Как вычисляются дроби с одинаковыми знаменателями. Сложение и вычитание алгебраических дробей с разными знаменателями (основные правила, простейшие случаи)

  • Сложение и вычитание дробей с одинаковыми знаменателями
  • Сложение и вычитание дробей с разными знаменателями
  • Понятие о НОК
  • Приведение дробей к одному знаменателю
  • Как сложить целое число и дробь

1 Сложение и вычитание дробей с одинаковыми знаменателями

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить тот же, например:

Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить тот же, например:

Чтобы сложить смешанные дроби, надо отдельно сложить их целые части, а затем сложить их дробные части, и записать результат смешанной дробью,

Пример 1:

Пример 2:

Если при сложении дробных частей получилась неправильная дробь, выделяем из нее целую часть и прибавляем ее к целой части, например:

2 Сложение и вычитание дробей с разными знаменателями.

Для того, чтобы сложить или вычесть дроби с разными знаменателями, нужно сначала привести их к одному знаменателю, а дальше действовать, как указано в начале этой статьи. Общий знаменатель нескольких дробей — это НОК (наименьшее общее кратное). Для числителя каждой из дробей находятся дополнительные множители с помощью деления НОК на знаменатель этой дроби. Мы рассмотрим пример позже, после того, как разберемся, что же такое НОК.

3 Наименьшее общее кратное (НОК)

Наименьшее общее кратное двух чисел (НОК) — это наименьшее натуральное число, которое делится на оба эти числа без остатка. Иногда НОК можно подобрать устно, но чаще, особенно при работе с большими числами, приходится находить НОК письменно, с помощью следующего алгоритма:

Для того, чтобы найти НОК нескольких чисел, нужно:

  1. Разложить эти числа на простые множители
  2. Взять самое большое разложение, и записать эти числа в виде произведения
  3. Выделить в других разложениях числа, которые не встречаются в самом большом разложении (или встречаются в нем меньшее число раз), и добавить их к произведению.
  4. Перемножить все числа в произведении, это и будет НОК.

Например, найдем НОК чисел 28 и 21:

4 Приведение дробей к одному знаменателю

Вернемся к сложению дробей с разными знаменателями.

Когда мы приводим дроби к одинаковому знаменателю, равному НОК обоих знаменателей, мы должны умножить числители этих дробей на дополнительные множители . Найти их можно, разделив НОК на знаменатель соответствующей дроби, например:

Таким образом, чтобы привести дроби к одному показателю, нужно сначала найти НОК (то есть наименьшее число, которое делится на оба знаменателя) знаменателей этих дробей, затем поставить дополнительные множители к числителям дробей. Найти их можно, разделив общий знаменатель (НОК) на знаменатель соответствующей дроби. Затем нужно умножить числитель каждой дроби на дополнительный множитель, а знаменателем поставить НОК.

5 Как сложить целое число и дробь

Для того, чтобы сложить целое число и дробь, нужно просто добавить это число перед дробью, при этом получится смешанная дробь, например:

Если мы складываем целое число и смешанную дробь, мы прибавляем это число к целой части дроби, например:

Тренажер 1

Сложение и вычитание дробей с одинаковыми знаменателями.

Лимит времени: 0

Навигация (только номера заданий)

0 из 20 заданий окончено

Информация

В этом тесте проверяется умение складывать дроби с одинаковыми знаменателями. При этом нужно соблюдать два правила:

  • Если в результате получается неправильная дробь, нужно перевести ее в смешанное число.
  • Если дробь можно сократить, обязательно сократите ее, иначе будет засчитан неправильный ответ.

Вы уже проходили тест ранее. Вы не можете запустить его снова.

Тест загружается...

Вы должны войти или зарегистрироваться для того, чтобы начать тест.

Вы должны закончить следующие тесты, чтобы начать этот:

Результаты

Правильных ответов: 0 из 20

Ваше время:

Время вышло

Вы набрали 0 из 0 баллов (0 )

  1. С ответом
  2. С отметкой о просмотре

Следующие правила применяются для правильных и неправильных дробей (смешанную дробь всегда можно перевести в неправильную дробь) с одинаковыми знаменателями.

Правило. Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители и оставить тот же знаменатель.

Например:

Правило. Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй дроби и оставить тот же знаменатель.

Например:

Следующие правила применяются для смешанных дробей с одинаковыми знаменателями.

Правило. Чтобы сложить смешанные дроби, необходимо отдельно сложить их целые и дробные части и записать сумму целых частей и сумму дробных частей смешанной дробью.

