл из 3 стадий:

1) Правильное расположение следующей аминоацил-тРНК.

2) образование пептидной связи.

3) перемещение новообразованной пептидил-тРНК из А-участка в Р-участок.

(1)– присоединение соответствующей (следующей) аминоацил-тРНК в А-участке требует точного узнавания кодона. Это происходит с помощью антикодона тРНК. Присоединение аминоацил-тРНК к рибосоме происходит благодаря образованию комплекса, состоящего из аминоацил-тРНК, ГТФ и белковых факторов элонгации (ФЭ), их тоже несколько. При этом высвобождается комплекс ФЭ – ГДФ и фосфат. Этот комплекс (ФЭ – ГДФ) затем (при участии ГТФ и других белковых факторов) вновь превращается в ФЭ – ГТФ.

(2) - альфа аминогруппа новой аминоацил-тРНК в участке А осуществляет нуклеофильную атаку эстерефицированной карбоксильной группы пептидил – тРНК, занимающей Р-участк. Эта реакция катализируется пептидилтрансферазой – белковым компонентом, входящим в состав 60S-субъединицы рибосомы. поскольку АК а аминоацил-тРНК уже активирована, для этой реакции (реакции образования пептидной связи) дополнительной энергии не требуется. В результате реакции растущая полипептидная цепь оказывается прикрепленной к тРНК, находящейся в А-участке.

(3) – после удаления пептдильного остатка с тРНК в Р-участки, свободная молекула РНК покидает Р-участок. Комплекс ФЭ-2 – ГТФ участвует в перемещении новообразованной пептидил-тРНК из А-участка в Р-участок, освобождая А-участок для нового цикла элонгации. Совокупность отделения деацилированной тРНК, передвижение новообразованной пептидил-тРНК из А-участка в Р-участок, а так же передвижение мРНК относительно рибосомы, называется транслокацией. Поскольку на образование аминоацил-тРНК затрачивалась энергия, получаемая при гидролизе АТФ до АМФ, а это эквивалентно энергии гидролиза 2АТФ до 2 АДФ; на присоединения аминоацил-тРНК к А-участку требовалась энергия, получаемая при гидролизе ГТФ до ГДФ, и еще одна молекула ГТФ затрачивалась на транслокацию. Мы можем подсчитать, что на образование одной пептидной связи нужна энергия, получаемая при гидролизе 2 молекул АТФ и 2 молекул ГТФ.

Скорость наращивания полипептидной цепи (то есть скорость элонгации) in vivo оценивается в 10 аминокислотных остатков в секунду. Эти процессы ингибируются разными антибиотиками. Так, пуромицин блокирует транслокацию, соединяясь с

Р-участком. Стрептомицин, связываясь с рибосомными белками, нарушает узнавание кодона антикодоном. Хлоромицитин связывается с А-участком, блокируя элонгацию. Схематично это можно представить так: 1) следующая аминоацил-тРНК благодаря узнаванию с помощью антикодона закрепляется в А-участке. Присоединение происходит в комплексе с ГТФ и ФЭ-1. при этом высвобождается ГДФ – ФЭ – 1 и Фк, который затем снова превращается в ГТФ – ФЭ-1 и принимает участие в новых циклах. 2) Происходит образование пептидой связи между присоединившейся аминоацил-тРНК и пептидом, находящемся в Р-участке. 3) При образовании этой пептидной связи от пептида отделяется тРНК и покидает Р-участок. 4) Новообразованный пептидил-тРНК с помощью комплекса ГТФ – ФЭ2 перемещается из А в Р-участок, а комплекс ГТФ – ФЭ2 гидролизуется до ГДФ – ФЭ-2 и Фк. 5) В результате этого перемещения А-участок освобождается для присоединения новой аминоацил-тРНК.

(4)-Терминация – заключительный этап синтеза белка. После многих циклов элонгации, в результате которых синтезируется полипептидная цепь белка, в

А-участке появляется терминирующий или нонсенс-кодон. В норме отсутствуют тРНК, способные узнать нонсенс-кодон. Их распознают специфические белки – факторы терминации (R-факторы). Они специфически узнают нонсенс-кодон, связываются с рибосомой вблизи А-участка, блокируя присоединение следующей аминоацил-тРНК. R-факторы при участии ГТФ и пептидилтрансферазы обеспечивают гидролиз связи между полипептидом и молекулой тРНК, занимающей Р-участок. После гидролиза и высвобождения полипептида и тРНК, 80S-рибосома диссоциирует на 40S и 60S субъединицы, которые затем могут вновь использоваться в трансляции новых мРНК.

Мы рассмотрели рост одной единственной цепи белка на одной рибосоме, присоединенной к одной молекуле мРНК. В действительности процесс протекает более эффективно, так как мРНК обычно транслируется одновременно не на одной рибосме, а на рибосомных комплексах (полисомах) и каждая стадия трансляции (инициация, элонгация, терминация) осуществляется при этом каждой рибосомой в этой полисоме, в этом рибосомальном комплексе, то есть появляется возможность синтеза нескольких копий полипептида, прежде чем мРНК будет расщеплена.

Размеры полисомных комплексов сильно варьируют и обычно определются размерами молекулы мРНК. Очень большие молекулы мРНК способны образовывать комплексы с 50 – 100 рибосомами. Чаще, однако,комплекс содержит от 3 до 20 рибосом.

В клетках животных и человека многие белки синтезируются по мРНК в виде молекул-предшественников, которые затем для образования активных молекул должны быть модифицированы, по аналогии с синтезом НК. В зависимости от белка могут происходить одна или большее число следующих модификаций.

1) Образование дисульфидной связи.

2) Присоединение ко-фактров и ко-ферментов.

3) Присоединение простетических групп.

4) Частичный протеолиз (проинсулин - инсулин).

5) Образование олигомеров.

6) Химическая модификация (ацилирование, аминирование, метилирование, фосфорилирование, карбоксилирование и т.д.) – известно более 150 химических модификаций АК в составе молекулы белка.

Все перечисленные модификации приводят к изменению структуры и активности белков.

Генетический код.

То что передача генетической информации ДНК происходит с помощью молекулы мРНК впервые предположили в 1961 году Ф.Жакоб и Ж.Моно. Последующие работы (М.Ниренберг, Х.Г.Корана, РУ.Холли):

М.Ниренберг – изучал синтез полипептидов и связывание аминоацил-тРНК с рибосомами.

Х.Г.Корана – разработал метод химического синтеза поли- и олигонуклеотидов.

Р.У.Холии – расшифровал структуру ДНК с антикодоновым участком.

1) Подтвердили гипотезу об участии мРНК

2) Показали триплетную природу кода, согласно которой каждая АК програмируется в мРНК 3 основаниями, названными кодоном

3) Установили, что код мРНК читается путем комплементарного узнавания кодоном антикодоновым триплетом тРНК.

4) Установили соответствие между АК и большинством из 64 возможных кодонов. В настоящее время известно что 61 кодон кодируют АК, а 3 являются сигналами терминации (нонсенс-кодон).