Если суммарная дробная часть окажется неправильной дробью, то те следует перевести в смешанную дробь, а выделенную из неправильной дроби целую часть добавить к сумме целых частей. Окончательную сумму целой и дробной частей записать смешанной дробью.

Например, сложить дроби:

Правило, Чтобы вычесть смешанные дроби, необходимо отдельно вычесть их целые и отдельно их дробные части и записать сумму полученных разностей смешанной дробью.

Если дробная часть уменьшаемого меньше дробной части вычитаемого, то от целой части уменьшаемого «одалживаем» 1, которую представляем как дробь с тем же знаменателем, что и у дробной части смешанных дробей, и с равным этому знаменателю числителем. Одолженную 1, выраженную неправильной дробью с одинаковыми числителем и знаменателем, суммируем с дробной частью уменьшаемого. После этого производим вычисления согласно правилу вычитания смешанных дробей.

Данная статья начинает изучение действий с алгебраическими дробями: рассмотрим подробно такие действия как сложение и вычитание алгебраических дробей. Разберем схему сложения и вычитания алгебраических дробей как с одинаковыми знаменателями, так и с разными. Изучим, как сложить алгебраическую дробь с многочленом и как произвести их вычитание. На конкретных примерах поясним каждый шаг поиска решения задач.

Yandex.RTB R-A-339285-1

Действия сложения и вычитания при одинаковых знаменателях

Схема сложения обыкновенных дробей применима и для алгебраических. Мы знаем, что при сложении или вычитании обыкновенных дробей с одинаковыми знаменателями необходимо сложить или вычесть их числители, а знаменатель остается исходным.

К примеру: 3 7 + 2 7 = 3 + 2 7 = 5 7 и 5 11 - 4 11 = 5 - 4 11 = 1 11 .

Соответственно аналогичным образом записывается правило сложения и вычитания алгебраических дробей с одинаковыми знаменателями:

Определение 1

Чтобы осуществить сложение или вычитание алгебраических дробей с одинаковыми знаменателями, нужно соответственно сложить или вычесть числители исходных дробей, а знаменатель записать без изменений.

Данное правило дает возможность сделать вывод, что результат сложения или вычитания алгебраических дробей - новая алгебраическая дробь (в частном случае: многочлен, одночлен или число).

Укажем пример применения сформулированного правила.

Пример 1

Заданы алгебраические дроби: x 2 + 2 · x · y - 5 x 2 · y - 2 и 3 - x · y x 2 · y - 2 . Необходимо осуществить их сложение.

Решение

Исходные дроби содержат одинаковые знаменатели. Согласно правилу, выполним сложение числителей заданных дробей, а знаменатель оставим неизменным.

Сложив многочлены, являющиеся числителями исходных дробей, получим: x 2 + 2 · x · y − 5 + 3 − x · y = x 2 + (2 · x · y − x · y) − 5 + 3 = x 2 + x · y − 2 .

Тогда искомая сумма будет записана как: x 2 + x · y - 2 x 2 · y - 2 .

В практике, как во многих случаях, решение приводится цепочкой равенств, наглядно показывающей все этапы решения:

x 2 + 2 · x · y - 5 x 2 · y - 2 + 3 - x · y x 2 · y - 2 = x 2 + 2 · x · y - 5 + 3 - x · y x 2 · y - 2 = x 2 + x · y - 2 x 2 · y - 2

Ответ: x 2 + 2 · x · y - 5 x 2 · y - 2 + 3 - x · y x 2 · y - 2 = x 2 + x · y - 2 x 2 · y - 2 .

Результатом сложения или вычитания может стать сократимая дробь, в этом случае оптимально ее сократить.

Пример 2

Необходимо вычесть из алгебраической дроби x x 2 - 4 · y 2 дробь 2 · y x 2 - 4 · y 2 .

Решение

Знаменатели исходных дробей равны. Произведем действия с числителями, а именно: вычтем из числителя первой дроби числитель второй, после чего запишем результат, оставляя знаменатель неизменным:

x x 2 - 4 · y 2 - 2 · y x 2 - 4 · y 2 = x - 2 · y x 2 - 4 · y 2

Мы видим, что полученная дробь – сократимая. Осуществим ее сокращение, преобразовав знаменатель при помощи формулы разности квадратов:

x - 2 · y x 2 - 4 · y 2 = x - 2 · y (x - 2 · y) · (x + 2 · y) = 1 x + 2 · y

Ответ: x x 2 - 4 · y 2 - 2 · y x 2 - 4 · y 2 = 1 x + 2 · y .

По такому же принципу складываются или вычитаются три и более алгебраических дробей при одинаковых знаменателях. К примеру:

1 x 5 + 2 · x 3 - 1 + 3 · x - x 4 x 5 + 2 · x 3 - 1 - x 2 x 5 + 2 · x 3 - 1 - 2 · x 3 x 5 + 2 · x 3 - 1 = 1 + 3 · x - x 4 - x 2 - 2 · x 3 x 5 + 2 · x 3 - 1

Действия сложения и вычитания при разных знаменателях

Вновь обратимся к схеме действий с обыкновенными дробями: чтобы выполнить сложение или вычитание обыкновенных дробей с разными знаменателями, необходимо привести их к общему знаменателю, а затем сложить полученные дроби с одинаковыми знаменателями.

К примеру, 2 5 + 1 3 = 6 15 + 5 15 = 11 15 или 1 2 - 3 7 = 7 14 - 6 14 = 1 14 .

Так же по аналогии сформулируем правило сложения и вычитания алгебраических дробей с разными знаменателями:

Определение 2

Чтобы осуществить сложение или вычитание алгебраических дробей с разными знаменателями, необходимо:

  • исходные дроби привести к общему знаменателю;
  • выполнить сложение или вычитание полученных дробей с одинаковыми знаменателями.

Очевидно, что ключевым здесь будет навык приведения алгебраических дробей к общему знаменателю. Разберем подробнее.

Приведение алгебраических дробей к общему знаменателю

Чтобы привести алгебраические дроби к общему знаменателю, необходимо осуществить тождественное преобразование заданных дробей, в результате которого знаменатели исходных дробей становятся одинаковыми. Здесь оптимально действовать по следующему алгоритму приведения алгебраических дробей к общему знаменателю:

  • сначала определяем общий знаменатель алгебраических дробей;
  • затем находим дополнительные множители для каждой из дробей, разделив общий знаменатель на знаменатели исходных дробей;
  • последним действием числители и знаменатели заданных алгебраических дробей умножаются на соответствующие дополнительные множители.
Пример 3

Заданы алгебраические дроби: a + 2 2 · a 3 - 4 · a 2 , a + 3 3 · a 2 - 6 · a и a + 1 4 · a 5 - 16 · a 3 . Необходимо привести их к общему знаменателю.

Решение

Действуем по указанному выше алгоритму. Определим общий знаменатель исходных дробей. С этой целью разложим знаменатели заданных дробей на множители: 2 · a 3 − 4 · a 2 = 2 · a 2 · (a − 2) , 3 · a 2 − 6 · a = 3 · a · (a − 2) и 4 · a 5 − 16 · a 3 = 4 · a 3 · (a − 2) · (a + 2) . Отсюда можем записать общий знаменатель: 12 · a 3 · (a − 2) · (a + 2) .

Теперь нам предстоит найти дополнительные множители. Разделим, согласно алгоритму, найденный общий знаменатель на знаменатели исходных дробей:

  • для первой дроби: 12 · a 3 · (a − 2) · (a + 2) : (2 · a 2 · (a − 2)) = 6 · a · (a + 2) ;
  • для второй дроби: 12 · a 3 · (a − 2) · (a + 2) : (3 · a · (a − 2)) = 4 · a 2 · (a + 2);
  • для третьей дроби: 12 · a 3 · (a − 2) · (a + 2) : (4 · a 3 · (a − 2) · (a + 2)) = 3 .

Следующий шаг - умножение числителей и знаменателей заданных дробей на найденные дополнительные множители:

a + 2 2 · a 3 - 4 · a 2 = (a + 2) · 6 · a · (a + 2) (2 · a 3 - 4 · a 2) · 6 · a · (a + 2) = 6 · a · (a + 2) 2 12 · a 3 · (a - 2) · (a + 2) a + 3 3 · a 2 - 6 · a = (a + 3) · 4 · a 2 · (a + 2) 3 · a 2 - 6 · a · 4 · a 2 · (a + 2) = 4 · a 2 · (a + 3) · (a + 2) 12 · a 3 · (a - 2) · (a + 2) a + 1 4 · a 5 - 16 · a 3 = (a + 1) · 3 (4 · a 5 - 16 · a 3) · 3 = 3 · (a + 1) 12 · a 3 · (a - 2) · (a + 2)

Ответ: a + 2 2 · a 3 - 4 · a 2 = 6 · a · (a + 2) 2 12 · a 3 · (a - 2) · (a + 2) ; a + 3 3 · a 2 - 6 · a = 4 · a 2 · (a + 3) · (a + 2) 12 · a 3 · (a - 2) · (a + 2) ; a + 1 4 · a 5 - 16 · a 3 = 3 · (a + 1) 12 · a 3 · (a - 2) · (a + 2) .