Считалось, что генетический код универсален, то есть для всех организмов и всех видов клеток одни и те же значения используются для всех кодонов. Однако, последние исследования митохондриальной ДНК показали, что генетическая система митохондрий в значительной мере отличается от генетической системы других образований (ядра, хлоропластов), то есть тРНК митохондрий некоторые кодоны считывают иначе, чем тРНК других образований. В результате для митохондрий необходимо только 22 вида тРНК. В то время, как для синтеза белка в цитоплазме используются 31 – 32 вида тРНК, то есть весь набор тРНК.

18 из 20 АК кодируются более чем одним кодоном (2, 3, 4, 6) – это свойство называется «вырожденностью» кода и имеет важное значение для организма. Вследствие вырожденности некоторые ошибки при репликации или транскрипции не вызывают искажения генетической информации. Генетический код не перекрывается и не имеет знаков пунктуации, то есть считывание идет без каких-либо пропусков, последовательно, до достижения нонсенс-кодона. В то же время для вирусов отмечено совершенно другое свойство – кодоны могут «перекрываться»:

1) Если замена приходится на 3-й нуклеотид кодона, то, вследствии «вырожденности» кода, существует вероятность того, что последовательность АК останется неизменной и мутация не проявится.

2) Может иметь место миссенс-эффект, когда одна АК заменяется другой; эта замена может быть приемлима, частично приемлима или неприемлима, то есть функция белка страдает, нарушается или полностью теряется.

3) В результате мутаций может образоваться нонсенс-кодон. Образование нонсенс-кодона (терминирующего кодона) может привести к преждевременной терминации синтеза белка.

Суммируя сказанное:

1) Генетически код («язык жизни») состоит из последовательности кодонов, которая, собственно и образует ген.

2) Генетический код обладает триплетностью, то есть каждый кодон состоит из трех нуклеотидов, то есть каждый кодон кодирует 1 АК. При этом из 4 видов нуклеотидов ДНК возможно образование 64 сочетаний, что более чем достаточно для 20 АК.

3) Код «вырожденный» - то есть одна АК может кодироваться 2, 3, 4, 6 кодонами.

4) Код однозначный, то есть один кодон кодирует только одну АК.

5) Код не перекрывающийся, то отсутствуют нуклеотиды, входящие в два соседние кодона.

6) Код «без запятых», то есть отсутствуют нуклеотиды между двумя соседними кодонами.

8) Последовательность АК в полипептиде соответствует последовательности кодонов в гене – это свойство называется коллинеарность.


Похожая информация.


А.С. Спирин

БИОСИНТЕЗ БЕЛКОВ, МИР РНК

И ПРОИСХОЖДЕНИЕ ЖИЗНИ

ВЕСТНИК РОССИЙСКОЙ АКАДЕМИИ НАУК

том 71, №4, с. 320-328, 2001

Спирин Александр Сергеевич - академик, директор Института белка РАН, член Президиума РАН.

Почти полвека тому назад, в 1953 г., Д. Уотсон и Ф. Крик открыли принцип структурной (молекулярной) организации генного вещества - дезоксирибонуклеиновой кислоты (ДНК) . Структура ДНК дала ключ к механизму точного воспроизведения - редупликации - генного вещества . Так возникла новая наука - молекулярная биология. Была сформулирована так называемая центральная догма молекулярной биологии: ДНК Þ РНК Þ белок. Смысл ее состоит в том, что генетическая информация, записанная в ДНК, реализуется в виде белков, но не непосредственно, а через посредство родственного полимера - рибонуклеиновую кислоту (РНК), и этот путь от нуклеиновых кислот к белкам необратим. Таким образом, ДНК синтезируется на ДНК, обеспечивая собственную редупликацию, то есть воспроизведение исходного генетического материала в поколениях; РНК синтезируется на ДНК, в результате чего происходит переписывание, или транскрипция, генетической информации в форму многочисленных копий РНК; молекулы РНК служат матрицами для синтеза белков - генетическая информация транслируется в форму полипептидных цепей. В специальных случаях РНК может переписываться в форму ДНК ("обратная транскрипция"), а также копироваться в виде РНК (репликация), но белок никогда не может быть матрицей для нуклеиновых кислот (подробнее см. ).

Итак, именно ДНК определяет наследственность организмов, то есть воспроизводящийся в поколениях набор белков и связанных с ними признаков. Биосинтез белка является центральным процессом живой материи, а нуклеиновые кислоты обеспечивают его, с одной стороны, программой, определяющей весь набор и специфику синтезируемых белков, а с другой - механизмом точного воспроизведения этой программы в поколениях. Следовательно, происхождение жизни в ее современной клеточной форме сводится к возникновению механизма наследуемого биосинтеза белков.

БИОСИНТЕЗ БЕЛКОВ

Центральная догма молекулярной биологии постулирует лишь путь передачи генетической информации от нуклеиновых кислот к белкам и, следовательно, к свойствам и признакам живого организма. Изучение механизмов реализации этого пути на протяжении десятилетий, последовавших за формулировкой центральной догмы, вскрыло гораздо более разнообразные функции РНК, чем быть только переносчиком информации от генов (ДНК) к белкам и служить матрицей для синтеза белков.

На рис. 1 представлена общая схема биосинтеза белка в клетке. РНК-посредник (messenger RNA, матричная РНК, мРНК), кодирующая белки, о которой и шла речь выше, - это лишь один из трех главных классов клеточных РНК. Основную их массу (около 80%) составляет другой класс РНК - рибосомные РНК, которые образуют структурный каркас и функциональные центры универсальных белок-синтезирующих частиц - рибосом. Именно рибосомные РНК ответственны - как в структурном, так и в функциональном отношении - за формирование ультрамикроскопических молекулярных машин, называемых рибосомами. Рибосомы воспринимают генетическую информацию в виде молекул мРНК и, будучи запрограммированы последними, делают белки в точном соответствии с данной программой.

Рис. 1. Общая схема биосинтеза белков

Однако, чтобы синтезировать белки, одной только информации или программы недостаточно - нужен еще и материал, из которого их можно делать. Поток материала для синтеза белков идет в рибосомы через посредство третьего класса клеточных РНК - РНК-переносчиков (transfer RNA, транспортные РНК, тРНК). Они ковалентно связывают - акцептируют - аминокислоты, которые служат строительным материалом для беЛков, и в виде аминоацил-тРНК поступают в рибосомы. В рибосомах аминоацил-тРНК взаимодействуют с кодонами - трехнуклеотидными комбинациями - мРНК, в результате чего и происходит декодирование кодонов в процессе трансляции.

РИБОНУКЛЕИНОВЫЕ КИСЛОТЫ

Итак, перед нами набор главных клеточных РНК, определяющих основной процесс современной живой материи - биосинтез белка. Это мРНК, рибосомные РНК и тРНК. РНК синтезируются на ДНК с помощью ферментов - РНК-полимераз, осуществляющих транскрипцию - переписывание определенных участков (линейных отрезков) двутяжевой ДНК в форму однотяжевой РНК. Участки ДНК, кодирующие клеточные белки, переписываются в виде мРНК, тогда как для синтеза многочисленных копий рибосомной РНК и тРНК имеются специальные участки клеточного генома, с которых идет интенсивное переписывание без последующей трансляции в белки.