Так, мы привели исходные дроби к общему знаменателю. В случае необходимости далее можно преобразовать полученный результат в вид алгебраических дробей, осуществив умножение многочленов и одночленов в числителях и знаменателях.

Уточним также такой момент: найденный общий знаменатель оптимально оставлять в виде произведения на случай необходимости сократить конечную дробь.

Мы рассмотрели подробно схему приведения исходных алгебраических дробей к общему знаменателю, теперь можем приступить к разбору примеров на сложение и вычитание дробей с разными знаменателями.

Пример 4

Заданы алгебраические дроби: 1 - 2 · x x 2 + x и 2 · x + 5 x 2 + 3 · x + 2 . Необходимо осуществить действие их сложения.

Решение

Исходные дроби имеют разные знаменатели, поэтому первым действием приведем их к общему знаменателю. Раскладываем знаменатели на множители: x 2 + x = x · (x + 1) , а x 2 + 3 · x + 2 = (x + 1) · (x + 2) , т.к. корни квадратного трехчлена x 2 + 3 · x + 2 это числа: - 1 и - 2 . Определяем общий знаменатель: x · (x + 1) · (x + 2) , тогда дополнительные множители будут: x + 2 и – x для первой и второй дробей соответственно.

Таким образом: 1 - 2 · x x 2 + x = 1 - 2 · x x · (x + 1) = (1 - 2 · x) · (x + 2) x · (x + 1) · (x + 2) = x + 2 - 2 · x 2 - 4 · x x · (x + 1) · x + 2 = 2 - 2 · x 2 - 3 · x x · (x + 1) · (x + 2) и 2 · x + 5 x 2 + 3 · x + 2 = 2 · x + 5 (x + 1) · (x + 2) = 2 · x + 5 · x (x + 1) · (x + 2) · x = 2 · x 2 + 5 · x x · (x + 1) · (x + 2)

Теперь сложим дроби, которые мы привели к общему знаменателю:

2 - 2 · x 2 - 3 · x x · (x + 1) · (x + 2) + 2 · x 2 + 5 · x x · (x + 1) · (x + 2) = = 2 - 2 · x 2 - 3 · x + 2 · x 2 + 5 · x x · (x + 1) · (x + 2) = 2 · 2 · x x · (x + 1) · (x + 2)

Полученную дробь возможно сократить на общий множитель x + 1:

2 + 2 · x x · (x + 1) · (x + 2) = 2 · (x + 1) x · (x + 1) · (x + 2) = 2 x · (x + 2)

И, напоследок, полученный результат запишем в виде алгебраической дроби, заменив произведение в знаменателе многочленом:

2 x · (x + 2) = 2 x 2 + 2 · x

Запишем ход решения кратко в виде цепочки равенств:

1 - 2 · x x 2 + x + 2 · x + 5 x 2 + 3 · x + 2 = 1 - 2 · x x · (x + 1) + 2 · x + 5 (x + 1) · (x + 2) = = 1 - 2 · x · (x + 2) x · x + 1 · x + 2 + 2 · x + 5 · x (x + 1) · (x + 2) · x = 2 - 2 · x 2 - 3 · x x · (x + 1) · (x + 2) + 2 · x 2 + 5 · x x · (x + 1) · (x + 2) = = 2 - 2 · x 2 - 3 · x + 2 · x 2 + 5 · x x · (x + 1) · (x + 2) = 2 · x + 1 x · (x + 1) · (x + 2) = 2 x · (x + 2) = 2 x 2 + 2 · x

Ответ: 1 - 2 · x x 2 + x + 2 · x + 5 x 2 + 3 · x + 2 = 2 x 2 + 2 · x

Обратите внимание еще на такую деталь: перед тем, как алгебраические дроби сложить или вычесть, при наличии возможности их желательно преобразовать с целью упрощения.

Пример 5

Необходимо осуществить вычитание дробей: 2 1 1 3 · x - 2 21 и 3 · x - 1 1 7 - 2 · x .

Решение

Преобразуем исходные алгебраические дроби для упрощения дальнейшего решения. Вынесем за скобки числовые коэффициенты переменных в знаменателе:

2 1 1 3 · x - 2 21 = 2 4 3 · x - 2 21 = 2 4 3 · x - 1 14 и 3 · x - 1 1 7 - 2 · x = 3 · x - 1 - 2 · x - 1 14

Данное преобразование однозначно дало нам пользу: мы явно видим наличие общего множителя.