Химическая структура РНК. Химически РНК очень похожа на ДНК. Оба вещества - это линейные полимеры нуклеотидов. Каждый мономер - нуклеотид - представляет собой фосфорилированный N-гликозид, построенный из остатка пятиуглеродного сахара - пентозы, несущего фосфатную группу на гидроксильной группе пятого углеродного атома (сложноэфирная связь) и азотистое основание при первом углеродном атоме (N-гликозидная связь). Главное химическое различие между ДНК и РНК состоит в том, что сахарный остаток мономера РНК - это рибоза, а мономера ДНК - дезоксирибоза, являющаяся производным рибозы, в котором отсутствует гидроксильная группа при втором углеродном атоме (рис. 2).

Рис. 2. Химические формулы остатков одного из рибонуклеотидов - уридиловой кислоты (U) и гомологичного ему дезоксирибонуклеотида - тимидиловой кислоты (dT)

Азотистых оснований и в ДНК, и в РНК четыре вида: два пуриновых - аденин (А) и гуанин (G) -и два пиримидиновых - цитозин (С) и урацил (U) или его метилированное производное тимин (Т).

Урацил характерен для мономеров РНК, а тимин - для мономеров ДНК, и это второе различие РНК и ДНК. Мономеры - рибонуклеотиды РНК или дезоксирибонуклеотиды ДНК - образуют полимерную цепь посредством формирования фосфодиэфирных мостиков между сахарными остатками (между пятым и третьим атомами углерода пентозы). Таким образом, полимерная цепь нуклеиновой кислоты - ДНК или РНК - может быть представлена как линейный сахаро-фосфатный остов с азотистыми основаниями в качестве боковых групп.

Процесс синтеза РНК по ДНК-матрице наиболее полно охарактеризован для прокариот. Хотя в клетках млекопитающих регуляция синтеза и процессинг РНК отличаются от прокариотических систем, сами процессы синтеза РНК у обоих типов организмов практически одинаковы. Вот почему описание синтеза РНК у прокариот вполне приложимо и к эукариотическим клеткам, несмотря на то что ферменты и регуляторные сигналы синтеза РНК различаются.

Последовательность рибонуклеотидов в молекуле РНК комплементарна последовательности дезоксирибонуклеотидов одной из цепей ДНК (рис. 37.8). Та из двух цепей ДНК, по которой непосредственно идет транскрипция РНК-молекул, называется кодирующей цепью. Другую цепь часто называют некодирующей цепью соответствующего гена. Важно понимать, что в двухцепочечной ДНК, содержащей много генов, кодирующая цепь каждого данного гена вовсе не обязательно представлена в рамках одной и той же цепи ДНК (рис. 39.1). Другими словами, одна цепь молекулы ДНК для одних генов является кодирующей, а для других соответственно - некодирующей. Обратите внимание, что, за исключением замещения Т на U, последовательность РНК-транскрипта идентична некодирующей цепи.

ДНК-зависимая РНК-полнмераза - это фермент, полимеризующий рибонуклеотиды в последовательность, комплементарную кодирующей цепи гена (рис. 39.2). Фермент связывается с определенным участком кодирующей цепи, называемым промотором. Затем в стартовой точке инициируется синтез

Рис. 39.2. Полимеризация рибонуклеотидов в последовательность РНК, комплементарную кодирующей цепи гена. Реакция катализируется РНК-полимеразой. (From: J. D. Watson, Molecular Biology of the Gene, 3rd. ed., Copyright 1976, 1970, 1965, by W. A. Benjamin Inc. Menlo Park,

терминирующая последовательность. Область транскрибируемой ДНК между промотором и терминатором называется единицей транскрипции. Образующаяся при этом молекула РНК, синтезируемая в направлении называется первичным транскриптом. В прокариотических организмах первичный транскрипт часто содержит РНК-копии сразу нескольких генов, а у эукариот, как правило, - лишь единичного гена. 5-Концы первичного прокариотического транскрипта и зрелой цитоплазматической РНК идентичны. Это означает, что стартовая точка транскрипции соответствует 5-нуклеотиду мРНК. У эукариот первичные транскрипты, синтезированные РНК-полимеразой II, тут же модифицируются посредством присоединения «кэпа» - -метилгуанозинтрифосфата (рис. 37.10) (он постоянно присутствует на -конце зрелых цитоплазматических мРНК). По-видимому, кэпирование необходимо как для процесса созревания первичного транскрипта, так и для последующей трансляции зрелой мРНК.

Молекула ДНК-зависимой РНК-полимеразы Е. coli состоит из четырех субъединиц - двух идентичных (а-субъединицы) и еще двух - близких по размеру, но не идентичных Р-субъединицы). Для осуществления полимеразной функции должен образоваться холофермент - комплекс так называемого корфермента, т. е. собственно РНК-полимеразы, с дополнительным белковым фактором (ст-фактор), способствующим более прочному связыванию полимеразы со специфической промоторной последовательностью ДНК. Бактерии продуцируют множество различных ст-факторов, каждый из которых функционирует в роли регулятора, модулирующего промоторную специфичность РНК-полимеразы. Появление различных ст-факторов коррелирует во времени с запуском различных «комплексных программ» экспрессии определенного набора генов в прокариотических системах, таких, как развитие бактериофагов, споруляция или ответ на тепловой шок.

Процесс синтеза РНК, изображенный на рис. 39.3, включает связывание РНК-полимеразного комплекса с ДНК-матрицей в промоторной области. Вслед за этапом инициации синтеза РНК высвобождается ст-фактор и происходит элонгация синтеза РНК в направлении антипараллельно матричной цепи ДНК. Фермент полимеризует рибонуклеотиды в определенной последовательности, отражающей структуру кодирующей цепи в соответствии с принципом комплементарности. В ходе реакции высвобождается пирофосфат. И в прокариотических, и в эукариотических организмах полимеризация РНК начинается обычно с пуринового рибонуклеотида.

По мере продвижения комплекса элонгации, содержащего РНК-полимеразу (корфермент) по кодирующей цепи, должно происходить расплетание днк. Оно необходимо для правильного образования комплементарных пар со встраиваемыми в цепь РНК рибонуклеотидами. Размер расплетенного участка ДНК постоянен в течение всего процесса транскрипции и составляет около 17 пар на молекулу полимеразы (судя по всему, он не зависит от транскрибируемой последовательности ДНК). Это позволяет предположить, что РНК-полимераза ассоциирована с дополнительным фактором, проявляющим расплетающую активность, благодаря которой и раскрывается спираль ДНК. Тот факт, что для протекания транскрипции двойная спираль ДНК должна развернуться, а цепи разойтись (по крайней мере временно), означает неизбежность некоторого нарушения структуры нуклеосом.

Сигнал терминации синтеза молекулы РНК представляет собой определенную последовательность, расположенную в рамках кодирующей цепи ДНК. Этот сигнал распознается терминирующим белком- р-фактором. После терминации синтеза данной цепи РНК корфермент отделяется от ДНК-матрицы и, связавшись с новой молекулой ст-фактора, может узнавать соответствующие про-моторные участки и приступать к синтезу новой молекулы РНК. Одну и ту же кодирующую цепь могут одновременно считывать несколько молекул РНК-полимеразы, но процесс отрегулирован таким образом, что в каждый данный момент каждая молекула транскрибирует различные участки ДНК. Электронная микрофотография синтеза РНК представлена на рис. 39.4.

В клетках млекопитающих обнаружено несколько типов ДНК-зависимых РНК-полимераз. Их свойства представлены в табл. 39.1. По-видимому, каждый из этих ферментов отвечает за транскрипцию различных наборов генов. Молекулярные массы трех важнейших классов РНК-полимераз млекопитающих варьируют в пределах 500000-600000. Их

(см. скан)

Рис. 39.3. Процесс синтеза РНК. Начало процесса показано слева вверху, где сигма-фактор, соединяясь с кор-ферментом РНК-полимеразы, образует комплекс, способный узнавать промотор и начать транскрипцию. Процесс заканчивается высвобождением РНК-полимеразы. Свободная полимераза и другие высвобожденные каталитические факторы могут принять участие в новом акте транскрипции. Символом Фер. обозначен фермент. (From J. D. Watson, Molecular Biology of the Gene, 3rd. ed., Copyright 1976, 1970, 1965 by W. A. Benjamin Inc. Mario Park, Calif.)

Таблица 39.1. Номенклатура и локализация ДНК-зависимых РНК-полимераз животных

Рис. 39.4. Электронная микрофотография множественных копий транскрибируемых генов рибосомной РНК клеток амфибий. Увеличение На фотографии видно, что при продвижении РНК-полимеразы вдоль гена длина транскрипта увеличивается. С ближним концом гена связан короткий транскрипт, а с дальним концом-гораздо более протяженный. Стрелками указано направление ) транскрипции. (Reproduced with permission from Miller О. L. Jr, Beatty B. R„ Portrait of a Gene. J. Cell Physiol. 1969. 74 :225.)

структура имеет много общего со структурой бактериальной ДНК-зависимой РНК-полимеразы. Все они имеют по две больших субъединицы и по несколько малых субъединиц. Недавние работы по клонированию и секвенированию продемонстрировали сходство аминокислотных последовательностей эукариотических и прокариотических РНК-полимераз. Функции индивидуальных субъединиц пока не выяснены. Некоторые из них могут нести регуляторные функции, осуществляя узнавание специфических последовательностей промотора и терминатора.

Один из токсинов-а-аманитин, продуцируемый грибом Amantia phaloides, является специфическим ингибитором нуклеоплазматической ДНК-зависимой РНК-полимеразы (РНК-полимеразы II), благодаря чему его удалось эффективно использовать во многих молекулярно-биологических исследованиях (см. табл. 39.1).

Сигналы транскрипции

Анализ нуклеотидной последовательности клонированных генов позволил выявить ряд областей ДНК, играющих существенную роль в процессах транскрипции. На основе изучения большого числа бактериальных генов стало возможным построение консенсусных моделей последовательностей, выполняющих функции промоторов и терминаторов транскрипции. Бактериальные промоторы состоят примерно из 40 нуклеотидных пар (4 витка двойной спирали ДНК), т.е. они достаточно малы, чтобы полностью закрываться РНК-холополимеразным комплексом Е. coli. В рамках консенсусной структуры промотора выявлены два коротких консервативных элемента. На расстоянии около 35 нуклеотидных пар в сторону 5-конца от точки начала транскрипции находится восьмичленная последовательность, изображенная на рис. 39.5. На более близком расстоянии к точке инициации транскрипции (около 10 нуклеотидов) расположен 6-членный АТ-богатый участок. Он имеет относительно низкую температуру плавления из-за отсутствия GC-nap. В связи с этим считается, что на данном участке, называемом ТАТА-последовательностью (а также Прибнов-боксом), легко происходит диссоциация цепей ДНК так, что РНК-полимераза, связанная с областью промотора, получает доступ к участку последовательности кодирующей цепи, непосредственно прилегающему к промотору со стороны 3.

Как показано на рис. 39.6, p-зависимые сигналы терминации транскрипции в клетках Е. coli также характеризуются определенной консенсусной структурой. Консервативная последовательность терминатора, состоящая примерно из 40 нуклеотидов, содержит разнесенные на некоторое расстояние инвертированные повторы и заканчивается серией АТ-пар. РНК-транскрипт, образовавшийся после прохождения транскрипционного комплекса через область инвертированных повторов, может формировать внутримолекулярную шпилечную структуру, изображенную на рис. 39.6. Транскрипция продолжается далее в вышеупомянутую АТ-область, после чего под воздействием специфического белка-терминатора, так называемого р-фактора, РНК-полимеразный комплекс останавливается и диссоциирует, высвобождая первичный РНК-транскрипт.

Транскрипционные сигналы генов млекопитающих, как и следовало ожидать, организованы более сложно. Данные, полученные с помощью генной инженерии, свидетельствуют о наличии нескольких типов сигналов, контролирующих транскрипцию. Вблизи собственно промоторной области расположены сигнальные последовательности двух типов. Одна из них указывает, где должна начаться транскрипция, а другая определяет, как часто должно происходить это событие. В гене тимидинкиназы вируса герпеса, использующего транскрипционную систему хозяина для экспрессии собственных генов, существует один уникальный сайт инициации транскрипции.

Рис. 39.5. Бактериальные промоторы содержат две высококонсервативные последовательности, отстоящие на 35 и 10 нуклеотидов со стороны -конца от точки инициации транскрипции, обозначенной

Рис. 39.6. Бактериальный сигнал терминации транскрипции, состоящий из удаленных друг от друга на некоторое расстояние инвертированных повторов и АТ-участка (сверху). После транскрипции эта область формирует в РНК-транскрипте вторичную структуру, показанную в нижней части рисунка.

Точная транскрипция с этого сайта определяется прилежащей 5-последовательностью, расположенной на участке 32-16 нуклеотидов от точки инициации. Этот участок содержит последовательность TATAAAAG, которая отчетливо гомологична функционально родственному Прибнов-боксу (ТАТААТ), расположенному обычно на расстоянии около 10 пар оснований от точки начала синтеза прокариотических мРНК. РНК-полимераза II, вероятно, связывается с ДНК в области ТАТА-бокса и начинает синтез РНК примерно через 32 нуклеотида-у остатка ти-мидина, находящегося в окружении пуриновых нуклеотидов (рис. 39.7). Таким образом, ТАТА-бокс, вероятно, является именно тем сигналом, который указывает, где должна начаться транскрипция.

Два более удаленных от сайта инициации транскрипции участка последовательности образуют один функциональный элемент, определяющий, как часто должна происходить транскрипция данного гена. Мутация в любой из этих областей, расположенных на участке от -61 до -47 и от - 105 до -80 пар оснований от точки инициации транскрипции гена тимидинкиназы, снижает частоту актов инициации в 10-20 раз. Функционирование таких промоторных элементов, контролирующих точность и частоту инициации, в сильной степени зависит от их расположения и ориентации. Замена даже единичного нуклеотида в этой области может весьма существенно сказаться на их функции. Критичным является также и расстояние до точки инициации транскрипции; при изменении -ориентации на обратную эти элементы, как правило, утрачивают регуляторную активность (рис. 39.8).

Третий класс последовательностей увеличивает или уменьшает обычный (базовый) уровень транскрипции эукариотических генов. Эти элементы в

Рис. 39.7. Транскрипция гена тимидинкиназы. ДНК-зависимая РНК-полимераза II связывается с областью, комплементарной ТАТА-боксу, и начинает транскрипцию кодирующей цепи с остатка Т, окруженного пуринами и отстоящего от ТАТА-бокса примерно на 32 нуклеотида. Первый -остаток пурина в первичном транскрипте быстро модифицируется присоединением «кэпа».