Избавимся вообще от числовых коэффициентов в знаменателях. Для этого используем основное свойство алгебраических дробей: числитель и знаменатель первой дроби умножим на 3 4 , а второй на - 1 2 , тогда получим:

2 4 3 · x - 1 14 = 3 4 · 2 3 4 · 4 3 · x - 1 14 = 3 2 x - 1 14 и 3 · x - 1 - 2 · x - 1 14 = - 1 2 · 3 · x - 1 - 1 2 · - 2 · x - 1 14 = - 3 2 · x + 1 2 x - 1 14 .

Совершим действие, которое нам позволит избавиться от дробных коэффициентов: умножим полученные дроби на 14:

3 2 x - 1 14 = 14 · 3 2 14 · x - 1 14 = 21 14 · x - 1 и - 3 2 · x + 1 2 x - 1 14 = 14 · - 3 2 · x + 1 2 x - 1 14 = - 21 · x + 7 14 · x - 1 .

Наконец, выполним требуемое в условии задачи действие – вычитание:

2 1 1 3 · x - 2 21 - 3 · x - 1 1 7 - 2 · x = 21 14 · x - 1 - - 21 · x + 7 14 · x - 1 = 21 - - 21 · x + 7 14 · x - 1 = 21 · x + 14 14 · x - 1

Ответ: 2 1 1 3 · x - 2 21 - 3 · x - 1 1 7 - 2 · x = 21 · x + 14 14 · x - 1 .

Сложение и вычитание алгебраической дроби и многочлена

Данное действие сводится также к сложению или вычитанию алгебраических дробей: необходимо представить исходный многочлен как дробь со знаменателем 1 .

Пример 6

Необходимо произвести сложение многочлена x 2 − 3 с алгебраической дробью 3 · x x + 2 .

Решение

Запишем многочлен как алгебраическую дробь со знаменателем 1: x 2 - 3 1

Теперь можем выполнить сложение по правилу сложения дробей с разными знаменателями:

x 2 - 3 + 3 · x x + 2 = x 2 - 3 1 + 3 · x x + 2 = x 2 - 3 · (x + 2) 1 · x + 2 + 3 · x x + 2 = = x 3 + 2 · x 2 - 3 · x - 6 x + 2 + 3 · x x + 2 = x 3 + 2 · x 2 - 3 · x - 6 + 3 · x x + 2 = = x 3 + 2 · x 2 - 6 x + 2

Ответ: x 2 - 3 + 3 · x x + 2 = x 3 + 2 · x 2 - 6 x + 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Ваш ребенок принес домашнее задание из школы, и вы не знаете как его решить? Тогда этот мини урок для вас!

Как складывать десятичные дроби

Десятичные дроби удобнее складывать в столбик. Чтобы выполнить сложение десятичных дробей, надо придерживаться одного простого правила:

  • Разряд должен находиться под разрядом, запятая под запятой.

Как вы видите на примере, целые единицы находятся друг под другом, разряд десятых и сотых находится друг под другом. Теперь складываем числа, не обращая внимания на запятую. Что же делать с запятой? Запятая переносится на то место, где стояла в разряде целых.

Сложение дробей с равными знаменателями

Чтобы выполнить сложение с общим знаменателем, надо сохранить знаменатель без изменения, найти сумму числителей и получим дробь, которая будет являться общей суммой.


Сложение дробей с разными знаменателями методом нахождения общего кратного

Первое, на что надо обратить внимание – это на знаменатели. Знаменатели разные, не делятся ли одно на другое, являются ли простыми числами. Для начала надо привести к одному общему знаменателю, для этого существует несколько способов:

  • 1/3 + 3/4 = 13/12, для решения этого примера нам надо найти наименьшее общее кратное число (НОК), которое будет делиться на 2 знаменателя. Для обозначения наименьшего кратного чисел a и b – НОК (а;b). В данном примере НОК (3;4)=12. Проверяем: 12:3=4; 12:4=3.
  • Перемножаем множители и выполняем сложение полученных чисел, получаем 13/12 – неправильную дробь.


  • Для того чтобы перевести неправильную дробь в правильную, разделим числитель на знаменатель, получим целое число 1, остаток 1 – числитель и 12 – знаменатель.

Сложение дробей методом умножения крест на крест

Для складывания дробей с разными знаменателями существует еще один способ по формуле “крест на крест”. Это гарантированный способ уровнять знаменатели, для этого вам надо числители перемножить со знаменателем одной дроби и обратно. Если вы только на начальном этапе изучения дробей, то этот способ самый простой и точный, как получить верный результат при сложении дробей с разными знаменателями.