Рис. 39.8. Схема организации регуляторных блоков типичного эукариотического гена. В функциональном гене можно выделить регуляторную и структурную области, разделенные сайтом инициации транскрипции (показан стрелкой). Регуляторная область состоит из двух элементов, определяющих базовый уровень экспрессии. Проксимальный элемент, ТАТА-бокс, направляет РНК-полимеразу к сайту инициации транскрипции и, следовательно, определяет точность начала синтеза РНК. Другой регуляторный элемент (upstream) контролирует частоту, с которой происходит инициация транскрипции. Наиболее изученным регуляторным элементом этого класса является так называемый СААТ-бокс, однако в других генах могут использоваться и иные элементы. В регуляции экспрессии участвуют также энхансеры и сайленсеры - элементы, усиливающие или ослабляющие базовый уровень транскрипции, и элементы, регулирующие экспрессию определенных генов в ответ на различные сигналы (включая гормоны, тепловой шок, ионы металлов, некоторые химические препараты). Сюда же относятся и функционально подобные элементы, обусловливающие тканевую специфичность экспрессии генов. Возможно, что два последних блока регуляторных элементов функционально перекрываются (показано соединяющей линией). Зависимость функции элемента данного типа от ориентации указана стрелками. Так, проксимальный элемент обязательно должен быть в ориентации У. СААТ-бокс и аналогичные ему элементы наиболее эффективно работают в ориентации но некоторые функционируют в обеих ориентациях. Разорванные линии между квадратами указывают на то, что положения данных элементов относительно сайта инициации транскрипции строго не фиксированы. В действительности элементы регуляции экспрессии могут быть расположены также и правее (т. е. ближе к З-концу) сайта инициации транскрипции.

висимости от оказываемого ими эффекта называют «энхансерами» или «сайленсерами» соответственно. Они могут быть расположены как до (со стороны 5), так и после (со стороны 3) сайта инициации транскрипции. В отличие от промоторных последовательностей энхансеры и сайленсеры могут оказывать -эффект на расстоянии сотен и тысяч оснований от соответствующей транскрипционной единицы. Их функционирование не зависит от ориентации.

И наконец, известен еще один класс регуляторных элементов, обеспечивающих адаптивную регуляцию экспрессии некоторых генов. Представителями этого класса являются регуляторные элементы, чувствительные к гормонам (стероидам, Т3, ТРГ, сАМР, пролактину и т. д.; см. гл. 44). Сюда же включены элементы, специфически регулирующие клеточный ответ на тепловой шок, действие металлов и некоторых химических токсинов (диоксин). К этому классу относятся и определенные участки последовательности ДНК, ответственные за регуляцию тканеспецифичной экспрессии генов, например гена альбумина в печени. Некоторые из таких адаптационных структур функционируют подобно сайленсерам или энхансерам (так регуляторный элемент, чувствительный к глюкокортикоидным гормонам, действует как энхансер).

Общее свойство всех регуляторных элементов, как основных, так и дополнительных, состоит в том, что их функционирование зависит от взаимодействия определенных участков ДНК со специфическими белковыми факторами. Множество таких белковых факторов было идентифицировано (табл. 39.2). Изучению механизма влияния таких ДНК-белковых

Таблица 39.2. Некоторые регуляторные элементы, контролирующие транскрипцию, и связывающиеся с ними факторы, найденные для генов, транскрибируемых РНК-полимеразой II

взаимодействий на транскрипцию генов посвящено значительное число исследований.

Сигналы терминации транскрипции, направляемой эукариотической РНК-полимеразой II, изучены очень плохо. Однако есть основания считать, что сигналы терминации расположены на значительном расстоянии от З-конца кодирующей области эукариотических генов. Например, сигналы терминации транскрипции гена Р-глобина мыши обнаружены в нескольких местах на расстоянии 1000-2000 оснований далее сайта, по которому обычно происходит полиаденилирование транскрипта. Мало что известно о самом процессе терминации. Неизвестно, участвуют ли в терминации какие-либо специфические белковые факторы, подобные р-фактору бактерий. -Конец зрелой генерируется уже после завершения транскрипции, по-видимому, в два этапа. После того как РНК-полимераза II пройдет область, кодирующую З-конец транскрипта, первичный транскрипт расщепляется РНК-эндонуклеазой в области, отстоящей от консенсусной -последовательности AAUAAA на 15 оснований. По-видимому, в эукариотических транскриптах последовательность AAUAAA выполняет функцию сигнала разрезания РНК. Затем вновь образованный З-конец полиаденилируется в нуклеоплазме, как описано ниже.

ДНК-зависимая РНК-полимераза III, транскрибирующая гены и малых ядерных РНК ( см. гл. 37), узнает внутригенный промотор, расположенный непосредственно в рамках транскрибируемой последовательности. В случае эукариотических генов функцию внутригенного промотора выполняют два отдельных внутренних блока последовательностей. Они транскрибируются, сохраняются в зрелой в высококонсервативной области и участвуют в образовании DHU- и ТРС-петель соответственно (рис. 37.11). При изучении структуры генов тРНК in vitro было показано, что для выполнения промоторных функций расстояние между двумя блоками должно составлять 30-40 пар оснований. Транскрипция инициируется на участке между 10- и 16-м нуклеотидом перед блоком А. Что касается гена также транскрибируемого РНК-полимеразой III, то для него выявлено взаимодействие со специфическим белковым фактором транскрипции. Судя по всему, связываясь с внутригенным промотором, этот фактор взаимодействует с РНК-полимеразой III, контролируя точность расположения каталитического центра фермента в точке инициации транскрипции.


Тема сегодняшней лекции - синтез ДНК, РНК и белков. Синтез ДНК называется репликацией или редупликацией (удвоением), синтез РНК - транскрипцией (переписывание с ДНК), синтез белка, проводимый рибосомой на матричной РНК называется трансляцией, то есть переводим с языка нуклеотидов на язык аминокислот.

Мы постараемся дать краткий обзор всех этих процессов, в то же время останавливаясь более подробно на молекулярных деталях, для того чтобы вы получили представление, на какую глубину этот предмет изучен.

Репликация ДНК

Молекула ДНК, состоящая из двух спиралей, удваивается при делении клетки. Удвоение ДНК основано на том, что при расплетении нитей к каждой нити можно достроить комплементарную копию, таким образом получая две нити молекулы ДНК, копирующие исходную.

Здесь также указан один из параметров ДНК, это шаг спирали, на каждый полный виток приходится 10 пар оснований, заметим, что один шаг - это не между ближайшими выступами, а через один, так как у ДНК есть малая бороздка и большая. Через большую бороздку с ДНК взаимодействуют белки, которые распознают последовательность нуклеотидов. Шаг спирали равен 34 ангстрем, а диаметр двойной спирали - 20 ангстрем.

Репликацию ДНК осуществляет фермент ДНК-полимераза. Этот фермент способен наращивать ДНК только на 3΄- конце. Вы помните, что молекула ДНК антипараллельна, разные ее концы называются 3΄-конец и 5΄ - конец. При синтезе новых копий на каждой нити одна новая нить удлиняется в направлении от 5΄ к 3΄ , а другая - в направлении от 3΄ к 5-концу. Однако 5΄ конец ДНК-полимераза наращивать не может. Поэтому синтез одной нити ДНК, той, которая растет в "удобном" для фермента направлении, идет непрерывно (она называется лидирующая или ведущая нить), а синтез другой нити осуществляется короткими фрагментами (они называются фрагментами Оказаки в честь ученого, который их описал). Потом эти фрагменты сшиваются, и такая нить называется запаздывающей, в целом репликация этой нити идет медленней. Структура, которая образуется во время репликации, называется репликативной вилкой.

Если мы посмотрим в реплицирующуюся ДНК бактерии, а это можно наблюдать в электронном микроскопе, мы увидим, что у нее вначале образуется "глазок", затем он расширяется, в конце концов вся кольцевая молекула ДНК оказывается реплицированной. Процесс репликации происходит с большой точностью, но не абсолютной. Бактериальная ДНК-полимераза делает ошибки, то есть вставляет не тот нуклеотид, который был в матричной молекуле ДНК, примерно с частотой 10 -6 . У эукариот ферменты работают точнее, так как они более сложно устроены, уровень ошибок при репликации ДНК у человека оценивается как 10 -7 - 10 -8 . Точность репликации может быть разной на разных участках геном, есть участки с повышенной частотой мутаций и есть участки более консервативные, где мутации происходят редко. И в этом следует различать два разных процесса: процесс появления мутации ДНК и процесс фиксации мутации. Ведь если мутации ведут к летальному исходу, они не проявятся в следующих поколениях, а если ошибка не смертельна, она закрепится в следующих поколениях, и мы сможем ее проявление наблюдать и изучить. Еще одной особенностью репликации ДНК является то, что ДНК-полимераза не может начать процесс синтеза сама, ей нужна «затравка». Обычно в качестве такой затравки используется фрагмент РНК. Если речь идет о геноме бактерии, то там есть специальная точка называемая origin (исток, начало) репликации, в этой точке находится последовательность, которая распознается ферментом, синтезирующим РНК. Он относится к классу РНК-полимераз, и в данном случае называется праймазой. РНК-полимеразы не нуждаются в затравках, и этот фермент синтезирует короткий фрагмент РНК - ту самую «затравку», с которой начинается синтез ДНК.

Транскрипция

Следующий процесс - транскрипция. На нем остановимся подробнее.

Транскрипция - синтез РНК на ДНК, то есть синтез комплементарной нити РНК на молекуле ДНК осуществляется ферментом РНК-полимеразой. У бактерий, например, кишечной палочки - одна РНК-полимераза, и все бактериальные ферменты очень похожи друг на друга; у высших организмов (эукариотов) - несколько ферментов, они называются РНК-полимераза I, РНК-полимераза II, РНК-полимераза III, они также имеют сходство с бактериальными ферментами, но устроены сложнее, в их состав входит больше белков. Каждый вид эукариотической РНК-полимеразы обладает своими специальными функциями, то есть транскрибирует определенный набор генов. Нить ДНК, которая служит матрицей для синтеза РНК при транскрипции называется смысловой или матричной. Вторая нить ДНК называется некодирующей (комплементарная ей РНК не кодирует белки, она "бессмысленная").

В процессе транскрипции можно выделить три этапа. Первый этап - инициация транскрипции - начало синтеза нити РНК, образуется первая связь между нуклеотидами. Затем идет наращивание нити, ее удлинение - элонгация , и, когда синтез завершен, происходит терминация , освобождение синтезированной РНК. РНК-полимераза при этом «слезает» с ДНК и готова к новому циклу транскрипции. Бактериальная РНК-полимераза изучена очень подробно. Она состоит из нескольких белковых-субъединиц: двух α-субъединиц (это маленькие субъединицы), β- и β΄-субъединиц (большие субъединицы) и ω-субъединицы. Вместе они образуют так называемый минимальный фермент, или кор-фермент. К этому кор-ферменту может присоединяться σ-субъединица. σ-субъединица необходима для начала синтеза РНК, для инициации транскрипции. После того, как инициация осуществилась, σ-субъединица отсоединяется от комплекса, и дальнейшую работу (элонгацию цепи) ведет кор-фермент. При присоединении к ДНК σ-субъединица распознает участок, на котором должна начинаться транскрипция. Он называется промотор. Промотор - это последовательность нуклеотидов, указывающих на начало синтеза РНК. Без σ-субъединицы кор-фермент промотор распознать не может. σ-субъединица вместе с кор-ферментом называется полным ферментом, или холоферментом.

Связавшись с ДНК, а именно с промотором, который распознала σ-субъединица, холофермент расплетает двунитевую спираль и начинает синтез РНК. Участок расплетенной ДНК - это точка инициации транскрипции, первый нуклеотид, к которому должен комплементарно быть присоединен рибонуклеотид. Инициируется транскрипция, σ-субъединица уходит, а кор-фермент продолжает элонгацию цепи РНК. Затем происходит терминация, кор-фермент освобождается и становится готов к новому циклу синтеза.

Как происходит элонгация транскрипции ?

РНК наращивается на 3΄-конце. Присоединением каждого нуклеотида кор-фермент делает шаг по ДНК и сдвигается на один нуклеотид. Так как все в мире относительно, то можно сказать, что кор-фермент неподвижен, а сквозь него «протаскивается» ДНК. Понятно, что результат будет таким же. Но мы будем говорить о движении по молекуле ДНК. Размер белкового комплекса, составляющего кор-фермент, 150 Ǻ. Размеры РНК-полимеразы - 150×115×110Ǻ. То есть это такая наномашина. Скорость работы РНК-полимеразы - до 50 нуклеотидов в секунду. Комплекс кор-фермента с ДНК и РНК называется элонгационным комплексом. В нем находится ДНК-РНК гибрид. То есть это участок, на котором ДНК спарена с РНК, и 3΄-конец РНК открыт для дальнейшего роста. Размер этого гибрида - 9 пар оснований. Расплетенный участок ДНК занимает примерно 12 пар оснований.

РНК-полимераза связанна с ДНК перед расплетенным участком. Этот участок называется передним дуплексом ДНК, его размер - 10 пар оснований. Полимераза связана также с более длинной частью ДНК, называемой задним дуплексом ДНК. Размер матричных РНК, которые синтезируют РНК-полимеразы у бактерий, могут достигать 1000 нуклеотидов и больше. В эукариотических клетках размер синтезируемых РНК может достигать 100000 и даже нескольких миллионов нуклеотидов. Правда, неизвестно, существуют ли они в таких размерах в клетках, или в процессе синтеза они могут успеть процессировать.

Элонгационный комплекс довольно стабилен, т.к. он должен выполнить большую работу. То есть, сам по себе он с ДНК не «свалится». Он способен перемещаться по ДНК со скоростью до 50 нуклеотидов в секунду. Этот процесс называется перемещение (или, транслокация). Взаимодействие ДНК с РНК-полимеразой (кор-ферментом) не зависит от последовательности этой ДНК, в отличие от σ-субъединицы. И кор-фермент при прохождении определенных сигналов терминации завершает синтез ДНК.

Разберем более подробно молекулярную структуру кор-фермента. Как было сказано выше, кор-фермент состоит из α- и β-субъединиц. Они соединены так, что образуют как бы «пасть» или «клешню». α-субъединицы находятся в основании этой «клешни», и выполняют структурную функцию. С ДНК и РНК они, по-видимому, не взаимодействуют. ω-субъединица - небольшой белок, который также выполняет структурную функцию. Основная часть работы приходится на долю β- и β΄-субъединиц. На рисунке β΄-субъединица показана наверху, а β-субъединица - внизу.

Внутри «пасти», которая называется главным каналом, находится активный центр фермента. Именно здесь происходит соединение нуклеотидов, образование новой связи при синтезе РНК. Главный канал в РНК-полимеразе - это то место, где во время элонгации находится ДНК. Еще в этой структуре сбоку есть так называемый вторичный канал, по которому подаются нуклеотиды для синтеза РНК.

Распределение зарядов на поверхности РНК-полимеразы обеспечивает ее функции. Распределение очень логично. Молекула нуклеиновой кислоты заряжена отрицательно. Поэтому полость главного канала, где должна удерживаться отрицательно заряженная ДНК, выложена положительными зарядами. Поверхность РНК-полимеразы выполнена отрицательно заряженными аминокислотами, чтобы ДНК к ней не прилипала.

РНК-полимераза работает как молекулярная машина, и в ней есть различные детали, каждая из которых выполняет свою функцию. Например, нависающая над "пастью" часть β΄- субъединицы удерживает передний ДНК-дуплекс. Эта часть называется "заслонкой". После связывания с ДНК заслонка опускается, проходя путь в 30 ангстрем, и зажимает ДНК так, чтобы она не могла выпасть в процессе транскрипции.

внутри "пасти" находится активный центр РНК-полимеразы, то есть то место, где непосредственно происходит комплементарное взаимодействие поступившего по боковому каналу рибонуклеоиздтрифосфата с ДНК-матрицей. Если вновь прибывший нуклеотид комплементарен матрице, то он ферментативно пришивается к свободному 3" -концу РНК. По характеру реакция образования новой связи в РНК относится к реакциям нуклеофильного замещения. В ней участвуют два иона магния. Один ион постоянно находится в активном центре, а второй ион магния поступает с нуклеотидом и после образования новой связи между рибонуклеотидами уходит, затем поступает новый нуклеотид со своим новым ионом магния.

При выходе из РНК-полимеразы ДНК-РНК гибрид должен быть расплетен. В этом участвует структура, называемая "шип".

В транслокации, то есть перемещении РНК-полимеразы по нити ДНК, участвует α-спиральная структура, снизу вверх торчащая из β-субъединицы.

Как же узнали, какая часть фермента какую роль выполняет. Молекулярные биологи поступают следующим образом. Они удаляют часть белковой последовательности и смотрят, какая функция исчезла. Было показано, что если выбросить фрагмент зажима (когда его выбрасывали, еще не знали, что он держит ДНК), то ДНК держаться не будет. Такой же результат получается, если удалить ДНК переднего дуплекса. Оставшаяся часть - РНК-ДНК гибрид и задний дуплекс - оказываются слабо связанными с РНК-полимеразой.

Известно, что магний координирует связь между фосфатами растущей молекулы ДНК и фосфатами вновь входящих нуклеотидов. При этом происходит последовательность реакций, называемых реакциями нуклеофильного замещения. Известно, каким образом меняются связи внутри этого комплекса. Новый нуклеотид приходит, будучи связанным с еще одним ионом магния. Новый нуклеотид таким образом взаимодействует с растущей цепью ДНК. В конце реакции, второй ион магния выводится из активного центра фермента.

РНК-полимераза является представителем молекулярных машин. Помимо того, что в начале синтеза ДНК опускается заслонка, меняется конформация других частей РНК-синтазы, в ней во время роста цепи РНК происходят циклические изменения, не такие сильные, как при начале синтеза цепи. В начале заслонка опускается на 30 Ǻ, а при каждом шаге фермента ДНК протягивается на один нуклеотид. В перемещении по ДНК участвует элемент РНК-полимеразы F-спираль (альфа-спиральная структуры, точащая из бета-субъединицы вверх в главный канал). F-спираль при этом изгибается, перемещается вместе с комплексом РНК-ДНК, освобождается от них и опять выпрямляется. Перемещается F-спираль за один шаг на 3,4 Ǻ. Именно такой шаг у РНК-полимеразы.

Изменение конформации различных частей РНК-полимеразы происходит за счет изменения потенциальной энергии, что связано с электростатическими и гидрофобными взаимодействиями. Можно провести следующую аналогию. Если взять поднос с горкой яблок, то после того, как мы этот поднос потрясем, яблоки будут рассыпаться ровным слоем по подносу. У них при этом изменится потенциальная энергия, связанная с действием силы тяжести. Если молекулу РНК-синтазы «потрясти» (а «трясет» ее, также как и все другие молекулы в клетке, броуновское движение), то она начнет принимать конформацию с более низкой потенциальной энергией. То есть, источником движения молекулярной машины является энергия теплового движения отдельных ее составляющих, а устройство машины таково, что это движение приводит к нужному результату. При этом молекулярная машина потребляет энергию, которая, в основном, идет на изменение состояния тех или иных связей.

Сейчас остановимся на инициации транскрипции . Как уже говорилось, инициация осуществляется с участием σ-субъединицей. Она взаимодействует со структурой ДНК, которая называется промотор. Она имеет у кишечной палочки такую структуру. За десять нуклеотидов до точки инициации находится ТАТА-бокс. Не обязательно стоит именно такая последовательность, но она является "идеальной" последовательностью для взаимодействия с σ-субъединицей, то есть такой, с которой транскрипция инициируется наиболее эффективно. Замена отдельных нуклеотидов в этой последовательности снижает эффективность инициации транскрипции. Еще примерно за 35 нуклеотидов до него находится структура, называемая «-35». Эту последовательность также распознает σ-субъединица. Эту структуру (сочетание последовательностей "-10" и "-35") назвали классическим промотором, т.к. она была описана первой. Но оказалось, что устройство промотора может быть и другим. Этот вариант включает в себя тот же ТАТА-бокс, но нет последовательности «-35», однако есть дополнительно два нуклеотида, и этого достаточно, чтобы σ-субъединица распознала промотор.

Эта структура называется расширенным промотором. σ-субъединица РНК-полимеразы садится на промотор в ДНК и разными частями белковой молекулы взаимодействует с частями промотора. Распознает его σ-субъединица через большую бороздку ДНК. После того, как σ-субъединица в составе кор-фермента связалась с промотором, ДНК на этом участке начинает плавиться (расплетаются нити ДНК). На прошлой лекции обсуждалось, что в паре А-Т связи между нуклеотидами разрываются легче, чем в паре Г-Ц, так как последняя содержит 3 водородных связи, а первая - две. Промотор содержит пары А-Т, поэтому плавится он достаточно легко. И затем начинается синтез РНК, растущая цепь РНК выталкивает σ-субъединицу и происходят еще другие изменения, которые вызывают диссоциацию σ-субъединицы от кор-фермента.

Теперь приведем пример, как изучают функции разных частей белка. Если небольшой кусочек белка отрезать и посмотреть, как изменились функции белка, то можно понять, какие были функции у отрезанного кусочка. В нашем случае сделали по-другому. Взяли две ДНК-полимеразы, одну взяли из кишечной палочки, а другую - из теплолюбивой бактерии (термофильной), которая растет при 800 С, (в лабораторных условиях их растят в колбе, которая находится в термостате в почти кипящей воде, в естественных условиях они живут в горячих источниках, есть такие, которые могут жить при 98оС), следовательно оптимум работы ее РНК-полимеразы и σ-субъединицы - 80оС, (на рисунке σ-субъединица термофильной бактерии показана красным, а кишечной палочки - желтым), а у кишечной палочки наиболее эффективная работа идет при температуре человеческого тела, (так как она живет в кишечнике). У ее σ-субъединицы всего четыре части, разрезали белок и сшивали эту σ-субъединицу с кусочком от σ-субъединицы термофильной бактерии. И потом разные кусочки от термофильной бактерии вставляли, заменяя ими разные фрагменты σ-субъединицы. Затем смотрели, активен ли полученный гибридный белок при 200 С или нет. Термофильная бактерия при такой температуре не работает, для нее это слишком холодно, а кишечная палочка активна. На рисунке видно, что при данной температуре работает только та комбинация, при которой у σ-субъединицы первая и вторая часть от кишечной палочки, а третья и четвертая от термофильной бактерии. Таким образом, делают вывод, что температуру работы σ-субъединицы определяют первая и вторая составные части.

На самом деле разрезают не белок, а ДНК, потом кусочки ДНК от разных бактерий сшивают вместе и затем вводят в бактерию, там при активизации этой части ДНК синтезируется гибридный белок. Эта технология относится к генной инженерии, она была разработана в 70-х годах.

Еще одной особенностью транскрипции является то, что кор-фермент бактериальной клетки один и тот же, а σ-субъединицы могут быть разными. У кишечной палочки всего 7 σ-субъединиц, они узнают разные промоторы. Зачем это нужно? Если клетке срочно нужно переключить синтез белков с одной группы генов на другую, она может использовать разные σ-субъединицы. Например, есть гены теплового шока, если кишечную палочку подогреть до состояния, когда жить ей станет очень тяжело, она включает аварийную систему сопротивления тепловому шоку, сопротивления тем разрушениям, которые произошли в клетке. В эту систему входит тот набор генов, который в норме работать не должен, перед этими генами свой особый промотор. И тогда другая σ-субъединица, не основная, синтезируется и активирует эти гены. То есть смена субъединицы - это смена программы работы генов. Это способ регуляции работы генов.

Трансляция

Перейдем к трансляции - синтезу белков. Она проводится рибосомами. Рибосома состоит из двух субчастиц: большой и малой.

Каждая субчастица состоит из нескольких десятков белков, каждый из которых уже изучен, известно, каким образом каждый белок уложен в субчастицу. При исследовании белков используют метод электрофореза, то есть в электрическом поле в специальном геле или специальном носителе молекулы белков разъединяются в зависимости от их заряда и молекулярного веса, то есть под действием поля они начинают двигаться и могут отодвигаться друг от друга на разное расстояние. Другим методом разделения белков является хроматография, в результате этого метода на носителе получают пятнышки, каждый из которых соответствует отдельному белку.

Белки в рибосоме держатся на каркасе, состоящем из рибосомной РНК. Формирование рибосомы начинается с того, что рибосомная РНК сворачивается и на нее в определенном порядке начинают налипать белки. На рисунке представлена рибосомная РНК. В ней самокомплементарные участки нити РНК спариваются, образуя шпильки (вторичная структура), и затем РНК сворачивается (третичная структура РНК), образуя каркас субчастиц.

Еще один вид РНК, участвующей в синтезе белка, это транспортная РНК (тРНК). Молекулы тРНК относительно небольшие (по сравнению с рибосомной или матричной РНК). Все тРНК имеют общую вторичную структуру. За счет спаривания комплементарных участков молекулы тРНК образуется три "стебля" с петлями на концах и один "стебель", образованный 5"- и 3"-концами молекулы тРНК (иногда образуется еще дополнительная пятая петля). Изображение этой структуры похоже на крест или клеверный лист. "Голова" на этом листе представлена антикодонной петлей, здесь находится антикодо - те три нуклеотида, которые комплементарно взаимодействуют с кодоном в мРНК. Противоположный антикодонной петле стебель, образованный концами молекулы, называется акцепторным стеблем - сюда присоединяется соответствующая аминокислота. Распознают подходящие друг другу тРНК и аминокислоты специальные ферменты, называемые аминоацил-тРНК синтетазами. Для каждой аминокислоты есть своя аминоацил-тРНК синтетаза.

В рибосоме находится матричная РНК (мРНК). С кодоном (тремя нуклеотидами) мРНК комплементарно связан антикодон транспортной РНК, на которой висит остаток аминокислоты. На рисунке видна такая структура (тРНК вместе с аминокислотой, которая называется аминоцил-тРНК).

Процесс трансляции, также как и процесс транскрипции, связан с перемещением вдоль молекулы нуклеиновой кислоты, разница в том, что рибосома шагает на три нуклеотида, в то время как РНК-полимераза - на один.

Аминоцил т-РНК входит в рибосому, комплементарно связываясь с кодоном мРНК, затем происходит реакция при которой аминокислотные остатки связываются друг с другом, а т-РНК удаляется.

"Словарь" для перевода с языка нуклеотидов на язык аминокислот называется генетическим кодом. Аминокислот - 20, нуклеотидов - 4, число комбинаций из 4 по 2 = 16, а аминокислот 20, поэтому кодировка не двух, а трехбуквенная, каждая тройка называется кодоном. Каждая аминокислота кодируется тремя нуклеотидами в мРНК (которая, в свою очередь, кодируется ДНК).

В таблице на рисунке боковые столбцы кодируют левую и правую букву кодона, верхняя строка - среднюю. Например кодон AUG кодирует аминокислоту метионин. Число комбинаций из 4 по 3 = 64, то есть некоторые аминокислоты кодируются несколькими кодонами. Три кодона не кодируют никакую аминокислоту, они называются терминирующими. Когда они попадаются в мРНК, рибосома прекращает свою работу и готовая полипептидная цепь выбрасывается наружу.

Таблица генетического кода была составлена в 60-х годах. Начало положили Ниренберг и Маттеию. Они пытались производить в пробирке эксперименты на клеточных экстрактах, к которым были добавлены искусственные матрицы РНК. В то время считалось, что кодоны, состоящие из одного нуклеотида (UUU или ААА) не кодируют аминокислоты. Ниренберг и Маттеи использовали полиU-РНК (то есть состоящую только из урацилов) в качестве контроля в своих опытах, но именно в этой пробирке прошла реакция. Стало ясно, что кодон UUU кодирует аминокислоту фенилаланин. Затем была составлена таблица генетического кода.

Генетический код универсален. Он один и тот же у всех микроорганизмов. Есть небольшие отличия в генетическом коде митохондрий.

Генетическим кодом называется таблица соответствия кодонов аминокислотам. Когда журналисты пишут о том, что недавно расшифрован генетический код человека - это грубая терминологическая ошибка. Генетический код человека расшифрован тогда же, когда и всех остальных живых существ - в 60-х годах XX века. Недавно расшифрован геном человека, то есть полная последовательность нуклеотидов всех молекул ДНК.

В лекции использованы изображения РНК-полимеразы, предоставленные Андреем Кульбачинским (Институт молекулярной генетики РАН).